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Background: The two-nucleon momentum distributions of nucleons N1 and N2 in a nucleus A, nN1N2
A (krel,Kc.m.),

is a relevant quantity that determines the probability of finding two nucleons with relative momentum krel and
center-of-mass (c.m.) momentum Kc.m.; at high values of the relative momentum and, at the same time, low
values of the c.m. momentum, n

N1N2
A (krel,Kc.m.) provides information on the short-range structure of nuclei.

Purpose: Our purpose is to calculate the momentum distributions of proton-neutron and proton-proton pairs in
3He, 4He, 12C, 16O, and 40Ca, in correspondence to various values of krel and Kc.m..
Methods: The momentum distributions for A > 4 nuclei are calculated as a function of the relative, krel, and
center-of-mass, Kc.m., momenta and relative angle �, within a linked cluster many-body expansion approach,
based upon realistic local two-nucleon interaction of the Argonne family and variational wave functions featuring
central, tensor, and spin-isospin correlations.
Results: Independently of the mass number A, at values of the relative momentum krel � 1.5–2 fm−1 the
momentum distributions exhibit the property of factorization, n

N1N2
A (krel,Kc.m.) � n

N1N2
rel (krel)nN1N2

c.m. (Kc.m.); in
particular, for pn back-to-back pairs one has n

pn
A (krel,Kc.m. = 0) � C

pn
A nD(krel)npn

c.m.(Kc.m. = 0), where nD is the
deuteron momentum distribution, npn

c.m.(Kc.m. = 0) the c.m. motion momentum distribution of the pair, and C
pn
A

the pn nuclear contact measuring the number of back-to-back pn pairs with deuteron-like momenta (kp �
−kn,Kc.m. = 0).
Conclusions: The values of the pn nuclear contact are extracted from the general properties of the two-nucleon
momentum distributions corresponding to Kc.m. = 0. The Kc.m.-integrated pn momentum distributions exhibit
the property n

pn
A (krel) � C

pn
A nD(krel) but only at very high values of krel, �3.5–4 fm−1. The theoretical ratio of

the pp/pn momentum distributions of 4He and 12C and the calculated c.m. motion momentum distributions are
in agreement with recent experimental data.

DOI: 10.1103/PhysRevC.94.044309

I. AIM AND INTRODUCTION

The investigation of short-range correlations (SRCs) in
nuclei is ultimately aimed at unveiling the details of in-
medium short-range nucleon-nucleon (NN) dynamics, a rel-
evant physics issue that cannot be answered by scattering
experiments of two free nucleons (see recent review papers
on the subject [1–5]). A reliable way to gather information
on SRCs would be to detect significant deviations of proper
experimental data (e.g., electrodisintegration processes off
nuclei) from theoretical predictions based upon ab initio
solutions of the nuclear many-body problem, obtained from
various NN interactions differing in the short-range part. In
practice, such an approach faces several problems because it
implies the exact calculation of the ground- and continuum-
state wave functions of the target nucleus under investigation;
concerning the former, relevant progress has recently been
made to obtain ab initio solutions of the nonrelativistic
Schrödinger equation, but unfortunately, the treatment of
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the continuum spectrum of the target nucleus is still model
dependent, with the only exception of those processes involv-
ing the two- and three-nucleon systems. For complex nuclei
approximations are unavoidable, with the simplest one being
the plane-wave impulse approximation (PWIA), which leads,
in the case of, e.g., a process A(e,e′N )X, to a factorized
cross section depending upon the elementary electron-nucleon
cross section and the one-nucleon spectral function PA(E,k),
which describes the momentum (k ≡ |k|) and removal energy
(E) distributions of a nucleon in nucleus A [in a process
A(e,e′N1N2)X the factorized cross section will depend upon
the two-nucleon spectral function, etc.]. Even if the PWIA
requires corrections due to the final-state interaction (FSI)
and possible effects from non-nucleonic degrees of freedom,
the detection of high-momentum and high-removal-energy
effects may represent evidence of ground-state SRCs. It is
for this reason that during the last few years, calculation of
the nuclear momentum distributions and spectral function
has attracted increasing interest. The one-nucleon, nA(k1),
and two-nucleon, nA(k1,k2), momentum distributions of few-
nucleon systems (A � 4) have been obtained ab initio [6–10]
within different theoretical approaches and using realistic
NN interactions, whereas for A � 12 exact variational Monte
Carlo (VMC) calculations have recently been performed [11].
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For nuclei with A > 12, VMC calculations of the momentum
distribution are not yet feasible, therefore, also in light of future
experimental developments, alternative approaches, even if of
a lower quality than VMC ones, but still maintaining a realistic
link to the underlying NN interactions, should be pursued. A
serious candidate in this respect would be an advanced linked
cluster expansion approach with correlated wave functions,
including a large class of Yvon-Mayer diagrams [12–14],
for they have been shown to produce realistic results of
one-nucleon momentum distributions [15–17] in reasonable
agreement with the more advanced VMC calculations. All
of these calculations, though being performed within different
many-body approaches, produce similar results demonstrating
a universal (A-independent) character of in-medium NN short-
range dynamics, in that the mean-field approach breaks down
when the relative distance r ≡ |r1 − r2| between two generic
nucleons “1” and “2” is of the order of r � 1.3–1.5 fm, with
the two-nucleon density distribution exhibiting the so-called
correlation hole, which, apart from trivial normalization
factors, turns out to be independent of the mass A of the
nucleus and similar to the deuteron one. SRCs give rise to
high-momentum components that are lacking in a mean-field
approach and turned out to depend upon the relative orbital
momentum (L) and the total spin (S) and isospin (T) of the NN
pair, as well as upon the value of the pair center-of-mass (c.m.)
momentum. SRCs give rise to peculiar configurations of the
nuclear wave function in momentum space, e.g., ones where
a high-momentum nucleon is mostly balanced by another
nucleon with similar and opposite value of the momentum
[the back-to-back (BB) configuration] and not by the A − 1
nucleon, as in the case of a mean-field configuration [18].
Thus, within a PWIA picture, if a correlated nucleon, with
momentum k1, acquiring a momentum q from an external
probe, leaves the nucleus without any FSI and is detected with
momentum p = k1 + q, the partner nucleon should be emitted
with momentum k2 � pm = −k1, where the measurable
momentum pm is the missing momentum pm = q − p. Such
a basic picture of BB short-range correlated (SRCd) nucleons
has recently been improved to a large extent by taking into ac-
count the FSI of the struck nucleon by advanced methods (see,
e.g., Refs. [19–22]) and by considering the effects due to the
c.m. motion of the pair, which makes k2 �= −k1, and the effects
due to the (ST) dependence. The underlying dynamics of SRCs
has been theoretically explained by advanced many-body
theories, e.g., by the Brueckner-Bethe-Goldstone approach for
nuclear matter [23] and by exact few-nucleon approaches in the
case of 3He and 4He [24], with both approaches demonstrating
that two-nucleon correlations arise from a general property of
the many-body wave function, namely, its factorized form in
those configurations where a pair of nucleons has, at the same
time, a large value of the two-nucleon relative momentum krel

and a low value of the c.m. momentum K c.m., in agreement
with the phenomenological assumption in Ref. [25]. The
presence of SRCs in nuclei and their basic back-to-back nature
have eventually been experimentally demonstrated [26–31],
but detailed theoretical and experimental information through
the periodic Table of the Elements on their isospin, angular,
and c.m. momentum dependencies remains to be obtained. To
contribute to this challenge in the present paper the results of

calculations of the following quantities, pertaining to nuclei
3He, 4He, 12C, 16O, and 40Ca, are presented: (i) the two-
nucleon momentum distribution n

N1N2
A of the proton-neutron

(pn) and proton-proton (pp) pairs in correspondence with
different values of the c.m. and the the relative momenta of
the pair and the angle � between them; (ii) the number of
short-range correlated pp and pn pairs represented by the
integral of the various types of momentum distributions in a
finite momentum range; and (iii) the ratio of the pn-to-pp
correlated pairs vs the relative momentum krel. Particular
attention is devoted to the comparison of the two-nucleon
momentum distributions of complex nuclei with the deuteron
momentum distribution, in order to clarify whether and to what
extent the short-range dynamics of a free bound pn system will
differ from the short-range dynamics of a pn pair embedded in
the medium. Calculations have been performed with realistic
nuclear wave functions [15,32–34] obtained from the solution
of the Schrödinger equation with realistic NN interactions,
namely, the AV18 [35] and AV8′ [36] interactions. Various
properties of the momentum distributions and various relations
between them are illustrated, which further demonstrates
the relevant property of the nuclear wave function in the
correlation region, i.e., its factorized form. The quantity (the
nuclear contact) measuring the number of deuteron-like pairs
in nuclei is extracted from the general properties of the pn
momentum distributions. The structure of the paper is as
follows: in Sec. II the general definitions of the two-nucleon
momentum distributions and their SRCd parts are given; the
calculation of the momentum distributions and the universal,
A-independent behavior of their SRCd parts are presented in
Sec. III; the general validity of the factorization property in
the SRC region is proved in Sec. IV; the numbers of SRCd pn
and pp pairs in various regions of krel and Kc.m. are given in
Sec. V; a comparison between the available experimental data
and the theoretical predictions is presented in Sec. VI; and a
summary and conclusions are given in Sec. VII.

