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Competitive effects of nuclear deformation and density dependence of �N interaction in � binding energies
B� of hypernuclei are studied systematically on the basis of the baryon-baryon interaction model ESC (extended
soft core) including many-body effects. By using the �N G-matrix interaction derived from ESC, we perform
microscopic calculations of B� in � hypernuclei within the framework of the antisymmetrized molecular
dynamics under the averaged-density approximation. The calculated values of B� reproduce experimental data
within a few hundred keV in the wide mass regions from 9 to 51. It is found that competitive effects of nuclear
deformation and density dependence of �N interaction work decisively for fine-tuning of B� values.
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I. INTRODUCTION

Basic quantities in hypernuclei are � binding energies, B�,
from which a potential depth, U�, in nuclear matter can be
evaluated. The early success in reproducing the U� value was
achieved by Nijmegen hard-core models [1], where the most
important role was played by the �N -�N coupling term.
Medium and heavy � hypernuclei have been produced by
counter experiments such as (π+,K+) reactions. Accurate data
of B� values in ground and excited states of hypernuclei have
been obtained by γ -ray observations and (e,e′K+) reactions.
With the increase of experimental information [2], precise
interaction models have been constructed. In the Nijmegen
group, the soft-core models have been developed with con-
tinuous efforts so as to reproduce reasonably hypernuclear
data [3–6]. In the recent versions of the extended-soft-core
(ESC) models [5,6], two-meson and meson-pair exchanges are
taken into account explicitly, while these effects are implicitly
and roughly described by exchanges of “effective bosons”
in one-boson exchange (OBE) models. The latest model
ESC08C aims to reproduce consistently almost all features
of the S = −1 and −2 systems. The parameter fitting has
been improved continuously, and the final version has to
be submitted soon. In Ref. [9], they used successfully the
version of 2012 in the early stage of parameter fitting [7],
denoted as ESC08C(2012). This version is used also in the present
work.

Recently, the dependence of B� on structures of core nuclei,
in particular, nuclear deformations, has been discussed in
p-shell [8] and sd-pf -shell [9–11] hypernuclei theoretically.
Generally, values of B� are related to nuclear structure in
two ways. One is that an increase of deformation reduces the
overlap of the densities between a � particle and the core
nucleus, which makes B� smaller. Such effects are seen in
sd-pf shell hypernuclei. In Refs. [9,11], the antisymmetrized
molecular dynamics for hypernuclei (HyperAMD) [12,13] was
applied to several sd-pf shell hypernuclei such as 41

� Ca and
46
� Sc. It was found that B� values in deformed states were
decreased, reflecting smaller overlaps.

The other effect is due to the density dependence of the
�N effective interaction. In light hypernuclei and/or dilute
states like cluster states, the density overlap between a � and
nucleons is significantly decreased, which can affect the B�

through the density dependence. For example, in Be hypernu-
clei having a 2α-cluster structure with surrounding neutrons,
it was discussed that the overlap becomes much smaller in
the well-pronounced 2α-cluster states [8]. When the �N

effective interaction derived from the G-matrix calculation
is designed to depend on the nuclear Fermi momentum kF , the
smaller overlap makes the relevant value of kF small, i.e., less
Pauli-blocking, resulting in the increase of B�. Considering
this effect, it is expected that appropriate values of kF in
finite systems are reduced as overlaps become small with mass
numbers, which would affect the mass dependence of B�.

�N interactions are related intimately to the recent topic
of heavy neutron stars (NS). The stiff equation of state (EoS)
giving the large NS mass necessitates the strong three-nucleon
repulsion in the high-density region, the existence of which
has been established by many works [14] in nuclear physics.
However, the hyperon mixing in neutron-star matter brings
about the remarkable softening of the EoS, canceling this
repulsive effect. A possible way to solve such a problem is to
assume that strong repulsions exist universally in three-baryon
channels. More specifically, it is assumed that the �NN

repulsion works in � hypernuclei as well as the three-nucleon
repulsion. A �NN three-body effect, which is generally a
hyperonic many-body effect (MBE), has to appear as an
additional density dependence of the �N effective interaction.
It is important to study MBEs by analyzing the experimental
data of B� systematically.

The aim of the present work is to reveal how the density
dependence of the �N effective interaction affects the mass
dependence of B�. Because the p-, sd-, and pf -shell hy-
pernuclei have various structures in the ground states, they
would affect the values of B� through the density dependence
of the �N interaction. To investigate it, we use the Hyper-
AMD combined with the �N G-matrix interaction, which
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successfully describes various structures of hypernuclei
without assumptions on specific clustering and deforma-
tions [12,13].

