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The properties of nuclear matter and finite nuclei are studied within the quark mean field (QMF) model by
taking the effects of pions and gluons into account at the quark level. The nucleon is described as the combination
of three constituent quarks confined by a harmonic oscillator potential. To satisfy the spirit of QCD theory, the
contributions of pions and gluons on the nucleon structure are treated in second-order perturbation theory. In
a nuclear many-body system, nucleons interact with each other by exchanging mesons between quarks. With
different constituent quark mass, mq , we determine three parameter sets for the coupling constants between
mesons and quarks, named QMF-NK1, QMF-NK2, and QMF-NK3, by fitting the ground-state properties of
several closed-shell nuclei. It is found that all of the three parameter sets can give a satisfactory description of
properties of nuclear matter and finite nuclei, moreover they also predict a larger neutron star mass around 2.3M�
without hyperon degrees of freedom.
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I. INTRODUCTION

The nucleon, as an element of nuclear physics, is composed
of more microscopic particles, named quarks in the standard
model. Quarks are confined in the nucleon and interact with
each other by exchanging gluons in the basic theory of
strong interaction, quantum chromodynamics (QCD). Such
confinement will increase hugely with the distance between
two quarks. Therefore, it is impossible to observe free quarks
in the universe except at some extreme conditions such as high
density and high temperature.

At a nuclear energy level, the interaction between quarks
cannot be treated with perturbation theory, whose coupling
strength is not small anymore. Until now, we still could not
describe the nucleon structure as a few-body problem based
on the degrees of freedom of quarks and gluons directly with
QCD theory as in ab initio calculation. With the development
of computer technology, the mass spectrum of baryons and
mesons has been calculated with lattice QCD theory as a few-
quarks system, which can treat the quark confinement very
well with numerical methods. The mass spectrum of mesons
and baryons was reproduced very well compared to experiment
observations [1].

However, it is a big challenge to study a nuclear many-body
system based on the degrees of freedom of quarks and gluons
with QCD theory, which will help us understand nuclear
physics more fundamentally. To overcome such a difficult
problem, a lot of many-body methods were proposed, which
can reasonably give the properties of finite nuclei from the light
mass region to very heavy mass region very well, such as the
Green’s function Monte Carlo (GFMC) method [2], the shell
model [3], Skyrme Hartree-Fock (SHF) theory [4], relativistic
mean field (RMF) theory [5], and so on. However, in most of
these models, the nucleon is usually treated as a point particle,
which does not consider its internal structure. This assumption
is against the observation of present experiments about the
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nucleon structure. Furthermore, the medium modification of
the nucleon structure function [the EMC (European Muon
Collaboration) effect] cannot be achieved by treating the
nucleon as a point particle. It is a challenge to develop a model
for understanding the change of the nucleon structure in nuclei
from quark degrees of freedom.

Therefore, Guichon proposed an exploratory model to
study the nuclear many-body problem, where the quarks are
confined in a bag, as in the MIT bag model, and interact
with each other at different nucleons through exchange of
σ and ω mesons [6]. The mechanism of nuclear saturation
properties can be discussed in terms of quark degrees of
freedom. Later, Saito and Thomas et al. extended such a
model to include more mesons, such as the ρ meson, called the
quark-meson coupling (QMC) model [7–9]. The QMC model
can be regarded as an extension of the RMF model, where the
scalar coupling constant, generated from the effective nucleon
mass, is changed with the quark mass in the nuclear medium.
Actually, it corresponds to the nuclear EMC effect [10], which
modifies the nucleon structure in the nuclear medium. The
persistently developed QMC model is applied not only to
the study of nuclear structure, but also to hadron physics,
astrophysics, and particle physics [11–16].