II. GENERAL DEFINITIONS

In this paper the numbers of protons and neutrons in nucleus
A are denoted Z and N, respectively, with A = Z + N . The
two-body momentum distribution of a pair of nucleons N1N2,
summed over spin (S) and isospin (T) states, is given by

n
N1N2
A (k1,k2) = 1

(2π )6

∫
d r1 d r2 d r ′

1 d r ′
2 ei k1 · (r1 − r ′

1)

× ei k2 · (r2 − r ′
2) ρ

(2)
N1N2

(r1,r2; r ′
1,r

′
2), (1)

where

ρ
(2)
N1N2

(r1,r2; r ′
1,r

′
2) =

∫
ψ∗

o (r1,r2,r3 . . . ,rA) ψo

× (r ′
1,r

′
2,r3, . . . ,rA)δ

(
A∑

i=1

r i

)
A∏

i=3

d r i

(2)

is the two-body nondiagonal density matrix of nucleus A. The
normalization of the proton, neutron, and total distributions,

044309-2



UNIVERSALITY OF NUCLEON-NUCLEON SHORT-RANGE . . . PHYSICAL REVIEW C 94, 044309 (2016)

unless differently stated, is1∫
n

N1N2
A (k1,k2)dk1 dk2 =

∫
ρ

(2)
N1N2

(r1,r2)d r1 d r2

= Z(Z − 1)

2

∣∣∣∣
N1=N2=p

= N (N − 1)

2

∣∣∣∣
N1=N2=n

= ZN |N1=p,N2=n, (3)

with∑
N1N2

∫
n

N1N2
A (k1,k2)dk1 dk2 =

∑
N1N2

∫
ρ

(2)
N1N2

(r1,r2)d r1 d r2

= A(A − 1)

2
. (4)

By introducing the relative and c.m. two-nucleon coordi-
nates and momenta [r = r1 − r2, krel = (k1 − k2)/2; R =
(r1 + r2)/2, K c.m. = k1 + k2], the two-nucleon momentum
distribution can be rewritten as [10]

n
N1N2
A (krel,K c.m.) = n

N1N2
A (krel,Kc.m.,�)

= 1

(2π )6

∫
d r d R d r ′ d R′ ei K c.m.·(R−R′)

ei krel·(r−r ′) ρ
(2)
N1N2

(r,R; r ′,R′), (5)

where |krel| ≡ krel, |K c.m.| ≡ Kc.m., and � is the angle between
krel and K c.m.. Of particular interest is the quantity

n
pn
A (krel,Kc.m. = 0) = 1

(2π )3

∫
d r d r ′ ei krel·(r−r ′) ρ(2)

pn(r,r ′),

(6)

describing the spin and isospin summed relative momentum
distributions of BB pairs, ρ(2)

pn(r,r ′) being the c.m.-integrated
nondiagonal two-body density matrix. Relevant quantities are
also the Kc.m.- and krel-integrated momentum distributions,
namely,

n
N1N2
A (krel) =

∫
n

N1N2
A (krel,K c.m.) d K c.m. (7)

and

n
N1N2
A (Kc.m.) =

∫
n

N1N2
A (krel,K c.m.)d krel. (8)

Equations (6)–(8) have been calculated in Refs. [7–11]
for 3He and 4He, using ab initio wave functions and in
Ref. [11] for 6He, 8He, 6Li, 7Li, 8Li, 9Li, 8Be, 9Be, 10Be,
10B, and, preliminarily, 12C, within the VMC approach. In
this paper we describe new results for various momentum
distributions in 3He, 4He, 12C, 16O, and 40Ca obtained, in
the case of few-nucleon systems (A = 3,4), with ab initio

1Note that in Ref. [10] the two-nucleon momentum distributions
were normalized to 1 in the case of 4He, whereas in the case of 3He
they were normalized to the number of pn and pp pairs, i.e., 2 and
1, respectively.

wave functions and, in the case of nuclei with A > 4, within
a linked-cluster expansion up to the order of four-body cluster
contributions [15]. Whenever possible the results of our
calculations of the momentum distributions are compared with
the results of the VMC approach in Ref. [11].2

III. RESULTS OF CALCULATIONS AND UNIVERSAL
PROPERTIES OF THE CORRELATED TWO-NUCLEON

MOMENTUM DISTRIBUTIONS

A. The two-nucleon momentum distribution in 3He and
isoscalar nuclei

In Figs. 1–6 we show (i) the pn and pp momentum distribu-
tions in 3He, 4He, 12C, 16O, and 40Ca nuclei, in particular, the
full two-nucleon momentum distribution n

N1N2
A (krel,Kc.m.,�)

[Eq. (5)]; (ii) the back-to-back momentum distributions
[Eq. (6)]; (iii) the relative momentum distributions, Eq. (7); and
(iv) the c.m. momentum distribution [Eq. (8). The results pre-
sented in these figures have been obtained using microscopic
wave functions corresponding to the AV18 interaction [35] for
2H and 3He [32,33] and the AV8′ interaction [36] for 4He [34]
and complex nuclei [15]. In order to compare our results
with the VMC results in Ref. [11], whose wave functions
are calculated with the 2N AV18 + 3N UX interaction, we
present in Fig. 7 the one-nucleon momentum distributions for
A = 4 and A = 12 obtained by the two approaches, because
both quantities will be used in what follows. Concerning
our parameter-free results, let us first stress that they are
in a general reasonable agreement with the results of the
VMC calculation [11], although in some regions of momenta
(e.g. at 2.5 � krel � 3.5 fm−1) they can differ appreciably,
within 10%–20%, particularly in the case of the pp relative
momentum distribution of 4He and 12C; the possible origin
of this disagreement, which does not appear to be due to the
effects of the 3N force missing in our calculation [37], is
under investigation. The obtained momentum distributions of
both few-nucleon systems and complex nuclei exhibit several
universal features that can be summarized as follows:

(1) As first pointed out in Ref. [9] in the case of few-
nucleon systems, when Kc.m. = 0, the pn and pp
momentum distributions do not appreciably differ at
small values of krel, with their ratio being closer to
the ratio of the number of pn to the number of pp
pairs, whereas in the region 1.0 � krel � 4.0 fm−1 the
dominant role of tensor correlations makes the pn
distribution much larger than the pp distribution, with
the node exhibited by the latter filled up by the D wave
in the pn two-body density.

(2) Figures 1(a), 1(b), 2(a), and 2(b) show that the mo-
mentum distribution nNN

A (krel,Kc.m.,�), plotted vs krel,
decreases, at low and high values of krel, with increasing
values of Kc.m., whereas at intermediate values of krel

2In this paper we mainly discuss the spin-isospin summed mo-
mentum distributions of isoscalar nuclei, whereas the spin-isospin-
dependent momentum distribution of nonisoscalar nuclei will be the
object of future investigations.
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FIG. 1. (a) Two-nucleon momentum distributions of pn pairs in 3He vs the relative momentum krel for fixed values of the c.m. momentum
Kc.m. (in fm−1) and two values of the angle � between krel and Kc.m., namely, � = 90◦ (broken curves) and � = 0◦ (symbols). In this
figure, and only in it, solid curves represent Eq. (10) with C

pn
3 = 2.0. 3He wave function from Refs. [32,33] and AV18 interaction [35].

(b) Same as (a), but for pp pairs. (c) The pn and pp distributions corresponding to Kc.m. = 0 in (a) and (b) and their sum. (d) Relative two-body
momentum distributions n

N1N2
A (krel) = ∫

n
N1N2
A (krel,K c.m.) d K c.m.. In (c) open and filled circles represent the results from Argonne [11]. In this

and the following figures, unless differently stated, pn and pp distributions are normalized to ZN and Z(Z − 1)/2, respectively.

FIG. 2. Same as Fig. 1, but for 4He with C
pn
4 = 4.0 in (a). 4He wave function from Ref. [34] and AV8′ interaction [36]. In (c) and (d) open

and filled circles denote the results from Argonne [11].
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FIG. 3. Same as Fig. 1, but for 12C with C
pn
12 = 20.0 in (a). 12C

wave function from Ref. [15] and AV8′ interaction [36]. Note that
here, as well as in Figs. 4 and 5, symbols in (a) correspond to � = 0.
In (c) open and filled circles represent the results from Argonne [11].

it increases with increasing values of Kc.m.. This effect
is particularly relevant for the pp case, where the
dip occurring in the Kc.m. = 0 distribution is totally
washed out by the large Kc.m. components, resulting
in a Kc.m.-integrated distribution totally different from
the one corresponding to Kc.m. = 0 (cf.). This effect
seems to hold in the case of complex nuclei as well, as
illustrated by the differences exhibited in Figs. (b) and
(c) for A = 12, 16, and 40 (Figs. 3, 4, and 5).