This paper is organized as follows. In the next section, the
�N G-matrix interaction is explained as well as treatment of
MBEs. In Sec. III, we explain how to describe hypernuclei,
namely, the theoretical framework of HyperAMD. In Sec. IV,
we show the calculated values of B� including MBEs
and discuss effects from core structures on B�. Section V
summarizes this paper.

II. �N G-MATRIX INTERACTION

We start from ESC08C(2012), which was used in the
analysis of � hypernuclei based on the HyperAMD most
successfully [9]. One should be careful, however, that the main
conclusion in this work has to be valid qualitatively also for
other realistic interaction models including �N -�N coupling
terms which lead to strong density dependencies of the �N
effective interactions. Hereafter, ESC08C(2012) is denoted as
ESC simply. As a model including an additional density
dependence due to a hyperonic MBE, we adopt the model
given in Ref. [15]. Here, the multipomeron exchange repulsion
(MPP) is added into ESC together with the phenomenological
three-body attraction (TBA), where both of them are rep-
resented as density-dependent two-body interactions. Using
ESC + MPP + TBA, G-matrix calculations are performed
with the continuous choice for off-shell single-particle po-
tentials: Contributions of MPP and TBA are renormalized into
�N G matrices. The MPP part is given as

V
(N)

MPP(r; ρ) = g
(N)
P gN

P

ρN−2

M3N−4

(
mP√

2π

)3

exp

(
−1

2
m2

P r2

)
, (1)

corresponding to triple (N = 3) and quartic (N = 4) pomeron
exchange. The values of the two-body pomeron strength gP

and the pomeron mass mP are the same as those in ESC. A
scale mass M is taken as the proton mass. The TBA part is
assumed as

VTBA(r; ρ) = V0 exp (−(r/2.0)2)ρ exp(−3.5ρ)(1 + Pr )/2,

(2)

with Pr being a space-exchange operator. In Refs. [15,16],
these interactions were assumed to be universal in all baryonic
channels. Namely, the parameters g

(3)
P , g

(4)
P , and V0 in hyper-

onic channels were taken to be the same as those in nucleon
channels, assuring the stiff EoS of hyperon-mixed neutron-star
matter. Three sets with different strengths of MPP were used
in Refs. [15,16]. In the case of the set MPa, for instance,
the parameters were taken as g

(3)
P = 2.34, g

(4)
P = 30.0, and

V0 = −32.8. In the present analysis, however, such a choice
leads to a too strong density dependence of the �N G-matrix
interaction for reproducing the mass dependence of B� values:
In the case of ESC08C(2012), the mass dependence of B�

values are reproduced rather well without the additional MBE.
Then, the values of g

(3)
P and g

(4)
P may be much smaller than

the above values so that the additional density dependence
is not strong. Here, the parameters are determined so that
calculated results of B� values in the present framework

TABLE I. Values of parameters in �V�N (kF ; r) = (a + bkF +
ck2

F ) exp −(r/β2)2, with β2 = 0.9 fm.

1E 3E 1O 3O

a 4.809 4.345 2.701 1.611
b −11.09 −10.57 −7.743 −5.704
c 5.264 5.035 8.004 7.599

are consistent with the experimental data. They are taken as
g

(3)
P = 0.39, g

(4)
P = 0.0, and V0 = −5.0: MPP (TBA) is far

less repulsive (attractive) than those in the above case. In this
case, the calculated value of B� is 13.0 MeV in 16

� O, which is
consistent with the observed value (see Table III). Thus, MBE
is represented by MPP + TBA, having only minor effects on
the results in this work.

�N G-matrix interactions V�N for ESC are constructed
in nuclear matter with Fermi momentum kF [17]. They are
represented in coordinate space and parametrized in a three-
range Gaussian form [17]:

V�N (r; kF ) =
3∑

i=1

(
ai + bikF + cik

2
F

)
exp

(−r2/β2
i

)
. (3)

The parameters (ai,bi,ci) are determined so as to simulate the
calculated G matrix for each spin-parity state. The procedures
to fit the parameters are given in Ref. [17], and the determined
parameters for ESC are given in Ref. [9].