The quark is treated as a current quark in QMC model,
whose mass is very small, just several MeV. Accordingly, Toki
et al. used a constituent quark model for the nucleon instead of
the MIT bag model [17], named the quark mean field (QMF)
model. The quarks are confined through some confinement
potentials in the QMF model, whose constituent quark mass
is around 300 MeV. Shen et al. promoted such a picture with
more precise parameters by fitting the properties of stable
finite nuclei [18] and applied it to the study of hypernuclei and
neutron stars [19–21]. To include baryon octets, Wang et al.
introduced a chiral Lagrangian at the hadron level in the QMF
model and studied the properties of strangeness in nuclear
matter [22–27].

In the QMC and QMF models, two very important factors in
QCD theory are neglected. One is the gluon, which propagates
the interaction of quarks. The other is chiral symmetry, which
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is taken into account by pions and generates the quark mass
from the chiral symmetry limit. The gluon can interact with
itself and the contribution of the pion in the mean field is zero.
Many works first attempted to consider the pion effect within
the QMF model through the Fock term [28–30]. Recently,
Nagai et al. extended the QMC model to include the gluon and
pion exchange effect by using the cloudy bag model (CBM)
[31]. Furthermore, Barik et al. calculated the contribution of
the quark-pion interaction and the quark-gluon interaction by
one-pion exchange and one-gluon exchange, respectively, in
lowest-order perturbation theory in the 1980s [32,33].

Recently, Barik et al. developed their method from single
baryon states to infinite nuclear matter following the method-
ology of the QMC and QMF models; they named it the MQMC
model, and discussed the properties of symmetric nuclear
matter influenced by the quark mass with σ and ω meson
exchanges [34]. Later, they also included the ρ meson to study
asymmetric nuclear mechanical instability and its dependence
on the isospin asymmetry of the system [35]. In their works,
the free parameters, such as the strengths of σ and ω mesons,
are determined by the nuclear saturation properties. The
nonlinear terms of σ and ω mesons were not included in the
Lagrangian, which resulted in a large effective nucleon mass.
Therefore, such parameter sets obtained by Barik et al. from
nuclear matter could not describe the properties of finite nuclei
very well.

Therefore, in this work, we would like to include the
contribution of pions and gluons with perturbation theory in the
QMF model and fix the free parameters from the ground states
of stable finite nuclei. Then, we will apply such new parameters
to study the properties of nuclear matter and neutron stars.

The paper is organized as follows. In Sec. II, we briefly
derive the contribution of pions and gluons on nucleon
properties with perturbation theory and the formulas of the
QMF model for nuclear matter and finite nuclei. In Sec. III,
new parameter sets of the QMF model with pion and gluon
corrections will be determined. The properties of nuclear
matter and finite nuclei with such new parameter sets will
be shown. A summary is given in Sec. IV.

II. QUARK MEAN FIELD MODEL WITH PION AND
GLUON CORRECTIONS

The analytical confinement potential for quarks cannot be
obtained from QCD theory directly. Many phenomenological
confinement potentials were proposed, where the polynomial
forms were widely used. A harmonic oscillator potential, U (r),
is adopted in this work, with which the Dirac equation can be
solved analytically [34]:

U (r) = 1
2 (1 + γ 0)(ar2 + V0), (1)

where the scalar-vector form of the Dirac structure is chosen
for the quark confinement potential. Here, we should empha-
size that such a potential is just used for the baryon state, not
for meson state, since in QMF model the degrees of freedom
for quarks and mesons are equally treated. a and V0 are the
potential parameters, which are determined by the free nucleon
mass and radius. When the effect of the nuclear medium is
considered, the quark field ψq(�r) satisfies the following Dirac

equation: [
γ 0

(
εq − gq

ωω − τ3qg
q
ρρ

) − �γ · �p
−(

mq − gq
σσ

) − U (r)
]
ψq(�r) = 0, (2)

where σ , ω, and ρ are the classical meson fields, which
take the exchanging interaction between quarks. g

q
σ , g

q
ω, and

g
q
ρ are the coupling constants of σ , ω, and ρ mesons with

quarks, respectively. τ3q is the third component of the isospin
matrix and mq is the bare quark mass. Now we can define the
following quantities for later convenience:

ε′
q = ε∗

q − V0/2,

m′
q = m∗

q + V0/2,
(3)

where the effective single quark energy is given by ε∗
q = εq −

g
q
ωω − τ3qg

q
ρρ and the effective quark mass by m∗

q = mq −
g

q
σ σ [18]. We also introduce λq and r0q as

λq = ε′
q + m′

q,

r0q = (aλq)−
1
4 .