(3) Starting from a Kc.m.-dependent value of the rela-
tive momentum krel, denoted k−

rel(Kc.m.), the pn two-
nucleon momentum distributions become, to a large
extent, � independent, with the value of k−

rel(Kc.m.)
increasing with Kc.m., according to the relation

k−
rel(Kc.m.) = a1 + f (Kc.m.) ≡ k−

rel, (9)

FIG. 4. Same as Fig. 1, but for 16O with C
pn
16 = 24.0 in (a). 16O

wave function from Ref. [15] and AV8′ interaction [36].

which can be defined with a1 � 1.5 fm−1 (cf. Figs. 1–
5) and f (Kc.m.) = Kc.m.; � independence, first stressed
in Ref. [17] and verified over a wide range of angles,
implies that for krel > k−

rel the two-nucleon momen-
tum distribution factorizes, i.e., n

N1N2
A (krel,Kc.m.,�) ∝

n
N1N2
rel (krel)nN1N2

c.m. (Kc.m.). In the region of factorization,
defined by krel � k−

rel and Kc.m. � 1 fm−1, the momen-
tum distribution for pn pairs can be approximated as
follows:

n
pn(fact)
A (krel,Kc.m.) � n

pn
A (krel,Kc.m. = 0)

n
pn
c.m.(Kc.m. = 0)

npn
c.m.(Kc.m.)

� C
pn
A nD(krel)n

pn
c.m.(Kc.m.). (10)

Here nD(krel) is the deuteron momentum distribution,
n

pn
c.m.(Kc.m.) the c.m. momentum distribution of the
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FIG. 5. Same as Fig. 1, but for 40Ca with C
np
40 = 60.0 in (a). 40Ca

wave function from Ref. [15] and AV8′ interaction [36].

correlated pair in the region of factorization, and C
pn
A

an A-dependent constant, whose value and physical
meaning are discussed in the next subsection. As
for the pp momentum distribution, it appears that it
also factorizes, but starting at a value of the relative
momentum higher than krel(Kc.m.)−; one has

n
pp(fact)
A (krel,Kc.m.) � n

pp
A (krel,Kc.m. = 0)

n
pp
c.m.(Kc.m. = 0)

npp
c.m.(Kc.m.)

� C
pp
A n

pp
rel (krel)n

pp
c.m.(Kc.m.). (11)

where, unlike the pn case, the momentum distribution
n

pp
rel (krel) is, at the moment, not defined in terms of a

pp system. Equations (10) and (11) describe a property
exhibited in Figs. 1 and 2 (and common to any value
of A), namely, that at high values of krel > k−

rel(Kc.m.)

FIG. 6. (a) The center-of-mass (c.m.) momentum distribution
n

pn
A (Kc.m.) = ∫

n
pn
A (krel,K c.m.) d 3krel [Eq. (8)] in 3He, 4He, 12C, and

40Ca, normalized to 1, obtained in the present paper (this work), in
Ref. [25] (CS), and in Ref. [11] (Argonne). Note that a Gaussian
distribution related to the average value of the shell-model kinetic
energy [25] agrees very well with the many-body realistic distribution
up to Kc.m. � 1 fm−1 except in the case of 3H, for which a shell-model
description has no meaning. (b) The c.m. momentum distributions of
3He, 12C, and 40Ca on a linear scale.

the pN momentum distributions differ only by their
magnitudes, which are governed by n

pN
c.m..3

(4) At high values of the relative and c.m. momenta,
more than two particles can be locally correlated,
producing a strong dependence upon the angle �
and, correspondingly, the violation of factorization,
as shown in Fig. 1 in the case of Kc.m. = 3 fm−1;
moreover, it can be seen [cf. Figs. 1(b) and 2(b)] that
the behavior of n

pp
A in the region around krel � 2 fm−1

is strongly affected by the high Kc.m. momentum
components.

(5) In Ref. [25] the low-momentum part (Kc.m. �
1.0 fm−1) of the c.m. momentum distribution has

3Note that n
N1N2
A (Kc.m.) [Eq. (8)] includes all c.m. momentum

components, whereas nN1N2
c.m. (Kc.m.) has to describe only the low-

momentum part (Kc.m. � 1–1.5 fm−1) of the c.m. motion.
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FIG. 7. Comparison of the one-nucleon momentum distributions
of 4He and 12C calculated in Ref. [17] (solid line) and in Ref. [11]
(open circles), respectively. Normalization to the number of protons Z.

been described by a Gaussian function normalized to
1, namely, nA

c.m.(Kc.m.) = (αA/π )3/2 exp(−αA K2
c.m.),

with the values of αA obtained from the average
value of the shell model kinetic energy 〈T 〉SM, as
αA = 3(A−1)

4mN (A−2)〈T 〉SM
. It can be seen from Fig. 6 that,

apart from the case of 3He, for which a shell-model
description is meaningless, the Gaussian model in
Ref. [25] nicely approximates the many-body result
in the region of Kc.m. � 1 fm−1. The values of αA for
4He and 12C obtained in Ref. [25] also agree with the
experimental data [27,28,30], discussed in Sec. V.

B. The meaning and the numerical values
of the quantity C pn

A

In what follows we discuss in detail the behavior of the pn
momentum distributions in the correlation region, in particular,
the meaning and the numerical value of the constant C

pn
A

appearing in Eq. (10). This is because we would like to
compare the short-range behavior of a bound pn pair, i.e.,
the deuteron, with the behavior of a pn pair in the nuclear
medium. The factorized form [Eq. (10)] describes 2N SRCd
configurations when the relative momentum of the pair is
much higher than the c.m. momentum. Since for isoscalar

FIG. 8. Determining the constant C
pn
A by a plot of Eq. (12) vs

krel with a fixed value of Kc.m. = 0. The constant value of Eq. (12)
determines the value of C

pn
A . For 3He, 4He, 6Li, and 8Be the results

obtained with the Argonne momentum distributions [11] are also
shown.

nuclei n
pn
c.m. � n

pp
c.m., the A dependence of n

pn(fact)
A is given only

by the A dependence of both the constant C
pn
A and the c.m.

momentum distribution n
pn
c.m., with the former determining the

amplitude of n
pn(fact)
A (krel,Kc.m. = 0) and the latter its damping

with increasing values of Kc.m.. This is clearly shown in
Figs. 1–5, where it can indeed be seen that the decrease in
n

pn
A (krel,Kc.m.) at krel > k−

rel exactly follows the rate of decrease
of n

pn
A (Kc.m.) shown in Fig. 6, whose low Kc.m. distribution

coincides with n
pn
c.m.(Kc.m.). Therefore it can be concluded that

C
pn
A (i) is independent of krel and Kc.m., i.e., it is a quantity

depending only upon the value of A, (ii) it is not a free and
adjustable parameter, but a quantity resulting from ab initio
many-body calculations of the momentum distributions, since
(iii) it is defined in terms of the magnitude of n

pn
A (krel,Kc.m. =

0) at krel � k−
rel, the deuteron momentum distribution, and,

eventually, by the c.m. momentum distribution of the pair, i.e.,
by quantities resulting from many-body calculations and from
the factorization property of the momentum distributions. To
sum up, the value of C

pn
A is given by the following relation:

lim
krel>k−

rel

n
pn
A (krel,Kc.m. = 0)

n
pn
c.m.(Kc.m. = 0)nD(krel)

= Const ≡ C
pn
A . (12)

The validity of Eq. (12) and the determination of the value
of C

pn
A are illustrated in Fig. 8. It can be seen that at low

values of the relative momentum (krel � 1.5 fm−1) the ratio.
Eq. (12), exhibits a strong dependence upon krel, reflecting
the A-dependent mean-field structure, whereas, starting from
krel � 2–2.5 fm−1, a constant behavior is observed for all
values of A that have been considered; in particular, in the
case of A = 3 and A = 4, for which accurate wave functions
have been used, the consistency with a constant value is very
good, whereas for complex nuclei, which are more sensitive to
many-body approximations, the error in the determination of
the value of C

pn
A is higher. The obtained values of C

pn
A are listed

in Table I, where the values obtained with the VMC results of
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TABLE I. Values of the constant C
pn
A [Eq. (12)] extracted from Fig. 8, with the error determined according to the expression C

pn
A =

(Cpn
A )Max+(Cpn

A )Min

2 ± (Cpn
A )Max−(Cpn

A )Min

2 , where (Cpn
A )Max and (Cpn

A )Min are determined in the region of krel � 3.0 fm−1. Values in parentheses were
obtained using the VMC wave function from Ref. [11].

