
PHYSICAL REVIEW C 94, 044306 (2016)

Gogny-Hartree-Fock-Bogolyubov plus quasiparticle random-phase approximation predictions
of the M1 strength function and its impact on radiative neutron capture cross section
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Valuable theoretical predictions of nuclear dipole excitations in the whole chart are of great interest for different
nuclear applications, including in particular nuclear astrophysics. Here we extend our large-scale calculations
of the E1 γ -ray strength function, obtained in the framework of the axially- symmetric-deformed quasiparticle
random phase approximation (QRPA) based on the finite-range D1M Gogny force, to the calculation of the M1
strength function. We compare our QRPA prediction of the M1 strength with available experimental data and
show that a relatively good agreement is obtained provided the strength is shifted globally by about 2 MeV and
increased by an empirical factor of 2. Predictions of the M1 strength function for spherical and deformed nuclei
within the valley of β stability as well as in the neutron-rich region are discussed. Its impact on the radiative
neutron capture cross section is also analyzed.
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I. INTRODUCTION

Radiative neutron capture cross sections play a key role
in almost all nuclear applications. Despite a huge effort
to measure such radiative neutron capture cross sections,
theoretical predictions are required to fill the gaps, both for
nuclei for which measurements are not feasible at the present
time, in particular for unstable targets, and for energies that
cannot be reached in the laboratory. Some applications, such
as nuclear astrophysics, also require the determination of
radiative neutron capture cross sections for a large number
of exotic neutron-rich nuclei [1]. In this case, large-scale
calculations on the basis of sound and accurate models need to
be performed to ensure a reliable extrapolation far away from
the experimentally known region.

The neutron capture rates are commonly evaluated within
the framework of the statistical model of Hauser-Feshbach,
although the direct capture contribution plays an important
role for very exotic nuclei [2]. The fundamental assumption of
the Hauser-Feshbach model is that the capture goes through
the intermediary formation of a compound nucleus in thermo-
dynamic equilibrium. In this approach, the (n,γ ) cross section
strongly depends on the electromagnetic interaction, i.e., the
photon deexcitation probability. In turn, it is well known that
the photon strength function is dominated by the electric dipole
contribution. The various multipolarities of the γ -ray strength
function are traditionally modeled by the phenomenological
Lorentzian approximation or some of its energy-dependent
variants [3]. The reliability of the γ -ray strength predictions
can, however, be greatly improved by the use of microscopic
or semimicroscopic models. Indeed, provided satisfactory
reproduction of available experimental data, the more micro-
scopic the underlying theory, the greater the confidence in
the extrapolations out towards the experimentally unreachable
regions. Microscopic approaches are rarely used for practical
applications essentially for two reasons. First, the time cost is

often prohibitive for large-scale calculations. Second, the fine
tuning required to reproduce accurately a large experimental
data set is very delicate, in addition to being time consuming.
A prominent exception is represented by Refs. [4–6] where a
complete set of γ -ray strength functions was derived from
mean field plus quasiparticle random-phase approximation
(QRPA) calculations. In Refs. [4,5], zero-range Skyrme forces
were considered and phenomenological corrections applied to
properly describe the splitting of the giant dipole resonance
in deformed nuclei as well as the damping of the collective
motion.

Recently, axially-symmetric-deformed QRPA calculations
based on Hartree-Fock-Bogoliubov (HFB) calculations using
the finite-range Gogny interaction have been shown to provide
rather satisfactory predictions of the E1 strength [6]. Such
calculations have been used to estimate the corresponding
radiative neutron capture cross sections. However, the con-
tribution of the other multipolarities is still calculated on
the basis of standard Lorentzian-type functionals that have
been parametrized on the few experimental data available.
Among those, the M1 strength is known to dominate after
the E1 contribution. The magnetic dipole response is known
experimentally to include two major components, namely (i)
an orbital component at low excitation energies, typically
around 3 MeV, which in deformed nuclei is called the scissors
mode [7], and (ii) a spin-flip component around 8 MeV
which includes the largest fraction of the M1 strength. The
scissors mode in deformed nuclei is interpreted as neutrons
and protons vibrating with a small angle with respect to
each other in a scissors-like motion, while the higher energy
component describes a resonance-like structure made of proton
and neutron spin-flip excitations. Theoretical as well as
experimental insights on the magnetic dipole excitations in
nuclei can be found in the review paper of Ref. [8].