(4)

The nucleon mass in the nuclear medium can be expressed
as the binding energy of three quarks named the zeroth-order
term, after solving the Dirac equation (2), formally

E∗0
N =

∑
q

ε∗
q . (5)

The quarks are simply confined in a two-body confinement
potential. Three corrections will be taken into account in the
zeroth-order nucleon mass in the nuclear medium, including
the center-of-mass correction εc.m., the pion correction δMπ

N ,
and the gluon correction (�EN )g . The pion correction is
generated by the chiral symmetry of QCD theory and the gluon
correction by the short-range exchange interaction of quarks.
The center-of-mass correction can be obtained [34] from

εc.m. = 〈N |Hc.m.|N〉, (6)

where Hc.m. is the center-of-mass Hamiltonian density and
|N〉 is the nucleon state. When the nucleon wave function is
constructed by the quark wave functions, the center-of-mass
correction comes out as

εc.m. = 77ε′
q + 31m′

q

3(3ε′
q + m′

q)2r2
0q

. (7)

In order to restore the chiral symmetry in the nucleon, an
elementary pion field is introduced in the present model. The
pion contribution is zero in first-order perturbation theory due
to its pseudovector properties. Therefore, we should treat it
with second-order perturbation theory. Then, the pionic self-
energy correction to the nucleon mass becomes

δMπ
B = −

∑
k

∑
B ′

V
†BB ′
j V BB ′

j

wk

, (8)

where
∑

k ≡ ∑
j

∫
d3k/(2π )3, wk = (k2 + m2

π )1/2 is the pion

energy, and V BB ′
j represents the baryon pion absorption vertex

function in the point-pion approximation. Then it can be

044308-2



QUARK MEAN FIELD MODEL WITH PION AND GLUON . . . PHYSICAL REVIEW C 94, 044308 (2016)

FIG. 1. The effective nucleon masses M∗
N as a function of the

quark mass correction δmq for quark masses mq = 250 MeV (dotted
curve), mq = 300 MeV (dashed curve), and mq = 350 MeV (solid
curve).

simplified as

δMπ
N = −171

25
Iπf 2

NNπ , (9)

where

Iπ = 1

πm2
π

∫ ∞

0
dk

k4u2(k)

w2
k

, (10)

with the axial-vector nucleon form factor

u(k) =
[

1 − 3

2

k2

λq(5ε′
q + 7m′

q)

]
e− 1

4 r2
0qk2

, (11)

and fNNπ can be obtained from the Goldberg-Triemann
relation by using the axial-vector coupling-constant value gA

in this model. The one-gluon exchange contribution to the
mass is separated into two parts as

(�EB)g = (�EB)Eg + (�EB)Mg , (12)

where (�EB)Eg is the color-electric contribution

(�EB)Eg = 1

8π

∑
i,j

8∑
a=1

∫
d3rid

3rj

|�ri − �rj | 〈B|J 0a
i (�ri)J

0a
j (�rj )|B〉,

(13)

and (�EB)Mg the color-magnetic contribution

(�EB)Mg = − 1

8π

∑
i,j

8∑
a=1

∫
d3rid

3rj

|�ri − �rj | 〈B| �J a
i (�ri) · �J a

j (�rj )|B〉.