2H 3He 4He 6Li 8Be 12C 16O 40Ca

1.0 2.0 ± 0.1 4.0 ± 0.1 – – 20 ± 1.6 24 ± 1.8 60 ± 4.0
1.0 (2.0 ± 0.1) (5.0 ± 0.1) (11.1 ± 1.3) (16.5 ± 1.5) (–) (–) (–)

Ref. [11] are also shown in parentheses. The difference in
the value of C

pn
A=4 between ours and the VMC approaches

could be attributed to the different Hamiltonian (V8′ NN
interaction in our case and AV18 in VMC method) and to
the different variational wave functions, whereas in the case
of heavier nuclei possible effects from the omitted terms of
the cluster expansion should also be considered. All of these
possibilities are under investigation. Nonetheless, the results
of both approaches exhibit the same A dependency, i.e., an
increase in the value of C

pn
A with the value of A, which confirms

the factorization property of the momentum distribution and
which can be explained with the very physical meaning of C

pn
A .

As a matter of fact Eq. (10) provides the physical meaning
of the constant C

pn
A , namely, in the factorization region one

obtains

nSRC,BB
pn (Kc.m. = 0)

=
∫ ∞

k−
rel=1.5

d krel

∫ ∞

0
n

pn
A (krel,Kc.m.)δ(Kc.m.) d K c.m.

� C
pn
A npn

c.m.(Kc.m = 0) 4π

∫ ∞

k−
rel=1.5

nD(krel)k
2
rel dkrel, (13)

which represents the momentum distribution of back-to back
nucleons integrated in the region of relative momentum krel �
1.5 fm−1. Thus C

pn
A represent a measure of the number of

SRCd pn pairs with c.m. momentum distribution n
pn
c.m.(Kc.m. =

0), i.e., the number of deuteron-like pairs. At the same time
the equation

NSRC
pn =

∫ Kmax
c.m.

0
d K c.m.

∫ ∞

krel(Kc.m.)
n

pn
A (krel,Kc.m.)d krel

� C
pn
A (4π )2

∫ Kmax
c.m.

0
npn

c.m.(Kc.m.) K2
c.m. d Kc.m.

×
∫ ∞

k−
rel(Kc.m.)

nD(krel) k2
rel d krel (14)

represents the number of SRCd pn pairs in the entire two-
nucleon SRC region, characterized by Kmax

c.m � 1–1.5 fm−1

and k−
rel � 1.5 fm−1.4

4Following the original suggestion in Ref. [18] we also adopt
here the region k−

rel � 1.5 fm−1 as the SRC region, although, more
correctly, based on the results of many-body calculations, the SRC
region starts from k−

rel � 2 fm−1.

IV. THE FACTORIZATION PROPERTY OF THE NUCLEAR
WAVE FUNCTION AND THE HIGH-MOMENTUM

BEHAVIOR OF THE MOMENTUM DISTRIBUTIONS

A. SRCs as a result of wave-function factorization

It has been demonstrated that the the momentum distri-
butions of nuclei in the region of SRCs are governed by the
factorization property of the nuclear wave function at short
internucleon distances, described by the relation

lim
rij →0

�0({r}A) � Â
⎧⎨
⎩χo(Rij )

∑
n,fA−2

ao,n,fA−2 [
n(xij ,r ij )

⊕�fA−2 ({x}A−2,{r}A−2)]

⎫⎬
⎭, (15)

where (i) {r}A and {r}A−2 denote the set of radial coordinates
of nuclei A and A − 2, respectively; (ii) r ij and Rij are the
relative and c.m. coordinate of the nucleon pair ij , described
by the relative wave function 
n and the c.m. wave function
χo in the 0s state; and (iii) {x}A−2 and xij denote the set
of spin-isospin coordinates of the nucleus (A − 2) and the
pair (ij ). Equation (15) has been introduced in Ref. [25],
demonstrating that the SRCd nuclear two-nucleon momentum
distribution factorizes into the vector-coupled product of the
relative and c.m. momentum distribution of an NN pair.
In particular, in Ref. [24] the factorization property of the
nuclear wave function has been shown to hold in the case of
ab initio wave functions of few-nucleon systems, showing that
the momentum-space wave function of 3He and 4He factorize
in the region of high (k−

rel � 2 fm−1) relative momenta coupled
to low c.m. momenta (Kc.m. � 1.0 fm−1), whereas at higher
values of Kc.m. factorization still occurs but starting at
increasing values of krel. This behavior indeed appears in
Figs. 1(a)–5(a), in the case of both few-nucleon systems and
complex nuclei. Finally, in Ref. [23], the factorization property
of the wave function and momentum distribution has also been
shown to occur in the case of nuclear matter treated within the
Brueckner-Bethe-Goldstone approach. In order to provide new
evidence about the validity of the factorization property, we
show in Figs. 9 and 10 the ratio of the factorized momentum
distribution of a pn pair, Eq. (10), to the exact momentum
distribution, n

pn
A (krel,Kc.m.,�), i.e., the quantity

R
pn
fact/exact = C

pn
A nD(krel)n

pn
c.m.(Kc.m.)

n
pn
A (krel,Kc.m.,�)

(16)
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FIG. 9. Ratio [Eq. (16)] between the factorized distributions [Eq. (10)] and the exact ones (� = 0◦) for 4He, 12C, 16O, and 40Ca in
correspondence to Kc.m. = 0, 0.5, and 1 fm−1. For 4He the results obtained with the Argonne momentum distributions [11] are shown by the
solid line.

plotted on a linear scale. It can be seen that, independently of
the nuclear mass and the values of Kc.m., the ratio exhibits,
at k−

rel � 2 fm−1, a constant value equal to one. The scaling
to 1 is perfect for A = 4,6,8 nuclei for which ab initio VMC
momentum distributions have been used, whereas it presents
small oscillations for complex nuclei, a behavior that should
be attributed to the approximations which have been used to
solve the many-body problem.

FIG. 10. Ratio [Eq. (16)] between the factorized distributions,
Eq. (10), and the exact ones for 6Li and 8Be, corresponding
to Kc.m.=0, obtained with the Argonne VMC wave functions [11].

B. Wave-function factorization and the relation between the
relative momentum distribution of pn pairs in nuclei and the

deuteron momentum distributions

In Fig. 11 the two-nucleon momentum distributions of pn
pairs in nuclei is compared with the deuteron momentum
distribution. As already pointed out, the in-medium pn
momentum distribution is a relevant quantity for the study of
in-medium dynamics since it represents a unique opportunity
to compare the properties of a free bound pn system with the
properties of a pn system embedded in the medium. The ratio

Rpn/D(krel,Kc.m. = 0) = n
pn
A (krel,Kc.m. = 0)

C
pn
A n

pn
c.m.(Kc.m. = 0)

(17)

is presented in Fig. 11(a), whereas the quantity

Rpn/D(krel) = n
pn
A (krel)

C
pn
A

(18)

is shown in Figs. 11(b)–11(d). The scaling of Eq. (17) to
the deuteron momentum distributions, starting from krel �
2 fm−1, is clearly exhibited and it can also be seen that scaling
of n

pn
A (krel) also takes place [cf. Eq (18)], but only at very

large values of krel � 4 fm−1. These results are obtained both
with our momentum distributions and with the VMC ones.
Comparing Figs. 11(a) and 11(b) it can be concluded that the
pn momentum distribution in nuclei is governed, at a high
value of the relative momentum, only by the deuteron-like
momentum components, i.e., by the two-nucleon momentum
distributions with Kc.m. = 0.
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FIG. 11. (a), (b) Comparison of the deuteron momentum distributions with the two-nucleon momentum distributions of various nuclei
obtained in the present paper. (a) The validity of the relation n

pn
A (krel,Kc.m.)/C

pn
A npn

c.m.(Kc.m. = 0) � nD(krel), when Kc.m. = 0 and krel �∼
2 fm−1, is demonstrated. (b) Demonstration that when the Kc.m.-integrated two-nucleon momentum distributions are considered, the relation
n

pn
A (krel)/C

pn
A � nD(krel) is also valid, but only at krel � 3.5–4 fm−1. (c), (d) The quantity n

pn
A (krel)/C

pn
A for 4He (c) and 12C corresponding

to the momentum distributions obtained in the present paper and in Ref. [11]. In (c) and (d) the values of C
pn
A are the ones listed in Table I.

These results unambiguously prove that both n
pn
A (krel,Kc.m. = 0) and n

pn
A (krel) do factorize to the deuteron momentum distribution, but starting

at appreciably different values of krel in the two cases. These results also show that n
pn
A (krel) at krel � 3.5–4 fm−1 is mainly governed by

back-to-back pn pairs.