In the present paper, we complement our previous study
of the E1 strength [6], as well as of the charge exchange
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Gamow-Teller strength [9], by estimating the magnetic dipole
M1 strength within exactly the same HFB+QRPA framework
on the basis of the same D1M interaction [10]. QRPA
calculations of the M1 strength have been performed in the
past (see, e.g., Refs. [11–14]). The present calculations has,
however, the specificity to have been applied to a large number
of nuclei, to be based on the finite-range Gogny interaction,
and, most of all, to be axially-symmetric deformed. The
latter property consequently allows us to estimate also the
scissors component of the M1 strength. Due to the scarcity
of experimental data in the giant resonance region, i.e. around
8–9 MeV, the QRPA prediction provides an alternative way
with respect to the phenomenological standard Lorentzian
(SLO) description of the spin-flip giant resonance mode [3]
to estimate the M1 contribution for a large set of nuclei. In
addition, it is also well known that the low-energy scissors
mode for deformed nuclei is not described by the Lorentzian
approximation. In this case, a more microscopic model can
provide some systematic insight of its amplitude and its impact
on the total strength function and consequently on the radiative
capture cross section.

The paper is organized as follows. In Sec. II, the axially-
symmetric-deformed HFB+QRPA formalism is described in
its standard form and the way corrections beyond QRPA
are included phenomenologically is detailed. The QRPA
prediction of the M1 strength function is discussed in Sec. III,
including its sensitivity to the size of the finite harmonic
oscillator (HO) basis and the cutoff effects. In Sec. IV, we
compare our D1M+QRPA prediction of the M1 strength
with available experimental data, and, in Sec. V, we study
the M1 strength function in exotic neutron-rich nuclei. The
impact of the newly calculated M1 strength function on the
Hauser-Feshbach estimate of the radiative neutron capture
cross section is discussed in Sec. VI. Conclusions are finally
drawn in Sec. VII.

II. THE THEORETICAL MODEL

A. Standard HFB+QRPA approach

We summarize here the formalism of the consistent QRPA
approach based on axially-symmetric-deformed HFB equa-
tions solved in a finite HO basis in cylindrical coordinate. For
more details, we refer the reader to Refs. [6,15–17]. In the
present calculation, the number of involved major shells is
Nsh = N0 + 1 where N0 is the maximum value of the energy
quantum number N . Solving the HFB equations in an HO
basis leads to the diagonalization of an Hamiltonian matrix:
eigenvalues and eigenvectors are respectively Bogoliubov
quasiparticle (qp) excitation energies and u and v components
of the Bogoliubov transformation. As a consequence the
positive energy continuum is discretized. The first-order
excitations for even-even nuclei are given by two-quasiparticle
(2-qp) excitations. QRPA phonons are linear combinations of
these 2-qp excitations. According to the symmetries imposed,
the projection K of the angular momentum J on the symmetry
axis and the parity � are good quantum numbers for the
phonons. Consequently, QRPA calculations can be performed
separately for each K� set. In this context, phonons are

characterized by the excitation operator

θ+
n,K� =

∑
ij

X
ij

n,K�η+
i η+

j − (−)KY
ij

n,K�ηjηi, (1)

where η+ and η are the qp operators, related to the HO
particle operators c+ and c through the u and v Bogoliubov
transformation matrices:

η+
i = uiαc+

α − viαcα. (2)

Here and in the following, repeated indices are implicitly
summed over; latin and greek letters denote qp and harmonic
oscillator states, respectively. In principle QRPA calculation
can be performed without any cut-off in energy of the 2-qp
states neither in occupation probabilities (v2) of single-qp
states. The amplitudes X and Y of Eq. (1) are solutions of
the well-known QRPA matrix equation [18](

A B
B A

)(
Xn,K�

Yn,K�

)
= ωn,K�

(
Xn,K�

−Yn,K�

)
, (3)

where ωn,K are the energies of the QRPA excited states. To
ensure consistency, the same interaction (parameter set of the
Gogny force) is used to calculate the A and B matrix elements
and the underlined HFB mean field [16]. In the present study,
we consider the D1M [10] Gogny force only. Once the QRPA
matrix is diagonalized, the X and Y amplitudes allow to
calculate the strength for each electromagnetic mode. Here,
we focus on the magnetic dipole (multipolarity λ = 1, parity
� = +) mode. The corresponding excitation operator is

T̂1,K = μN

√
3

4π

A∑
i

(
g

(i)
l (lK )i + g(i)

s (sK )i
)
, (4)

where μN is the Bohr magneton and gl and gs the orbital and
spin gyromagnetic factors for which we take the free-nucleon
values, i.e.,

g
(i)
l = 1, g(i)

s = 5.586 for protons,

g
(i)
l = 0, g(i)

s = −3.826 for neutrons.