(14)

Here

J
μa
i (x) = gcψ̄q(x)γ μλa

i ψq(x) (15)

is the quark color current density, where λa
i are the usual

Gell-Mann SU(3) matrices and αc = g2
c /4π . Then Eqs. (13)

and (14) can be written as

(�EN )Eg = αc

(
buuI

E
uu + busI

E
us + bssI

E
ss

)
, (16)

and

(�EN )Mg = αc

(
auuI

M
uu + ausI

M
us + assI

M
ss

)
, (17)

where aij and bij are the numerical coefficients depending on
each baryon and the quantities IE

ij and IM
ij are given in the

following equations:

IE
ij = 16

3
√

π

1

Rij

[
1 − αi + αj

R2
ij

+ 3αiαj

R4
ij

]
,

IM
ij = 256

9
√

π

1

R3
ij

1

(3ε
′
i + m

′
i)

1

(3ε
′
j + m

′
j )

,

(18)

with

R2
ij = 3

[
1

(ε
′
i

2 − m
′
i

2
)

+ 1

(ε
′
j

2 − m
′
j

2
)

]
,

αi = 1

(ε
′
i + m

′
i)(3ε

′
i + m

′
i)

.

(19)

Finally, taking the above pion and gluon corrections, the mass
of the nucleon in the nuclear medium becomes

M∗
N = E∗0

N − εc.m. + δMπ
N + (�EN )Eg + (�EN )Mg .

(20)

Until now, we have constructed the nucleon at quark level
with confinement potential and the pion and gluon corrections.
Next, we would like to connect such a nucleon in the nuclear
medium with nuclear objects, such as nuclear matter and a
finite nuclei system. A good bridge is the relativistic mean
field (RMF) model at hadron level, which was developed based
on the one-boson exchange potential between two nucleons.

TABLE I. The parameters for quarks and hadrons are listed. The first parameter set corresponding to mq = 250 MeV is named QMF-NK1,
the second for mq = 300 MeV is named QMF-NK2, and the third for mq = 350 MeV is named QMF-NK3.

mq gq
σ gω gρ g2 g3 c3 a V0

(MeV) (fm−1) (fm−3) (MeV)

250 5.15871 11.54726 3.79601 −3.52737 −78.52006 305.00240 0.57945 −24.28660
300 5.09346 12.30084 4.04190 −3.42813 −57.68387 249.05654 0.53430 −62.25719
350 5.01631 12.83898 4.10772 −3.29969 −39.87981 221.68240 0.49560 −102.04158
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FIG. 2. The contributions of confinement potential, pion correc-
tion, and gluon correction to the effective nucleon mass M∗

N as a
function of the quark mass correction δmq at quark mass mq = 350
MeV. MQ, Mπ , and MG represent the confinement contribution, pion
correction, and gluon correction, respectively.

The effective nucleon mass from the quark model will be
inserted to the RMF Lagrangian. The nucleon and meson
fields will be solved self-consistently, and then the properties
of the nuclear many-body system will be obtained. We would
like to use a more complicated Lagrangian and compare with
the MQMC model [34]. The MQMC parameter sets without
nonlinear terms of σ and ω mesons can provide very good
saturation properties of nuclear matter, but for the description
of finite nuclei they cannot give results of binding energies
and charge radii consistent with the experimental data. For
example, with mq = 300 MeV in the MQMC model, the total
energy difference of 208Pb between theoretical calculation and
experimental data is about 80 MeV. Meanwhile, in the MQMC
model, the effective nucleon mass at saturation density is a
little bit larger than the empirical data, which will generate
a small spin-orbit splitting comparing with the experimental
observation. Therefore, we should introduce the nonlinear
terms of σ and ω mesons at the nucleon level. At the
same time, in this work, we just consider the σ , ω, and
ρ meson exchange in the QMF Lagrangian [18], which is

given as

LQMF = ψ̄

[
iγμ∂μ − M∗

N − gωωγ 0 − gρρτ3γ
0

− e
(1 − τ3)