C. Wave-function factorization and the relation between the
one-nucleon and the two-nucleon momentum distributions. The

one-nucleon momentum distribution vs the deuteron
momentum distribution

The results presented in Figs. 9 and 10 represent un-
questionable evidence of the validity of the factorization
property, which leads to the convolution model (CONV) of
the one-nucleon spectral function and momentum distributions
describing both quantities in terms of a convolution integral of
the relative and c.m. momentum distributions of a correlated
pair [25]. Within the CONV the exact relation between the
one- and the two-nucleon momentum distributions, namely
(e.g., for protons),

n
p
A(k1) = 1

A − 1

(∫
n

pn
A (k1,k2) d k2

+ 2
∫

n
pp
A (k1,k2) d k2

)
, (19)

is represented in the correlation region at high momenta by
the following convolution integrals [k1 + k2 + k3 = 0, k3 =

KA−2 = −Kc.m. = −(k1 + k2)]:

n
p
A(k1) =

∫
n

pn
rel

(∣∣∣∣k1 − Kc.m.

2

∣∣∣∣
)

npn
c.m.(Kc.m.) d Kc.m.

+ 2
∫

n
pp
rel

(∣∣∣∣k1 − Kc.m.

2

∣∣∣∣
)

npp
c.m.(Kc.m.) d Kc.m..

(20)

Equation (20) establishes a relation between the one-
nucleon momentum distribution n

p
A(k1) and the relative and

c.m. momentum distributions of the N1N2 pair.5 At large
values of k1, such that k1 � K c.m./2, the convolution formula,
could in principle be approximated by

n
p
A(k1) � n

pn
rel (krel = k1) + 2n

pp
rel (krel = k1), (21)

which represents the contribution of BB nucleons to the one-
nucleon momentum distribution. Equation (21) can also be

5In actual calculations in Ref. [25] the exact Eq. (20) has been
approximated using an effective two-nucleon momentum distribution.
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FIG. 12. (a) The exact proton momentum distribution n
p
A(k) (k1 ≡ k) compared with the convolution model, Eq. (21) (Conv), calculated

with two different expressions for n
pn
rel . (b) The exact n

p
A(k) compared with (i) the asymptotic approximation of the convolution model [Eqs. (21)

and (22)] (Kc.m. = 0); (ii) Eq. (21) with n
N1N2
rel (k1 = krel) replaced by the Kc.m.-integrated relative momentum distributions n

N1N2
A (krel) =∫

n
N1N2
A (krel,Kc.m.) d Kc.m.; and (iii) the convolution model [Eq. (24)] as in (a).

expressed in the equivalent form

n
p
A(k1) = n

pn
A (krel = k1,Kc.m. = 0)

n
pn
c.m.(Kc.m. = 0)

+ 2
n

pp
A (krel = k1,Kc.m. = 0)

n
pp
c.m.(Kc.m. = 0)

(22)

as well as in the form

n
p
A(k1) � C

pn
A nD(krel = k1) + 2

n
pp
A (krel = k1,Kc.m. = 0)

n
pp
c.m.(Kc.m. = 0)

,

(23)

which establishes a clear-cut relation between the one-
nucleon momentum distribution and the momentum distri-
bution of the deuteron in the case of pairs of nucleons
with BB (Kc.m. = 0) momenta.6 Starting from a factorized
wave function, a relation similar to Eq. (21) has been
obtained in Ref. [39], where, however, instead of the relative
momentum distribution n

N1N2
rel (krel) = n

N1N2
A (krel = k1,Kc.m. =

0)/nN1N2
c.m. (Kc.m. = 0), the Kc.m.-integrated relative momentum

distribution [Eq. (7)] has been used. We show that, as expected
from Figs. 11(a) and 11(b), the relation between the one-
and the two-body momentum distribution will be numerically
different. Let us first analyze the validity of the convolution
model. In Fig. 12 a detailed analysis of the model is presented
for the 4He nucleus. The following features in the region
of factorization dominated by SRCs (k � 2 fm−1) are worth
stressing: (i) The exact momentum distribution n

p
A is correctly

approximated by the convolution formula [Eq. (20)] and,
particularly, by its asymptotic behavior [Eq. (21)], including
its deuteron-like character for the pn distribution, i.e., for
back-to-back SRCd nucleon pairs. (ii) The exact calculation,
the calculation with the convolution formula, using there either
C

pn
A nD(krel) or n

pn
A (krel,Kc.m. = 0)/n

pn
c.m.(Kc.m. = 0) for the

relative motion, yields very similar results starting from krel �
2 fm−1, whereas Eq. (21) with the Kc.m.-integrated relative
momentum distribution reproduces n

p
A(k) only when krel �

6Note that in the following, we use npp
c.m.(Kc.m.) = npn

c.m.(Kc.m.).

3.5–4 fm−1. In order to further demonstrate the relationships
of the one- and two-nucleon momentum distributions we show
in Fig. 13 the ratios

RBB
N1N2/N1

(k1) = 1

n
p
A(k)

[
n

pn
A (krel,Kc.m. = 0)

n
pn
c.m.(Kc.m.=0)

+ 2
n

pp
A (krel,Kc.m. = 0)

n
pp
c.m.(Kc.m.=0)

]
(24)

and

Rint
N1N2/N1

(k1) = n
pn
A (krel) + 2n

pp
A (krel)

n
p
A(k1)

, (25)

where in both quantities n
p
A is the exact proton momentum

distribution and the numerators differ in that in Eq. (24)
BB nucleon distributions are considered, unlike the case
of Eq. (25), where the Kc.m.-integrated relative momentum
distributions are adopted. The regions of validity of the two
cases, both corresponding to k1 � krel, i.e., Kc.m. � 0 are
determined by a constant value of the ratios. As expected
from the results presented in Figs. 11 and 12, Eq. (24) is
unity over a wider range of momenta. The results presented
in Fig. 13 provide further evidence of the validity of both
the factorization property and the convolution model and tell
us that when the ratio equals 1, the one-nucleon momentum
distribution is dominated by BB configurations with k1 =
−k2 = krel, Kc.m. = 0. Concerning the relationship of the
one-nucleon momentum distributions and the momentum
distributions of the deuteron, as already illustrated, this is given
by Eq. (23). However, by plotting the ratio of the one-nucleon
momentum distribution to the momentum distributions of the
deuteron RA/D(k1) = n

p
A(k1)

nD(k1) the relationships between the two
quantities can be exhibited in more detail, as quantitatively
illustrated in Ref. [17]. There it has been shown that NA/D(k1)
never becomes constant, which means that nA

1 (k1) is not
linearly proportional to nD(k1); this is mostly due to the
contribution of the pp distribution, which increases with
increasing momentum k1, and to the c.m. motion of a pn
pair in the nucleus. Only if pp contributions are disregarded
and only back-to-back pn pairs considered does one indeed
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FIG. 13. Ratio of the full two-nucleon momentum distribution npn + 2npp to the one-nucleon momentum distribution n
p
A for 4He (a)

and 12C (b) calculated using in the numerator the relative two-nucleon distributions n
pn
A (krel = k1,Kc.m. = 0)/nc.m.(Kc.m. = 0) [Eq. (24); open

circles] and the Kc.m.-integrated two-nucleon momentum distributions n
pn
A (krel) [Eq. (25); filled squares]; in both cases the denominator is the

one-nucleon momentum distribution. The solid line denotes the results obtained with the Argonne VMC wave function [11].

obtain that in the region k1 � 2 fm−1, n
p
A(k1) � C

pn
A nD(k1).

The relation between the nucleon momentum distribution of
nucleus A and the deuteron momentum distribution has been
and is still being used in the treatment of SRCs. Still now the
proportionality of the nuclear momentum distribution to the
momentum distribution of the deuteron is sometimes assumed,
which is equivalent to the statement that the high-momentum
content of the nucleus is fully determined by the two-nucleon
state (ST) = (10). In the past realistic calculations of the
nuclear momentum distributions at high momenta could not
be performed with sufficient accuracy and the similarity of
the deuteron and the nuclear momentum distribution has been
simply assumed, e.g., in the early VMC calculations [42] or in
the development of workable models of the spectral function
for complex nuclei [25]. Recent advanced calculations of the
one- and two-body momentum distributions [3,10,11,16,17],
including the results of the present paper, show that also states
different from the deuteron one, namely, states (01) and (11),
do contribute to the high-momentum part of the momentum
distributions, demonstrating, in the case of state (11), that a
considerable number of two-nucleon states with an odd value
of the relative orbital momentum is present in the realistic
ground-state wave function of nuclei.