Contributions from MBE (MPP + TBA) to G matrices are
represented by modifying the second-range parts of V�N (kF ,r)
for ESC by �V�N (kF ,r) = (a + bkF + ck2

F ) exp {−(r/β2)2}.
It should be noted that the values of parameters g

(3)
P , g

(4)
P , and

V0 are connected to the values of a, b, and c through this
procedure. The values of parameters are given in Table I.

In applications of nuclear-matter G-matrix interactions
V�N (r; kF ) to finite systems, a basic problem is how to choose
kF values in each system: An established manner is to use
so called local-density and averaged-density approximations,
etc., based on physical insight. As the better choice to describe
� single-particle (s.p.) states, we adopt an averaged-density
approximation (ADA) [17], where the averaged value of kF is
defined by

kF =
(

3π2〈ρ〉
2

)1/3

, 〈ρ〉 =
∫

d3rρN (r)ρ�(r). (4)

In the case of local-density approximation (LDA), kF

values are obtained from (ρN (r) + ρ�(r))/2 as a function
of r. We compare ADA and LDA by calculating B� values
for 89

�Y and 16
�O with use of the �-nucleus folding model

in which �N G-matrix interactions V�N (r; kF ) are folded
into density distributions [17]. For spherical-core systems,
the results calculated with the G-matrix folding model are
similar to those with the HyperAMD used in the following
section. In Table II, the result is shown in the case of using
ESC without MBE. It is demonstrated here that the B� values
in 89

�Y are reproduced nicely in both cases of ADA and LDA
with no adjustable parameter. On the other hand, in 16

�O, the
value of B� obtained with LDA is found to be smaller than
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TABLE II. Values of B� in 89
�Y and 16

�O calculated with ADA
and LDA (in MeV). Observed values of B� (Bexp

� ) are shifted by 0.54
MeV from those in Refs. [18,19] as explained in Sec. IV A.

−Bcal
�

ADA LDA −B
exp
�

89
�Y −23.7 −23.6 −23.65 ± 0.10 [18]

16
�O −13.3 −12.3 −12.96 ± 0.05 [19]

that obtained with ADA. Thus, the B� values with LDA are
similar to (smaller than) those with ADA in heavy (light)
systems, and eventually the mass dependence of B� values
can be reproduced better using ADA than LDA. Hence, ADA
is employed in the present work as an approximate way to use
nuclear-matter G-matrix interactions in finite systems.

III. ANALYSIS BASED ON HYPERAMD

In this study, we apply the HyperAMD to p-, sd-, and pf -
shell � hypernuclei, namely, from 9

�Li up to 59
� Fe, to describe

various structures of these hypernuclei such as an α clustering
and prolate, oblate, and triaxial deformations in ground states.
Combined with the generator coordinate method (GCM), we
perform the systematic analysis of B�.

A. Hamiltonian and wave function

The Hamiltonian used in this study is

H = TN + T� − Tg + VNN + VC + V�N, (5)

where TN , T�, and Tg are the kinetic energies of the nucleons,
� particle, and center-of-mass motion, respectively. We use
Gogny D1S [20,21] as the effective nucleon-nucleon interac-
tion VNN , and the Coulomb interaction VC is approximated by
the sum of seven Gaussians. As for the �N interaction V�N ,
we use the G-matrix interaction discussed above.

The variational wave function of a single � hypernucleus
is described by the parity-projected wave function, 
± =
P̂ ±{A{ϕ1, . . . ,ϕA} ⊗ ϕ�}, where

ϕi ∝ e− ∑
σ νσ (rσ −Ziσ )2 ⊗ (uiχ↑ + viχ↓) ⊗ (p or n), (6)

ϕ� ∝
M∑

m=1

cme− ∑
σ νσ (rσ −zmσ )2 ⊗ (amχ↑ + bmχ↓). (7)

Here the s.p. wave packet of a nucleon ϕi is described by
a single Gaussian, while that of �, ϕ�, is represented by
a superposition of Gaussian wave packets. The variational
parameters are Zi , zm, νσ , ui , vi , am, bm, and cm. In the
actual calculation, the energy variation is performed under the
constraint on the nuclear quadrupole deformation parameters
(β,γ ) in the same way as in Ref. [13]. By the frictional cooling
method, the variational parameters in 
± are determined for
each set of (β,γ ), and the resulting wave functions are denoted
as 
±(β,γ ).