2
Aγ 0

]
ψ

− 1

2
(∇σ )2 − 1

2
m2

σ σ 2 − 1

3
g2σ

3 − 1

4
g3σ

4

+ 1

2
(∇ω)2 + 1

2
m2

ωω2 + 1

4
c3ω

4

+ 1

2
(∇ρ)2 + 1

2
m2

ρρ
2 + 1

2
(�A)2, (21)

where M∗
N is the effective nucleon mass obtained from the

quark model, and the coupling constants of ω and ρ mesons
with the nucleon can be related to the quark part as gω =
3g

q
ω and gρ = g

q
ρ according to the quark counting rules. A is

the electromagnetic field for the Coulomb interaction between
protons. In this Lagrangian, we already consider the static
approximation for the mesons so that their time components
are neglected. The spatial part of the ω meson disappears for
time reversal symmetry.

From this Lagrangian, the equations of motion of nucleons
and mesons will be generated by the Euler-Lagrangian
equation,[

iγμ∂μ − M∗
N − gωω(r)γ 0 − gρρ(r)τ3γ

0

− e
(1 − τ3)

2
A(r)γ 0

]
ψ = 0,

�σ (r) − m2
σ σ (r) − g2σ

2(r) − g3σ
3(r) = ∂M∗

N

∂σ
〈ψ̄ψ〉,

�ω(r) − m2
ωω(r) − c3ω

3(r) = −gω〈ψ̄γ 0ψ〉,
�ρ(r) − m2

ρρ(r) = −gρ〈ψ̄τ3γ
0ψ〉,

�A(r) = −e〈ψ̄ (1 − τ3)

2
γ 0ψ〉, (22)

where ∂M∗
N

∂σ
comes from the quark model and is different from

the gσ in RMF model. Here we restrict our consideration to
spherically symmetric nuclei and r is the radial coordinate
of the nuclear center. These equations of motion can be
solved self-consistently in a numerical program. From the

TABLE II. The binding energies per nucleon E/A and the rms charge radii Rc with QMF-NK1, QMF-NK2, and QMF-NK3 parameter
sets, compared with the results in the previous QMF model without pion and gluon corrections, and experimental values.

Model E/A (MeV) Rc (fm)

40Ca 48Ca 90Zr 208Pb 40Ca 48Ca 90Zr 208Pb

QMF-NK1 8.62 8.61 8.65 7.92 3.43 3.47 4.26 5.49
QMF-NK2 8.61 8.61 8.67 7.91 3.44 3.47 4.26 5.50
QMF-NK3 8.59 8.63 8.68 7.90 3.44 3.46 4.26 5.50
QMF [18] 8.35 8.43 8.54 7.73 3.44 3.46 4.27 5.53
Expt. 8.55 8.67 8.71 7.87 3.45 3.45 4.26 5.50
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TABLE III. The spin-orbit splittings of 40Ca and 208Pb for QMF-NK1, QMF-NK2, and QMF-NK3, compared with the experimental data.
All quantities are in MeV.

Model 40Ca 208Pb

Proton Neutron Proton Neutron
(1d5/2–1d3/2) (1d5/2–1d3/2) (1g9/2–1g7/2) (2f7/2–2f5/2)

QMF-NK1 −3.7 −3.7 −2.4 −1.5
QMF-NK2 −4.5 −4.5 −2.8 −1.7
QMF-NK3 −5.1 −5.1 −3.2 −1.9
Expt. −7.2 −6.3 −4.0 −1.8

single-particle energies of the nucleons, the total energy of
whole nucleus can be obtained with the mean field method.