D. Wave-function factorization and the nuclear contacts

The concept of contact, introduced by Tan in Ref. [38],
to describe the short-range behavior of two unlike electrons
in a two-component Fermi gas, has recently been discussed
within the context of SRCs in nuclei (see, e.g., Refs. [39,40]).
Although a detailed discussion of this topic is outside the
aim of the present paper and will be discussed elsewhere, it
is nevertheless useful to stress here that (i) the contacts are
quantities that measure the probability of finding two particles
at short relative distances [38,39], and (ii) they are obtained, in
both atomic and nuclear systems, by postulating a factorized
wave function of the form of Eq. (15) [39]. For these reasons,
the quantity C

pn
A we have obtained, measuring the probability

of having SRCd back-to-back pn pairs, represents nuclear pn
contacts.7

V. ON THE NUMBER OF HIGH-MOMENTUM
SHORT-RANGE CORRELATED NUCLEON-NUCLEON

PAIRS IN NUCLEI

Having at our disposal the two-nucleon momentum distri-
butions, the absolute values of the number of SRCd pairs, i.e.,
the integral of the two-nucleon momentum distributions in a
given relative and c.m. momentum region, can be calculated
and, as in the case of the deuteron, a proper definition of the
probability of SRCs in a nucleus can be given. However, in
a complex nucleus the two-nucleon momentum distributions
depend upon three variables so that, as pointed out in Ref. [17],
there is a certain degree of ambiguity in providing a clear-cut
definition of the probability of SRCs in terms of an integral
of the two-nucleon momentum distributions. In the case of the
deuteron, which is described only in terms of a back-to-back
configuration (k1 = −k2 = k, krel ≡ k, K c.m. = 0), a com-
monly adopted definition of the probability of SRCs is given by
the integral of the momentum distribution nD(k) (krel ≡ k) in
the interval 1.5 � k � ∞ fm−1, which is the region dominated
by the high-momentum components generated by the repulsive
core and by the deuteron D wave produced by the tensor force.
Therefore in the deuteron the total number of pn pairs is
ND = 1, and the number of BB SRCd pn pairs is

NBB
D = 4π

∫ ∞

k−=1.5
nD(k) k2 d k ≡ NBB

pn =� 0.036, (26)

i.e., only 4% of the pn pair is SRCd (this percentage
corresponds to the AV18 interaction). The extent to which

7It should be stressed that in the case of nuclei four contacts,
depending upon the spin-isospin state of the pair, can be defined;
moreover, the contacts may be defined to depend upon the center
of mass of the correlated pair, namely, for a fixed value of the c.m.
momentum, for back-to-back nucleons, and for the Kc.m.-integrated
momentum distributions.
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TABLE II. Number of back-to-back (BB) proton-neutron (pn), and proton-proton (pp) pairs [Eq. (27)], integrated momentum distribution
of BB SRCd pairs [Eq. (28)], and percentage probability PSRC,BB

N1N2
= 100 NSRC,BB

N1N2
/NBB

N1N2
. Microscopic wave functions corresponding to the

AV18 interaction [35], for 2H and 3He [32,33], and to the AV8′ interaction [36], for 4He [34] and complex nuclei [15]. Values in parentheses
were obtained with the VMC momentum distributions from Ref. [11], which were calculated with the AV18 + UX interaction.

NBB
N1N2

NSRC,BB
D PSRC,BB

D NBB
N1N2

NSRC,BB
N1N2

PSRC,BB
N1N2

NBB
N1N2

NSRC,BB
N1N2

PSRC,BB
N1N2

2He 3He 4He

pn 1 0.036 3.6 6.22 0.22 3.5 2.54 0.08 3.1
(1) (0.036) (3.6) (5.82) (0.20) (3.4) (2.05) (0.09) (4.3)

pp – – – 2.05 0.01 0.5 0.55 0.005 0.9
– – – (2.10) (0.01) (0.5) (0.42) (0.004) (1.0)

12C 16O 40Ca

pn 3.80 0.08 2.1 7.32 0.11 1.5 59.07 0.24 0.4
pp 1.72 0.01 0.6 3.27 0.01 0.4 27.61 0.02 0.1

such a probability will differ in a complex nucleus is a relevant
issue, for it can provide information on in-medium effects on
short-range pn dynamics. For this reason, a similar definition,
i.e., the integral of the relative momentum distribution in
the range krel � 1.5 fm−1, might also be introduced in the
case of a complex nucleus, keeping in mind, however, that
in a nucleus all possible values of Kc.m. and �, as well as
all four spin-isospin (ST) values of the pair [mostly (10),
(01), and (11)], contribute to the momentum distributions, as
demonstrated in Refs. [7,8,11,17] .

We consider the following quantities:

(1) The total number of back-to-back N1N2 pairs,
NBB

N1N2
(Kc.m. = 0), resulting from the integration of

the pair relative momentum and the total number
of short-range correlated back-to-back N1N2 pairs,
N

SRC,BB
N1N2

(Kc.m. = 0,krel � 1.5), which are given, re-
spectively, by

NBB
N1N2

(Kc.m. = 0)

= 4 π

∫ ∞

0
n

N1N2
A (krel,Kc.m. = 0) k2

rel dkrel

≡ NBB
N1N2

,

(27)

N
SRC,BB
N1N2

(Kc.m. = 0,krel � 1.5)

= 4 π

∫ ∞

1.5
n

N1N2
A (krel,Kc.m. = 0) k2

rel dkrel

≡ N
SRC,BB
N1N2

. (28)

In both Eqs. (27) and (28), whose values are shown
in Table II, the quantity n

N1N2
A (krel,Kc.m. = 0) is the

one shown in Figs. 1–5.8 It can be seen in Table II
that for nuclei with A > 4 an appreciable decrease in
the percentage probabilities PSRC,BB

N1N2
of back-to-back

proton-neutron (pn) and proton-proton (pp) nucleons
does occur with increasing values of A, which can be
explained by the similar values of n

pn
A (Kc.m. = 0) for

A � 12 and, at the same time, the substantial increase

8Note that Eqs. (27) and (28) have the dimensions of fm3 provided
by the c.m. momentum distribution at Kc.m. = 0. We call them the
numbers of particles for back-to-back pairs.

TABLE III. Total number of pairs NN1N2 [Eq. (30)], total number of SRCd pairs NSRC
N1N2

[Eq. (29)] [in the case of the deuteron, Eq. (26)],

and percentage probability PSRC,BB
N1N2

= 100 NSRC
N1N2

/NN1N2 . Microscopic wave functions corresponding to the AV18 interaction [35] for 2H and
3He [32,33] and the AV8′ interaction [36] for 4He [34] and complex nuclei [15]. Values in parentheses correspond to the VMC wave functions
from Ref. [11].

NN1N2 NSRC
D PSRC

D (%) NN1N2 NSRC
N1N2

PSRC
N1N2

(%) NN1N2 NSRC
N1N2

PSRC
N1N2

(%)

2H 3He 4He

pn 1 0.036 3.6 2 0.093 4.7 4 0.243 6.1
(1) (0.036) (3.6) – – – – (0.332) (8.3)

pp – – – 1 0.025 2.5 1 0.052 5.2
– – – – – – – (0.071) (7.1)

12C 16O 40Ca

pn 36 3.02 8.4 64 4.75 7.4 400 21.06 5.3
– (3.74) (10.4) – – – – – –

pp 15 1.22 8.1 28 2.00 7.1 190 9.86 5.2
– (1.52) (10.1) – – – – – –
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FIG. 14. (a) The ratio NSRC,BB
pn /NSRC,BB

pp using the wave functions of the present work (cf. Table II) and the VMC results from Ref. [11].
(b) The same as (a), for the Kcm-integrated momentum distributions (cf. Table III).

in the value of the number of back-to-back proton-
neutron and proton-proton nucleons NBB

N1N2
[Eq. (27)].

(2) The total number of SRCd pairs, defined as the integral
in the entire region of variation of Kc.m. and in the
region of the relative momentum with k−

rel � 1.5 fm−1,
i.e.,

NSRC
N1N2

(k−
rel = 1.5)

=
∫ ∞

1.5
d3 krel

∫ ∞

0
d3 Kc.m.n

N1N2
A (krel,Kc.m.)

= 4π

∫ ∞

1.5
k2

rel d kreln
N1N2
A (krel) ≡ NSRC

N1N2
. (29)

This quantity is compared with the total number of
pairs given by

NN1N2 = 4π

∫ ∞

0
k2

rel d kreln
N1N2
A (krel). (30)

The results are listed in Table III. The values of
NSRC

N1N2
(k−

rel = 1.5) include both two-nucleon SRCs (2N
SRCs), as well as many-nucleon SRCs generated by
the hard high-momentum tail (Kc.m. � 1) of the c.m.
distributions. Note, moreover, that the number of SRCd
pairs is the largest in this case since the entire variation
of Kc.m. is taken into account; also worth stressing
is the almost-constant value of the probability for
A � 12, which is due to the same rate of increase in
the number of correlated pairs and the total numbers
of pN pairs NpN . It is shown in Fig. 11(b) that
in the region 1.5 � krel � 3.5 fm−1 the momentum
components with Kc.m. �= 0 are important in n

pn
A (krel).

The main results in Tables II and III are summarized
in Fig. 14, whose main features should be stressed as
follows:

(a) Because of the pn tensor dominance (see Figs. 1–5)
the number of SRCd pn pairs in few-nucleon systems
and A < 12 is larger than the number of pp pairs by a
factor of about 20, whereas in medium-weight isoscalar
nuclei it is larger by a factor of about 10, to be compared

with the factor of 2 (2Z/(Z − 1)), which is predicted
by the naive pair-number ratio.