B. Angular momentum projection and generator
coordinate method

After the variation, we project out the eigenstate of the
total angular momentum J for each set of (β,γ ) (angular
momentum projection, AMP):


J±
MK(β,γ ) = 2J + 1

8π2

∫
d�DJ∗

MK(�)R(�)
±(β,γ ). (8)

The integrals over the three Euler angles � are performed
numerically. Then the wave functions with differing values of
K and (β,γ ) are superposed (GCM):


J±
n =

∑
p

J∑
K=−J

cnpK
J±
MK(βp,γp). (9)

The coefficients cnpK are determined by solving the Griffin-
Hill-Wheeler equation [13].

C. B� and analysis of wave function

The B� values are calculated as the energy difference
between the ground states of a hypernucleus (A+1

� Z) and the
core nucleus (AZ) as B� = E(AZ; j±) − E(A+1

� Z; J±), where
E(AZ; j±) and E(A+1

� Z; J±) are calculated by the GCM.
We also calculate squared overlap between the 
J±

MK(β,γ )
and the GCM wave function 
J±

α ,

OJ±
MKα(β,γ ) = ∣∣〈
J±

MK(β,γ )
∣∣
J±

α

〉∣∣2
, (10)

which we call the GCM overlap. OJ±
MKα(β,γ ) shows the

contribution of 
J±
MK(β,γ ) to each state J±, which is useful

to estimate the deformation of each state. In this study, we
regard (β,γ ) corresponding to the maximum value of the GCM
overlap as the nuclear deformation of each state.

IV. RESULTS AND DISCUSSIONS

A. B� in p-, sd-, and p f -shell � hypernuclei

The calculated values of B� for ESC including MBEs are
summarized in Table III together with the values of kF and
〈ρ〉 and compared with those calculated by using ESC only
(in parentheses) and observed values of B� (Bexp

� ). Here, the
kF values are calculated by Eq. (4) on the basis of ADA. In
Table III, we also show (β,γ ), which gives the maximum
value of the GCM overlap defined by Eq. (10). Recently,
in Ref. [28], it has been discussed that the B

exp
� measured

by the (π+,K+) experiments are systematically shallower by
0.54 MeV on average than the emulsion data for 7

�Li, 9
�Be,

10
� B, and 13

� C. It indicates that the reported binding energy
of 12

� C [24] would be shallower by 0.54 MeV, which is used
for the binding energy measurements as the reference in the
(π+,K+) experiments. Therefore, in Table III, the values of
B

exp
� measured by the (π+,K+) or (K−,π−) experiments (with

dagger) are shifted by 0.54 MeV deeper from the values
reported by Refs. [2,18,19,22,26]. Despite this correction,
calibration ambiguities in the (π+,K+) data still remain. One
should be mindful of this problem when the calculated values
of B� are compared with these data.
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TABLE III. −B� (MeV) calculated with ESC + MBE together
with 〈ρ〉 (fm−3) and kF (fm−1) defined by Eq. (4), and nuclear
quadrupole deformation (β,γ ) for each hypernucleus. Values in
parentheses are calculated with ESC08C(2012) only in units of MeV.
Observed values B

exp
� are taken from Refs. [2,18,19,22–28]. Values

of B
exp
� with a dagger are also explained in the text.

β γ 〈ρ〉 kF −Bcal
� −B

exp
�

9
�Li 0.50 2◦ 0.072 1.02 −8.1(−7.9) −8.50 ± 0.12 [24]
9
�Be 0.87 1◦ 0.060 0.96 −8.1(−7.9) −6.71 ± 0.04 [25]
9
�B 0.45 2◦ 0.072 1.02 −8.2(−8.0) −8.29 ± 0.18 [24]
10
� Be 0.57 1◦ 0.077 1.04 −9.0(−8.7) −9.11 ± 0.22 [23]

−8.55 ± 0.18 [28]
10
� B 0.68 1◦ 0.075 1.04 −9.2(−8.9) −8.89 ± 0.12 [25]
11
� B 0.50 29◦ 0.081 1.05 −10.1(−9.8) −10.24 ± 0.05 [25]
12
� B 0.39 44◦ 0.083 1.07 −11.3(−11.0) −11.37 ± 0.06 [25]