Infinite nuclear matter, which does not really exist in
universe, is very helpful for us to understand the basic physics
of the nuclear many-body system. It has the translational
invariance in an infinite system, which removes the partial
part on coordinate space. Its Lagrangian density and equations
of motion will be written as

LQMF = ψ̄(iγμ∂μ − M∗
N − gωωγ 0 − gρρτ3γ

0)ψ

− 1
2m2

σ σ 2 − 1
3g2σ

3 − 1
4g3σ

4

+ 1
2m2

ωω2 + 1
4c3ω

4 + 1
2m2

ρρ
2, (23)

and

(iγ μ∂μ − M∗
N − gωωγ 0 − gρρτ3γ

0)ψ = 0,

m2
σ σ + g2σ

2 + g3σ
3 = −∂M∗

N

∂σ
〈ψ̄ψ〉,

m2
ωω + c3ω

3 = gω〈ψ̄γ 0ψ〉,
m2

ρρ = gρ〈ψ̄τ3γ
0ψ〉.

(24)

From this Lagrangian and these equations of motion of nucleon
and mesons, the energy density and pressure can be generated

by the energy-momentum tensor [36],

EQMF =
∑
i=n,p

1

π2

∫ ki
F

0

√
k2 + M∗k2dk

+ 1

2
m2

σ σ 2 − 1

3
g2σ

3 + 1

4
g3σ

4

+ 1

2
m2

ωω2 + 3

4
c3ω

4 + 1

2
m2

ρρ
2 (25)

and

PQMF = 1

3π2

∑
i=n,p

∫ ki
F

0

k4

√
k2 + M∗ dk

− 1

2
m2

σ σ 2 + 1

3
g2σ

3 − 1

4
g3σ

4

+ 1

2
m2

ωω2 + 1

4
c3ω

4 + 1

2
m2

ρρ
2. (26)

III. RESULTS AND DISCUSSIONS

The parameters of the confinement potential (a,V0) are
determined by the experimental data of nucleon mass MN =
939 MeV and charge radius 〈r2

N 〉1/2 = 0.87 fm in free space.
Then we calculate the effective mass M∗

N in the nuclear
medium as a function of the quark mass correction δmq , which
is defined as δmq = mq − m∗

q = g
q
σ σ .

FIG. 3. The charge density distributions of 40Ca (a) and 208Pb (b) for QMF-NK1, QMF-NK2, and QMF-NK3 compared with the experimental
data.
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In Fig. 1, the effective nucleon masses with different
bare quark masses (mq = 250, 300, and 350 MeV) are
given as functions of quark mass correction. The values
of (a,V0) in different quark masses are given in Table I.
In free space (δmq = 0), their effective masses completely
correspond to the free nucleon mass. With δmq increasing,
the effective nucleon masses will be reduced from the effect
of surrounding nucleons. Furthermore, this reduction becomes
more pronounced at larger quark mass.

We also show the contributions from the quark confinement,
pion correction, and gluon correction on the effective nucleon
mass in Fig. 2. The confinement potential provides a positive
contribution to the effective nucleon mass and largely reduces
the effective mass in the nuclear medium, while the pion
and gluon generate the negative contribution to the nucleon
mass. The gluon correction is almost not influenced by the
nuclear medium, and the pion one increases slowly with δmq .
Their magnitudes are smaller compared to the one from the
confinement potential, and are calculated with the perturbation
theory.

After we fix the parameters of the quark confinement
potential, the coupling constants between quarks and mesons
should be determined by the properties of finite nuclei. In
this work, we take the meson masses as mσ = 550 MeV,
mω = 783 MeV, and mρ = 763 MeV. g

q
σ , gω, gρ , g2, g3, and

c3 will be fitted by the binding energies per nucleon E/A and
the charge radii Rc of four closed shell nuclei, 40Ca, 48Ca,
90Zr, and 208Pb, with a least-squares fitting method. Three
parameter sets are achieved at mq = 250, 300, and 350 MeV to
study the effect of quark properties on the nuclear many-body
system. These parameters sets and the corresponding a and V0

in the quark confinement potential are listed in Table I. For
convenience in later discussion, we name the first parameter
set (mq = 250 MeV) in Table I as QMF-NK1, the second
(mq = 300 MeV) as QMF-NK2, and the third (mq = 350
MeV) as QMF-NK3.