(b) When the total K c.m.-integrated number of pairs is
considered, the value of the pn/pp ratio strongly
decreases to a factor of about 2, due to the role played
by the c.m. high-momentum components, as can easily
be understood by comparing Figs. 1(c) and 2(c) with
Figs. 1(d), 2(d), 3(b), and 5(b) with Figs. 3(c) and 5(c).

VI. SHORT-RANGE CORRELATIONS: THEORETICAL
PREDICTIONS VS EXPERIMENTAL DATA

Experimental investigation of SRCs is a complicated task,
mainly due to the small value of the involved cross sections and
the effects of the FSI, which makes it difficult to reconstruct
the initial correlated state. Nonetheless, experimental progress
has recently been achieved, thanks to the use of intense lepton
beams and the development of advanced detector techniques.
Nowadays it has become possible to investigate quasielastic
A(e,e′N1)X and A(e,e′N1N2)X processes at high values of
Q2 and Bjorken scaling variables xB > 1, a region where (i)
the contribution from non-nucleonic degrees of freedom is
suppressed, (ii) the effects of initial-state SRCs are emphasized
(see Refs. [1–5]), and (iii) the theoretical treatment of the FSI
has reached a high degree of sophistication [19–22]. Several
SRC properties that have been experimentally investigated
deserve a comparison with theoretical calculations, which is
presented below.

A. Percentage ratios of different kinds of N1 N2 pairs in 4He and
12C and their missing momentum dependence

SRCs in 4He and 12C have recently been investigated
[26–31] within the following kinematical region:9 the squared
four-momentum transfer Q2 � 2 (GeV/c)2, the Bjorken scal-
ing variable xBj = 1.2, and the three-momentum transfer |q| ≡
q � 1.6 GeV/c. Information on the short-range momentum
distribution of correlated pairs has been obtained by the follow-
ing procedure: triple coincidence processes 12C(p,p′pN )X

9The same notation as in Ref. [5] is adopted here.
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TABLE IV. Percentage ratio of the pn and pp short-range correlated back-to-back (BB) pairs with respect to the total number of correlated
pairs and percentage ratio of pp to pn pairs [Eq. (31)] at krel = 2.5 fm−1, calculated using the BB momentum distributions shown in Figs. 1–5.
Experimental (expt.) data for 12C are from Refs. [26–29]; experimental data for 4He, from Ref. [30].

Rpn(%) Rpp(%) Rpp/pn Rpn(%) Rpp(%) Rpp/pn

2H 3He

Theor. 100 0 – 89.3 3.16 3.54
Expt. – – – – – –

4He 12C

Theor. 93.2 5.43 5.83 96.2 5.01 5.20
Expt. 87.0 ± 14.1 3.9 ± 1.5 5.1 ± 2.6 97.0 ± 22.1 4.8 ± 1.0 5.8 ± 1.5

16O 40Ca

Theor. 97.9 5.05 5.15 91.8 6.52 7.11
Expt. – – – – – –

and 12C(e,e′pN )X have been performed by detecting, in
coincidence with the struck nucleon, leading protons with
a high momentum p and protons and neutrons moving
with recoil momentum prec = q − p along a direction that,
within the plane-wave impulse approximation, would coincide
with the direction opposite the momentum that the struck
nucleon had before interaction with the projectile. Specifically,
within the PWIA, if before interaction the struck proton had
momentum k1, the leading proton would have momentum
p = k1 + q and the known missing momentum would be
pm = q − p = −k1. Therefore, if the struck proton “1” was the
partner of a correlated nucleon “2” with momentum k2 � −k1,
in coincidence with the leading proton, a recoiling nucleon
“2” with momentum prec = pm = −k1 � k2 should be ob-
served along the direction opposite pm. In Refs. [26–31] the
processes A(p,p′p)X, A(e,e′p)X, A(p,p′pp)X, A(e,e′pn)X,
and A(e,e′pp)X have been investigated by detecting mainly
back-to-back pp and pn nucleons in the range 1.5 � pm �
3 fm−1 in 12C and 1.5 � pm � 4 fm−1 in 4He. Within such
a kinematic setup, the percentage ratios of the cross sections
pertaining to pn and pp pairs have been extracted. Using
the two-nucleon relative momentum distributions shown in

Figs. 1–5 corresponding to BB nucleons (Kc.m. = 0), we have
calculated the quantities

Rpn(krel) = n
pn
A

n
p
A

≡ pn

p
,

Rpp(krel) = n
pp
A

n
p
A

≡ pp

p
, (31)

Rpp/pn(krel) = n
pp
A

n
pn
A

≡ pp

pn
,

where n
pn
A ≡ n

pn
A (krel,Kc.m. = 0)/n

pn
c.m.(Kc.m. = 0) and n

pp
A ≡

n
pp
A (krel,Kc.m. = 0)/n

pp
c.m.(Kc.m. = 0). Here n

N1N2
A is related to

the process A(e,e′N1N2)X and n
p
A to the process A(e,e′p)X,

which includes the contributions from pn and pp SRCs
according to Eq. (19), therefore the ratios pn/p and pp/p
represent essentially the percentage ratios of the SRCd pp
and pn pairs with respect to the total number of SRCd pairs.
The quantities in Eq. (31) have been compared with the
experimental data by assuming that pm � krel, a procedure that
implies the validity of the PWIA or, at least, the cancellation of
the FSI in the ratios. The comparison is presented in Table IV

FIG. 15. (a) The experimental percentage of the pN BB pair fraction pp/pn vs the missing momentum pm, extracted from the processes
4He(e,e′pn)X [30] and 12C(e,e′pp)X [28,29] compared with the quantity Rpp/pn(krel,0) = npp(krel,Kc.m. = 0)/npn(krel,Kc.m. = 0) calculated
in the present paper (solid line). Open squares show the results obtained with the Argonne momentum distributions [11]. (b) The same ratio as

in (a), calculated within two approaches: (i) solid line, n
pp
A=4(krel,Kc.m. = 0)/n

pn
A=4(krel,Kc.m. = 0); (ii) dashed line,

∫ ∞
0 npp (krel,Kc.m.)K2

c.m. d Kc.m.∫ ∞
0 npn(krel,Kc.m.)K2

c.m. d Kc.m.
.
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FIG. 16. Experimental percentage of SRC fractions in 4He (a) and 12C (b) compared with theoretical ratios of momentum distributions
within the assumption pm � krel and Kc.m. = 0. Momentum distributions from the present work and from the Argonne VMC calculation [11].
All experimental data are from Jlab [27–31], except the one represented by the magenta point for 12C, which was obtained from the BNL [26].
In (b) the three theoretical curves were obtained in the present work and correspond to pp/p (solid line), pn/p (dashed line), and pp/pn

(dotted line), respectively.

and in Figs. 15 and 16. General agreement between theoretical
and experimental percentage ratios appears to hold. Since
the experiments have been performed in a momentum region
where factorization of the wave functions is at work, the effects
of the c.m. motion largely cancel out in the ratios. As for
the effects of the FSI the experimental kinematics setup is
compatible with the assumption of FSI effects confined within
the correlated pair, leading also in this case to some kind of
cancellation in the ratio (see, e.g., [2,5,19–22]). Concerning
the results presented in these figures the following comments
are in order:

(1) Our results for 4He do not practically differ from the
ones obtained with the Argonne distributions.

(2) In 4He the increase with pm = |pm| in the pp/pn
ratio can be explained by the increasing role of the

repulsive NN interaction with respect to the tensor
one [Fig. 2(c)]. However, in spite of this satisfactory
agreement, an advanced theoretical approach including
the FSI is desirable; preliminary results from Refs.
[21,22], quoted in Ref. [30], seem to correct the PWIA
in the right direction.

(3) The results presented in Fig. 15(b) show that the ratio
calculated at Kc.m. = 0 or integrated by averaging over
all directions of Kc.m. practically do not differ, which
is another manifestation of factorization since the pp
and pn c.m. momentum distributions are essentially
the same.

10We are grateful to Or Hen for clarifying discussions on these
experimental data.