−11.38 ± 0.02 [27]
12
� C 0.41 34◦ 0.086 1.08 −11.0(−10.7) −10.76 ± 0.19 [24]
13
� C 0.45 60◦ 0.090 1.10 −11.6(−11.3) −11.69 ± 0.19 [23]
14
� C 0.52 22◦ 0.093 1.11 −12.5(−12.4) −12.17 ± 0.33 [24]
15
� N 0.28 60◦ 0.098 1.13 −12.9(−12.6) −13.59 ± 0.15 [25]
16
� O 0.02 – 0.105 1.16 −13.0(−12.7) −12.96 ± 0.05 [19]†

19
� O 0.30 3◦ 0.110 1.18 −14.3(−14.0) –
21
� Ne 0.46 0◦ 0.106 1.16 −15.4(−15.1) –
25
� Mg 0.478 21◦ 0.116 1.20 −16.1(−15.8) –
27
� Mg 0.36 36◦ 0.125 1.23 −16.3(−16.4) –
28
� Si 0.32 53◦ 0.125 1.23 −16.6(−16.4) −17.1 ± 0.02 [2]†

32
� S 0.23 16◦ 0.130 1.24 −17.6(−17.4) −18.0 ± 0.5 [22]†

40
� K 0.01 – 0.136 1.26 −19.4(−19.2) –
40
� Ca 0.03 – 0.136 1.26 −19.4(−19.2) −19.24 ± 1.1 [26]†

41
� Ca 0.13 12◦ 0.136 1.26 −19.6(−19.4) –
48
� K 0.01 – 0.141 1.27 −20.2(−20.1) –
51
� V 0.18 2◦ 0.151 1.31 −20.4(−20.4) −20.51 ± 0.13 [18]†

59
� Fe 0.26 23◦ 0.142 1.28 −21.4(−21.3) –

Let us discuss the calculated values of B� shown in
Table III. As mentioned in Sec. II, we determine the parameters
of MPP and TBA in Eqs. (1) and (2) so as to reproduce B

exp
� in

16
� O in the HyperAMD calculation with ESC + MPP + TBA.
It is seen that the B� with ESC + MPP + TBA reproduces
the observed data within about 200 keV except for 9

�Be, 15
� N,

and 28
� Si, which is achieved owing to the kF dependence of

the �N G-matrix interaction used. As seen in Table III, the
kF values become small with decreasing mass number, which
means that the �N G-matrix interaction becomes attractive.
The main origin of the kF dependence is from the �N -�N
coupling terms included in ESC.

B. Effects of core deformation

For the fine agreement of B� values to the experimental
data, it is very important to describe properly the core
structures, in particular, nuclear deformations. Recently, many

FIG. 1. (a) Comparison of B� between cases (A) (solid) and (B)
(dashed). Open circles show observed values with mass numbers from
A = 9 up to A = 51, which are taken from Refs. [2,18,19,22–27].
B

exp
� values measured by (π+,K+) and (K−,π−) reactions are shifted

by 0.54 MeV as explained in text. (b) Same as panel (a), but magnified
in the 5 � A � 20 region.

authors have been studying deformations of hypernuclei in
p-shell [29–32], sd-shell [9,10,29–34], and pf -shell [9,10,29]
mass regions. In this study, we take into account deformations
of hypernuclei by performing GCM calculations in which
intrinsic wave functions with various (β,γ ) deformations,

±(β,γ ), are diagonalized.

To study the importance of core deformations in the
systematic calculations of B� values, we perform the GCM
calculation by using the spherical wave functions 
J±

MK(β=0.0)
in Eq. (9) [case (B)], whereas Table III summarizes the GCM
results with various deformations [case (A)]. In case (B), the
kF value is determined independently from case (A) with

J±

MK(β = 0.0) by Eq. (4) for each hypernucleus. By using
the kF values determined in case (B), we also perform the
GCM calculations with various (β,γ ) deformations [case (C)].
Table IV shows the calculated values of B� in cases (A)–(C) in
the typical p-shell hypernuclei 11

� B, 12
� B, and 13

� C. Comparing
cases (A) and (B), we find the considerable discrepancy of
B�, i.e., the B� values in case (B) are shallower than those in
case (A), which indicates that the B� values become smaller,
if the core nuclei are spherical. This is mainly due to the
larger kF value in case (B) compared with that in case (A),
which comes from the increase of 〈ρ〉 in a spherical state
[see Eq. (4)]. For example, in the case of 12

� B, the obtained
value of B� is 9.7 MeV with kF = 1.16 fm−1 in case (B),
whereas B� = 11.3 MeV with kF = 1.07 fm−1 in case (A) (cf.
B

exp
� = 11.4 ± 0.02 MeV [27]). The same difference between

cases (A) and (B) is seen in the other hypernuclei, in particular,
in light hypernuclei with A < 16, as shown in Figs. 1(a)
and 1(b).