Note that no quenching is applied to the gs factor. We remind
here of the correspondence {0,1,−1} ↔ {z, + ,−} between
the K values and the components of the spin and angular
momentum operators.

The total magnetic distribution B(M1) (in μ2
N ) is obtained

by summing the contributions of K� = 0+ and twice that
of K� = 1+, the K� = −1+ solution being equal to the
K� = 1+ one through the conservation of time reversal
symmetry. We remind that in the spherical symmetry case, the
K = 0 and |K| = 1 states are degenerate. In deformed nuclei,
the strength splits up into two components corresponding to
two different angular momentum projection K values.

B. Beyond the QRPA description

The well established formalism described above takes into
account only 2-qp excitations. Meson-exchange currents and
�-isobar excitations effects [19] are not included in the present
approach. Furthermore, more complex excitations than the
simple 2-qp ones are not taken into account. As discussed in
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Ref. [20], multiparticle multihole effects increase significantly
the orbital part of the magnetic transition operator. The in-
teraction between the single-particle and low-lying collective
phonon degrees of freedom [21] leads to a fragmentation and
broadening of the response and to a dynamical redistribution
of the transition strength by shifting part of the strength. To
include all the aforementioned ingredients beyond the 2-qp
excitations in a phenomenological way, the discrete QRPA
B(M1) distribution is folded by a Lorentzian function

L(E,ω) = 1

π

�E2

[E2 − (ω − �)2]2 + �2E2
, (5)

leading to a continuous M1 strength function

SM1(E) = fcorr ×
∑

n

L(E,ωn)B(M1)(ωn). (6)

Then, the M1 strength function fM1 (in MeV−3) can be
deduced from SM1 by applying the conversion factor of 0.044
(e.g., [22]).

In Eq. (5), � is the width at half maximum and � allows for
an energy shift. For the E1 strength function, these quantities
have been adjusted on experimental photoabsorption data.
In the present study, similar corrections are applied to the
M1 resonance, at least in the zero-order approximation (the
so-called Model 0 in Ref. [6]). For the M1 component,
we adopt a similar shift of � = 2 MeV for the spin-flip
resonance; however, such a shift at and above the centroid
energy of 10 MeV can hardly be applied to the M1 strength
at the lowest energies, in particular to the scissors mode in
deformed nuclei. A study of our QRPA predictions of the
low-energy vibrational states shows that the first experimental
energies [23] are overestimated by typically 500 keV. For
this reason, we apply in the present study an energy shift
of � = 0.5 MeV for E � 0.5 MeV and � = 2 MeV for
E � 10 MeV, and for 0.5 � E � 10 MeV, the energy shift
� is interpolated linearly between these two values. This shift
describes in a very approximate way the energy-dependent
effects beyond the standard 2-qp QRPA excitations and the
coupling between the single-particle and low-lying collective
phonon degrees of freedom. This approximation represents a
simplified version of Models 1 or 2 in Ref. [6], where the
energy-dependence was assumed to be proportional to the
density of four quasiparticles.

As far as the broadening is concerned, in order to keep some
structure inherent to the QRPA calculation, we adopt a width
� = 0.5 MeV. Indeed, considering a larger width of 2.5 MeV,
as used in Model 0 of Ref. [6] and required to reproduce the
dominant E1 component of the giant resonance properties seen
in photoabsorption data, would inevitably wipe out most of the
structure, in particular at low energies where a non-negligible
part of the strength is located, especially for deformed nuclei.

Finally, the correction factor of fcorr = 2 is applied in
Eq. (6) to reproduce at best measured M1 strengths, as
discussed in Sec. IV. Note that the B(M1) distributions have
not been calculated for odd-A and odd-odd nuclei. To estimate
their M1 strength, we have used the same interpolation
procedure as the one used for the E1 strength (see Ref. [6]
for more details).