In Table II, the results of theoretical calculation for the
binding energies per nucleon E/A and the charge radii Rc for
four spherically symmetric nuclei, 40Ca, 48Ca, 90Zr, and 208Pb,
by QMF-NK1, QMF-NK2, and QMF-NK3 are compared with
the experimental data. We can find that the results from the
QMF-NK3 are closest to the experimental values compared to
the other two parameter sets. It demonstrates that the heavier
quark mass is more acceptable for the nuclear many-body
system. The calculation without the pion and gluon corrections
by Shen and Toki [18] is also compared and the present results
are largely improved. Therefore, it is necessary to include the
contributions of pions and gluons to describe the finite nuclei
system properly.

FIG. 4. The difference between the 48Ca and 40Ca charge densities
for QMF-NK1, QMF-NK2, and QMF-NK3, compared with the
experimental data.

In Table III, we also compare the spin-orbit splittings of
40Ca and 208Pb for QMF-NK1, QMF-NK2, and QMF-NK3
in the present work to the experimental data. With increasing
quark mass, the spin-orbit splittings of these nuclei become
larger and approach the experimental data. In the RMF model,
the spin-orbit splittings are actually strongly dependent on the
effective nucleon mass and have the inverse relation. From
Fig. 1, we can observe that the largest quark mass generates
the smallest effective nucleon mass at each δmq . Therefore, a
large quark mass will result in a large spin-orbit splitting.

In Fig. 3, we plot the charge density distributions of 40Ca
and 208Pb for QMF-NK1, QMF-NK2, and QMF-NK3 and
compare them with the experimental data. They are almost
identical for the three parameter sets and coincident with the
behavior of experimental data. In Fig. 4, we also plot the
difference between the 48Ca and 40Ca charge densities for
QMF-NK1, QMF-NK2, and QMF-NK3.

Once we have fixed the free parameters in the QMF
Lagrangian from the finite nuclei system, we can apply such
parameter sets to the study of nuclear matter and examine
their validity. In Table IV, the various properties of symmetric
nuclear matter at saturation density for the three parameter sets
are tabulated, such as saturation density, binding energy per
particle, incompressibility, symmetry energy, and so on. Their
detailed expressions can be found in Ref. [35]. The saturation
densities, binding energies, and incompressibilities for QMF-
NK1, QMF-NK2, and QMF-NK3 are almost the same, which

TABLE IV. Saturation properties of nuclear matter in the QMF-NK1, QMF-NK2, and QMF-NK3 parameter sets.

Model ρ0 E/A K0 J M∗
N/MN L0 K0

sym Kasy Q0 Kτ

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

QMF-NK1 0.154 −16.3 323 30.6 0.70 84.8 −28.8 −537.6 495.4 −667.7
QMF-NK2 0.152 −16.3 328 32.9 0.66 93.7 −23.5 −585.7 221.0 −648.8
QMF-NK3 0.150 −16.3 322 33.6 0.64 97.3 −12.0 −595.8 263.0 −675.3
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FIG. 5. EOSs of symmetric nuclear matter and pure neutron matter in QMF-NK1, QMF-NK2, and QMF-NK3 for (a) yp = 0.5 and
(b) yp = 0.0.

is consistent with the empirical saturation properties of nuclear
matter. The symmetry energies and effective masses obviously
perform differently for these three parameter sets, which is
caused by the coupling constants of the ρ meson and quark
masses.

In Fig. 5, we plot nuclear matter binding energy as a
function of density for the three parameter sets for symmetric
nuclear matter and pure neutron matter. At low densities, the
equations of state (EOSs) for different sets are identical. With
increasing density, the EOS becomes softer for lower quark
mass.

The neutron star as a natural laboratory is a very good
object to check the nuclear theoretical model. We calculate the
properties of neutron stars with the QMF model and show the
mass-radius relations for neutron stars in Fig. 6. The maximum
masses of neutron star in this work are between 2.25M� and
2.38M�, which satisfies the constraint of present astronomical
observation data, about 2M� [37]. However, the previous QMF

FIG. 6. The mass-radius relations for neutron stars with QMF-
NK1, QMF-NK2, and QMF-NK3.

model without pion and gluon corrections could not provide a
large neutron star mass [21].