In Table IV, it is also found that the values of B� in case
(C) are shallower than those in case (B), which deviate greatly
from those in case (A) and the observations. This is because the
deformation of the core nuclei decreases the overlap between
the � and core nuclei. Because we use the same kF in cases
(B) and (C), the smaller overlap with deformation in case
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TABLE IV. Comparison of B� with cases (A), (B), and (C) in 11
� B, 12

� B, and 13
� C. The value of kF calculated by Eq. (4) in each case is also

shown. (β,γ ) giving the maximum values of the GCM overlap [Eq. (10)] are also shown in cases (A) and (C).

11
� B 12

� B 13
� C

Case (A) Case (B) Case (C) Case (A) Case (B) Case (C) Case (A) Case (B) Case (C)

−B� −10.1 −9.0 −8.7 −11.3 −9.7 −9.4 −11.6 −11.5 −10.5
kF 1.05 1.13 1.13 1.07 1.16 1.16 1.10 1.15 1.15
(β,γ ) (0.50,29 ◦) (0.50,29 ◦) (0.39,44 ◦) (0.39,44 ◦) (0.45,60 ◦) (0.45,60 ◦)
−B

exp
� −10.24 ± 0.05 [25] −11.37 ± 0.06 [25], −11.38 ± 0.02 [27] −11.69 ± 0.19 [23]

(C) makes B� shallower. Therefore, it can be said that the
consistent descriptions of the deformation and the values of
kF determined in deformed states are essential to reproduce
the observations. B� values are given by the balance of two
competitive effects: (i) the deformation makes the � s.p.
energy (kF value) shallower (smaller), and (ii) the smaller
value of kF makes the � s.p. energy deeper due to the density
dependence of the �N interaction. In the A > 16 region,
generally, deformations make B� values smaller because effect
(ii) is not sufficiently remarkable to cancel effect (i). On the
other hand, in the A < 16 region, deformations make B�

values larger due to effect (ii).
Let us confirm whether the core deformation is successfully

described under the present AMD framework with the Gogny
D1S interaction. It can be done essentially by comparing the
E2 transition probabilities, B(E2), of the core nuclei with
the observations, which are quite sensitive to the nuclear
deformation. For example, in 12

� B, we calculate B(E2) in
11B as B(E2; 5/2−

1 → 3/2−
1 ) = 16 e2 fm4 by performing the

GCM calculation with various (β,γ ) deformations following
Refs. [35,36], which is consistent with the experimental
value B(E2; 5/2−

1 → 3/2−
1 ) = 14 ± 3 e2 fm4 [37]. On the

basis of the structure calculation for 11B, we obtain a very
reasonable value of B� in 12

� B by the addition of a �
particle. Then, it is confirmed that our calculations for B� are
performed in the model space to describe core deformations
properly.

Here, we compare the deformation of hypernuclei with that
predicted by Ref. [30], in which 13

� C and 28
� Si are predicted to

be spherical within the framework of relativistic mean field,
whereas the core nuclei 12C and 27Si are oblately deformed.
This means that the addition of a � particle makes the core
nucleus spherical. In the present work, we also find the reduc-
tion of the core deformation by the addition of a � particle.
However, the degree of deformation change is rather small.
Thus these hypernuclei are still deformed as shown in Table III,
while (β,γ ) = (0.50,59◦) in 12C and (β,γ ) = (0.35,55◦) in
27Si. This difference between the present work and Ref. [30]
mainly comes from the effects of rotational motions, which
are included by performing the AMP [see Eq.(8)]. In fact, it
is also found that the deformation of 13

� C becomes spherical
before performing the AMP [32], which is the same trend as
predicted by Ref. [30]. In the present calculation, not only
rotational motions but also configuration mixing and shape
fluctuations are taken into account by performing the AMP
and GCM, which can affect the deformation of hypernuclei.