III. THE QRPA PREDICTION OF THE M1
STRENGTH FUNCTION

The HFB+QRPA calculations remain sensitive to the
number of HO shells used and the energy cutoff Ec accounted
for on the 2-qp state energies. Below we discuss the impact
of these effects on the calculated M1 strength function,
keeping in mind the feasibility of such calculations regarding
computational constraints.

A. Sensitivity analysis

A key ingredient of any QRPA calculation concerns the
number of HO shells, Nsh, included, as well as the cutoff
energy Ec on the 2-qp states energies. In order to investigate
the impact of Nsh on the γ -ray strength function and to verify
the convergence, we have performed QRPA calculations for
several odd values of Nsh and different energy cutoffs. The
results are shown in Fig. 1 where the QRPA strength is widened
by a Lorentzian function Eq. (5) of width of � = 0.5 MeV, no
shift being applied (� = 0). It can be seen that the M1 strength
distribution remains rather insensitive to the cutoff energy, only
the high-energy spin-flip resonance may be shifted upward by a
few hundred keV if a small energy cutoff of 60 MeV is adopted.
Similarly, the M1 strength function is not too much affected by
the size of the HO basis. A low value of Nsh is seen to affect the
high-energy resonance, but otherwise the strength distribution
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FIG. 1. (a) M1 strength fM1 for 92Zr and 240Pu for a number of
HO shells Nsh = 13 and different cutoff energies Ec = 60, 120, and
200 MeV. (b) The same as (a) for Ec = 60 MeV and different shell
numbers Nsh = 9, 11, 13, and 17 (the case of Nsh = 17 has been
calculated in the Pu case only).
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remains rather robust with respect to different adopted values
of Nsh. Clearly the differences shown in Fig. 1 have no impact
of any kind on the radiative neutron capture cross section
calculated in Sec. VI. For these reasons, most of the M1
calculations presented here have been obtained with a basis
dimension of Nsh � 11 and a cutoff energy of Ec = 60 MeV
(for N and Z � 70, we adopt Nsh � 9).

B. The QRPA M1 strength

The B(M1) strength has been calculated for about 412
even-even nuclei from O to Pu including the valley of β
stability as well as neutron-rich nuclei with 26 � Z � 70
and up to around 20 extra neutrons away from the valley of
stability (for Sn, the calculation includes isotopes up to the
neutron drip line). The corresponding centroid energies and
total integrated strengths are shown in Fig. 2. It can be seen
that the centroid energy systematically lies between 10 and
12 MeV with some peak structure observed around neutron
magic numbers. In such spherical nuclei, no scissors mode is
obtained, so that the strength is not brought down to lower
energies, as in deformed nuclei. The integrated strength is
found to increase significantly as a function of the atomic
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FIG. 2. Centroid M1 energy and total B(M1) strength estimated
for the 412 even-even nuclei around the valley of stability for which
QRPA calculations have been performed. The Sn isotopic chain is
shown by the red circles.
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FIG. 3. Total K = 1+ strength below 4.5 MeV as a function of
the quadrupole deformation β2 for the deformed nuclei in our set of
412 even-even nuclei. The full squares correspond to stable nuclei and
long-lived actinides, while open squares depict neutron-rich nuclei.
The solid curve is the 18β2

2 function in μ2
N units.

mass and the neutron number, although we find that for the Sn
isotopic chain it saturates to a rather constant value within the
neutron rich region for N � 88.

In Fig. 3, we show for deformed nuclei the total K =1+
strength obtained below 4.5 MeV as a function of the
quadrupole deformation β2. The strength of the corresponding
scissors mode is found to globally increase as the square of
the deformation, as already pointed out in Ref. [8] on the
basis of experimental data in the rare earth region. The overall
quadratic dependence 18β2

2 is about twice lower than found
experimentally, justifying the need to increase the QRPA
strength by a factor fcorr of about 2, as discussed in Sec. IV.
It should be noted that a strict energy threshold at 4.5 MeV
captures most of the strength in the scissors mode but remains
an approximation. The actinides with a significant strength
above 3μ2

N are seen not to follow the global trend. A set of
nuclei are also characterized with a scissors mode strength
about twice smaller; they are, essentially, neutron-rich isotopes
of Kr, Te, and Hg. Similarly, some light stable isotopes of Mg
and Si do not present any significant low-energy M1 strength.