FIG. 17. The c.m. momentum distribution of a pn pair in 4He (a) and a pp pair in 12C (b) obtained in Refs. [30] and [28] from the
processes 4He(e,e′pn)X and 12C(e,e′pp)X. γ is the angle between pm and prec, which in the PWIA is the angle between k1 and k2. The values
of Kc.m. have been obtained assuming k2 = −k1. The theoretical curves correspond to the momentum distributions in Ref. [11] (Argonne)
and Ref. [25] (CS). Experimental data are given in arbitrary units and theoretical calculations were normalized at the lowest available
experimental point. Note that the discrepancy or the agreement between the experimental data and the theoretical calculations might not be
real ones, since the latter, unlike the former, do not take into account the finite acceptance and resolution of the detectors and the continuous
background. Indeed, when these are taken into account by a proper simulation [28,30,41], the data can be explained by the Gaussian distribution
nc.m.(Kc.m.) = (α/π )1.5 exp(−αK2

c.m.) in agreement with the three curves in (a) and (b).10
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B. The c.m. momentum distribution of correlated
pairs in 4He and 12C

The c.m. momentum distributions of a correlated pn pair
relative to the spectator nucleus A−2 in 4He and the pp pair
in 12C has been determined in Refs. [28,30] by analyzing the
distribution of events in the process A(e,e′pN )X as a function
of the cosine of the opening angle γ between pm and prec,
which, in PWIA, is the angle between k1 and k2. The results
of the analysis of the experimental data, are shown in Fig. 17,
where the theoretical momentum distributions are also shown.
It turns out that, once the experimental data are analyzed taking
into account the finite acceptance of the detectors and the
continuous background, they nicely agree with the theoretical
momentum distributions.

VII. SUMMARY AND CONCLUSIONS

In this paper we have investigated in-medium short-range
nucleon-nucleon dynamics by calculating various kinds of
two-nucleon momentum distributions in few-nucleon systems
and selected isoscalar nuclei with A � 40. To this end, calcula-
tions have been performed within a parameter-free many-body
approach which, even if not fully ab initio, turned out to
be capable of treating high-momentum components in nuclei
with A � 12, for which advanced VMC approaches with bare
strongly repulsive local interactions are, unfortunately, not yet
feasible. The method, based upon a linked cluster expansion
of one- and two-nucleon, diagonal and nondiagonal, density
matrices, has been previously used to calculate the ground-
state energy [15] and the momentum distributions [16,17].
In this paper we have performed a detailed analysis of the
two-nucleon momentum distributions n

N1N2
A (krel,Kc.m.,�) at

various values of krel, Kc.m., and �, as well as of the two-
nucleon relative, n

N1N2
A (krel), and center-of-mass, n

N1N2
A (kc.m.),

momentum distributions of proton-neutron and proton-proton
pairs. The results of our calculations show that a fundamental
property of the nuclear wave function at short internucleon
separations turns out to be its factorization into the relative and
the c.m. coordinates, a property which has been previously
theoretically illustrated in the case of nuclear matter [23]
and few-nucleon systems [24]. Such a property is a very
relevant one, for it fully governs the high-momentum behavior
of two-nucleon momentum distributions generated by short-
range correlations. In particular, the following properties of
in-medium two-nucleon dynamics, resulting from wave-
function factorization, are worth stressing:

(1) In the region of relative distances rij � 1–1.5 fm−1,
nucleons i and j move independently in a mean
field, with average relative momentum krel � 1.5–2.0
fm−1, without any particular difference between pp
and pn distributions, apart from those due to the
Coulomb interaction; however, as soon as the relative
distance decreases down to a value of rij � 1–1.5 fm−1,
the two nucleons start feeling the details of the NN
interaction, in particular, the tensor force which causes
the pn and pp motions to differ appreciably, with the
difference decreasing at shorter distances, where the
strong NN repulsive part of the local NN interaction

dominates. In the SRC regions, characterized by a large
content of high-momentum components, thanks to the
decoupling of the c.m. and the relative motions, also the
two-nucleon momentum distribution, independently of
the mass of the nucleus, factorizes into a relative and
a c.m. part; in particular, in the case of pn pairs
one has n

pn
A (krel,Kc.m.,�) � C

pn
A n

pn
D (krel)n

pn
c.m.(Kc.m.),

where C
pn
A is an A-dependent constant, the nuclear

contact, which counts the number of deuteron-like pairs
in nucleus A, and nD(krel) is the deuteron momentum
distribution. We have shown that the deuteron-like
factorized form is valid only at low values of the c.m.
momentum, Kc.m. � 1–1.5 fm−1 and, at the same time,
at high values of the relative pair momentum krel >
k−

rel � 2 fm−1, with the value of k−
rel increasing with the

value of Kc.m.; thus, the dynamics of in-medium pn
pairs can, to a large extent, be described as the dynamics
of the motion in the nucleus of a deuteron-like pair,
whose c.m. moves with a momentum distribution
n

pn
c.m(Kc.m.).

(2) Within the above picture, arising from the factorization
property of the momentum distributions, the ratio
n

pn
A (krel,Kc.m. = 0)/[nD(krel)n

pn
c.m.(Kc.m. = 0)] at high

relative values of krel should become a constant equal
to C

pn
A , which is indeed the case; thus the theoretical

values of the contacts C
pn
A , which have been determined

by plotting the ratio vs krel, are completely free of
any adjustable phenomenological parameter, for they
are entirely defined in terms of many-body quantities
that are fixed by the choice of the NN interaction and
by the way the many-body problem is solved. This is
true for all nuclei considered, within both our cluster
expansion approach and the VMC ab initio calculation.
The values of C

pn
A range from about 2 in 3He to

about 60 in 40Ca; for 4He the value of C
pn
A is less

by about 20% than the value obtained with the VMC
momentum distribution; such a difference should be
ascribed both to the different Hamiltonian (V8′ NN
interaction in our case and AV18 in Ref. [11]) and to
the different variational wave functions; this point is
under quantitative investigation.

(3) For all nuclei that have been considered we found
that when krel � 2 fm−1, the ratio n

pn
A (krel,Kc.m. =

0)/[Cpn
A n

pn
c.m.(Kc.m.)] practically does not differ

from the deuteron momentum distribution nD(krel),
which is further clear evidence of factorization of
n

pn
A (krel,Kc.m.,�). Factorization also occurs when the

numerator of the ratio is replaced by the Kc.m.-
integrated momentum distribution n

pn
A (krel), obtaining

the ratio n
pn
A (krel)/[Cpn

A n
pn
c.m.(Kc.m.)]. This, however. is

only true at very high values of krel � 4 fm−1; this
means that at krel � 4 fm−1, n

pn
A (krel) is dominated by

the deuteron-like components with Kc.m. = 0, whereas
at lower values of Kc.m., also the c.m. components with
Kc.m. �= 0 contribute.

(4) We have considered the relationships between the one-
nucleon and the two-nucleon momentum distribution,
a topic recently discussed in Ref. [39]. To this end
we have compared three approaches, namely, (i) the
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one in which only back-to-back (Kc.m. = 0) correlated
nucleons are considered; (ii) the convolution model de-
veloped in Ref. [25]; and (iii) the approach in Ref. [39],
where the two-nucleon momentum distributions are
considered in the asymptotic limit k1 � Kc.m.. Our
results demonstrate that in all three approaches the
one-nucleon momentum distribution can be expressed,
to a large extent, in terms of a proper sum of the
pn and pp distributions, starting from a value of
the one-nucleon momentum k1 � 2 fm−1, within ap-
proaches (i) and (ii) and starting at k1 � 4 fm−1, within
approach (iii).

(5) The two-nucleon momentum distributions have been
used to calculate the absolute values of the number of
SRCd pn and pp pairs in the considered nuclei; in
particular, we have calculated the number of BB SRCd
pairs, defined by the integral of the two-nucleon mo-
mentum distribution in correspondence with Kc.m. = 0
and (similarly to the deuteron case) in the relative
momentum range 1.5 < krel < ∞ fm−1, finding in
complex nuclei a number of BB SRCd pn pairs larger
than the number of pp pairs by about a factor of 10.
Concerning the numbers of SRCd nucleons it should be
stressed that in our approach the one- and two-nucleon
momentum distributions satisfy the exact relationship
provided by Eq. (19), which is valid in the entire
region of momentum 0 < k1 < ∞ fm−1, so that the
obtained two-nucleon momentum distributions provide
a percentage ratio of SRCd nucleons to the total number
of nucleons in the range of 16%–20%, if SRCs are
defined with respect to a pure independent-particle
shell-model description.

(6) The dependence upon krel and Kc.m. of the two-nucleon
momentum distributions of 4He and 12C in the region of
SRCs is in good agreement with available experimental
data [26–31], and so are the c.m. distributions.

Several aspects of the above picture, which we have
shown to occur also in light nuclei (A � 12) treated within
the VMC approach [11], have already been experimentally
confirmed, whereas some others, concerning, in particular, the
values of the nuclear contact in various spin-isospin states,
deserve further theoretical and experimental investigations.
Finally, we would like to stress that our approach provides
momentum distributions that in some momentum regions are
lower by 15%–20% than the ones calculated with the VMC
momentum distributions; as already pointed out, this can
be attributed partly to the different Hamiltonian used in the
two approaches and partly to the different variational wave
functions; this point is under investigation. To conclude, our
approach turned out to be accurate enough to describe the main
features of SRCs in few-nucleon systems and isoscalar nuclei
with A � 40, so that it should deserve extension to different
types of NN interaction models differing, particularly, in
short-range behavior, and should be applied to heavier neutron-
rich nuclei, whose investigation presents several interesting
aspects [31,43].
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