C. Deviation of B� in several hypernuclei

We comment on the large deviation of B� in 9
�Be, 15

� N, and
28
� Si. In 9

�Be, it is considered that the Gogny D1S force [20,21]
overestimates the size of each α particle of the 2α-cluster
structure of the core 8Be due to the zero-range density-
dependent term, as pointed out in Ref. [38], which would
cause the overestimation of B� by the decrease of kF through
Eq. (4). It is found that the kF value, which reproduces the B

exp
�

of 9
�Be (kF = 1.08 fm−1), is much larger than that shown in

Table III (kF = 0.96 fm−1). The smallness of the latter value
of kF is due to the overestimation of the size of α with Gogny
D1S. It is also found that the same phenomenon appears in
the � hypernuclei with A < 9 having an α-cluster structure
by using Gogny D1S. Therefore, we exclude them from being
the subject of the present analysis. In such cases, it would be
necessary to use appropriate effective NN interactions instead
of Gogny D1S. In 15

� N, the B
exp
� measured by the emulsion

experiment [25] seems to be deviating from those of the
neighboring hypernuclei in Fig. 1(b). This might be due to the
difficulties of the analysis and smaller numbers of events in the
emulsion experiments. Therefore, we hope to perform a new
analysis of the emulsion measurements with a large statistic in
the future. In 28

� Si, the value of B� is underestimated in case
(A), whereas that in case (B) (17.3 MeV) is much closer to the
experimental value. This might be due to an overestimation
of the core deformation, which is seen in the comparison
of the electric quadrupole moment Q in the ground state
5/2+ of 27Si, namely, Q(5/2+,AMD) = 10 e fm2, whereas
Q(5/2+,exp) = 6.1 ± 0.4 e fm2 [39]. Because the calculated
values of kF are almost the same in cases (A) and (B) (1.23
fm−1), the value of B� would be in between the values of these
cases, if the deformation of 27Si were smaller than the present
result.

D. B� and strength of many-body force

Finally, we also comment on the relation between B�

and the strength of MPP and TBA. In the present study, the
parameters g

(3)
P and g

(4)
P in Eq. (1) [V0 in Eq.(2)] are taken as

far smaller (less attractive) than those in Refs. [15,16]. They
are determined so as to improve the fitting of B� values to the
experimental data. As seen in Table III, the calculated values
of B� with ESC only reproduce rather well the experimental
ones. Therefore, there remains only a small room to introduce
MBE on the basis of ESC. On the other hand, in the case of
MPa [15,16], the parameters of MPP and TBA in hyperonic
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channels are taken to be the same as those in nucleon channels
assuming the stiff EoS of hyperon mixed neutron-star matter.
It is found that values of B� are overestimated if the parameter
set of MPa is used combined with ESC. For example, B� with
MPa are 13.0 MeV for 13

� C (cf. B
exp
� = 11.69 ± 0.19 MeV)

and 14.2 MeV for 16
� O (cf. B

exp
� = 12.96 ± 0.05 MeV). This

indicates that the strength of MPP and TBA in MPa is too
strong to reproduce the observations, when MPa is used
together with ESC. It is known that two-body �N effective
interactions still have ambiguities, and thus potential depth and
kF dependence are different among models. The dependence
of MBE on two-body �N effective interaction models will
be discussed in a following paper. Here, for instance, a strong
MPP such as MPa is shown to be allowable in the case of the
latest version of ESC08C.

V. SUMMARY

On the basis of the baryon-baryon interaction model ESC
including MBE, competitive effects of nuclear deformation
and density dependence of the �N interaction are investigated.
By using the G-matrix interaction derived from ESC, we
perform microscopic calculations of B� within the framework
of HyperAMD with the ADA treatment for the hypernuclei
with 9 � A � 59. It is found that the calculated values of
B� reproduce the experimental data within a few hundred
keV, when the additional density dependence by MBE is
taken into account. This is achieved by the competition

between the nuclear deformation and density dependence of
�N interaction. Generally, the overlap between the � and
nucleons varies depending on the degree of core deformation.
In the light hypernuclei with A � 16, it is found that the B�

becomes larger by the density dependence of the �N inter-
action, because the overlap rapidly decreases for increasing
deformation, which mainly comes from the �N -�N coupling.
On the other hand, in sd-pf -shell hypernuclei, the change of
the overlap is rather small even if the core deformation is
enhanced. Therefore, the density dependence does not affect
the B� significantly. Instead, increasing deformation makes
B� smaller by decreasing the overlap. Thus, both the taking
into account the core deformations and the treatment of the
density dependence of the �N interaction are essential to
understand the systematic behavior of B�.

The Fortran code ESC08C2012.F can be found on the perma-
nent open-access website NN-Online: http://nn-online.org.
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