IV. CONCLUSION

We studied the properties of finite nuclei and infinite
nuclear matter in terms of the quark mean field (QMF) model
with the effects of pions and gluons. In the QMF model,
the nucleon is made up of three constituent quarks with a
confinement potential. Due to the chiral symmetry in QCD
theory and the quark exchange interaction, the corrections
of pions and gluons have been considered in a perturbation
manner to obtain the effective nucleon mass in the medium.
The strength of confinement potential is determined by the
mass and charge radius of the free nucleon. For the hadron
part of the QMF model, the nucleon is combined through the
meson exchange between quarks. Compared to the previous
MQMC model [34], we also included the nonlinear terms
of σ and ω mesons. Their coupling constants (gq

σ , gω, gρ ,
g2, g3, and c3) were determined by fitting the experimental
data of the binding energies per nucleon E/A and the charge
radii Rc of four closed-shell nuclei, 40Ca, 48Ca, 90Zr, and
208Pb. Finally, we obtained three parameter sets with different
quark confinement potentials, named QMF-NK1, QMF-NK2,
and QMF-NK3. The present QMF model is largely improved
to describe the properties of finite nuclei compared to the
previous QMF version without pion and gluon corrections and
to the MQMC model. The MQMC parameter sets without
nonlinear terms of σ and ω mesons could provide very good
saturation properties of nuclear matter, but for the description
of finite nuclei they cannot give results of binding energies
and charge radii consistent with the experimental data. For
example, with mq = 300 MeV in the MQMC model, the
total energy difference of 208Pb between theoretical calculation
and experimental data is about 80 MeV. After we introduced
the nonlinear terms of σ and ω mesons, this difference was
reduced to 6 MeV with the QMF-NK3 parameter set, while
the saturation properties of nuclear matter were still kept
in very good agreement. Furthermore, we also calculated
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the spin-orbit splittings for 40Ca and 208Pb, and the charge
density distributions in comparison with the experimental data.
The spin-orbit splittings in our work were largely improved
compared to the ones in the MQMC model, where the effective
nucleon mass was very large at saturation density to generate
small spin-orbit splittings of finite nuclei. We also found that
the spin-orbit splittings increased with the quark mass, since
a smaller effective nucleon mass usually generates strong
spin-orbit force in the RMF framework.

We also applied these parameter sets to the study of infinite
nuclear matter. The various saturation properties of symmetric
nuclear matter are consistent with the empirical data. The
obvious difference in QMF-NK1, QMF-NK2, and QMF-NK3
are reflected in the symmetry energies and effective nucleon
masses at saturation density, which were strongly dependent
on the strength of ρ meson coupling with quarks and the quark
mass. The equations of state (EOSs) of symmetry nuclear
matter and pure neutron matter were given, where the EOS with
large quark mass became stiffer. The mass-radius relations
of neutron stars were calculated. The maximum neutron star
masses in the present QMF model were around 2.25M� to
2.38M�, which satisfied the recent constraint of astrophysics

observation. Recently, there have been many discussions on
the hyperon degrees of freedom for massive neutron stars,
which is called the “hyperon puzzle.” In the future, we will
include the strange quark degree of freedom in the quark level
to generate more baryon states, such as �, �, and � to study
the hyperon degrees of freedom in neutron stars.

With the pion and gluon corrections, the QMF model could
treat finite nuclei and nuclear matter better. Although it is a
long road to describe the nuclear many-body system with QCD
theory directly, the influence of quark level on nuclear structure
was found in the present QMF model, e.g., in the effective
nucleon mass. With the energy and density increasing, the
strangeness degree of freedom will appear in nuclear physics.
We will consider more baryon states in such models and study
their roles in hypernuclei and neutron stars.
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