IV. COMPARISON WITH EXPERIMENTAL DATA

In this section, we compare our D1M+QRPA prediction
of the M1 strength SM1 after renormalization by the fcorr

factor and the energy shift � with available experimental data.
The first comparison is shown in Fig. 4 for 106Pd and 198Au
which represent two cases where the giant M1 strength has
been derived experimentally from a detailed analysis of the
average resonance capture data [24–26]. As can be observed,
the strength around the spin-flip resonance mode between 6
and 8 MeV for 106Pd and 4 to 6 MeV for 198Au is relatively
well described by the QRPA calculation. In addition to the
main strength in this region, some D1M+QRPA M1 strength
is predicted at low energies, around 3 MeV, corresponding to
the scissors mode for the 106Pd deformation of β2 = 0.19 found
with the D1M interaction. 198Au is predicted to be oblate with a
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FIG. 4. (a) Comparison between experimental [24,25] and
D1M+QRPA M1 strength functions for 106Pd. Also shown is the
SLO approximation recommended in Ref. [27]. (b) The same for
198Au with experimental data taken from [24,26].

small deformation of β2 = −0.11 and its D1M+QRA strength
does not show a significant contribution at low energies, but
rather around 8 MeV. Keeping in mind that the strength
function of this odd-odd nucleus is obtained by interpolation,
blocking approximation would further improve its calculation.

We also compare in Fig. 4 the global phenomenological
model recommended by the RIPL-1 library [27]. In this case,
the M1 strength function is assumed to be described by the
spin-flip giant resonance mode through a SLO function

f SLO
M1 (εγ ) = σ0

3(π�c)2

εγ �2
0(

ε2
γ − E2

0

)2 + ε2
γ �2

0

(7)

with a global parametrization for the centroid energy and width
corresponding to E0 = 41A−1/3 MeV and �0 = 4 MeV [3]
and for a peak cross section such that, at the reference
energy of 7 MeV, f SLO

M1 = 1.5810−9A0.47 MeV−3 [27]. Other
prescriptions for the amplitude of the M1 strength function
have been proposed, in particular relating the E1 and M1
strengths around the same reference energy of 7 MeV through
fE1/fM1 = 0.0588A0.878 [3], but will not be considered in the
present study, since it remains sensitive to the adopted E1
strength model.

Similarly to Fig. 4, we compare in Fig. 5 the experimental
M1 photoabsorption cross section of the slightly deformed
128Xe and spherical 134Xe obtained with quasimonoenergetic
and linearly polarized γ -ray beams [28] with our D1M+QRPA
predictions as well as the SLO prescription [27]. Although the
M1 cross section in the energy region of the spin-flip resonance
is underestimated and rather too broad for 128Xe (resulting
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FIG. 5. Same as Fig. 4 for the M1 photoabsorption cross section
σγ of (a) 128Xe and (b) 134Xe. Experimental data are taken from
Ref. [28].

essentially from the deformation effects), the overall 134Xe
cross section is rather well described, especially in comparison
with the SLO approximation. Similar QRPA results were
obtained in Ref. [28].

Figure 6 compares the integrated experimental M1 strength
estimated within a given energy range [29–39] with the one
predicted by our D1M+QRPA model. Most of these ranges,
especially for rare-earth and actinide nuclei, are located at
low energies between typically 2 and 4 MeV and correspond
to the scissors mode (they are shown as circles in Fig. 6).
The integrated strength measured above 5μ2

N corresponds to
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FIG. 6. Comparison between experimental [29–40] (open sym-
bols) and D1M+QRPA (full symbols) values of the integrated
strength

∑
B(M1)(μ2

N ) in the well defined energy range given by
the measurements. Circles and squares correspond to data below or
above 4 MeV, respectively.
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FIG. 7. Comparison between experimental [41] and D1M+
QRPA mean excitation energy of the scissors mode.

energy ranges closer to the giant resonance mode above 4 MeV.
Globally it can be seen that, with the correction factor of 2 and
the 2 MeV shift introduced in the QRPA strength [Eq. (6)], the
total strength observed is relatively well described, especially
for the scissors mode. Similarly, the excitation of the scissors
mode is found to be systematically located around 3 MeV for
all rare-earth nuclei for which experimental data is available
at low energies [8,41], as shown in Fig. 7. The D1M+QRPA
mean energy

〈Esc〉 =
∫ Emax

0 ESM1(E)dE∫ Emax

0 SM1(E)dE
(8)

illustrated in Fig. 7 is obtained assuming the scissors mode lies
below Emax = 4.5 MeV, and is seen to reproduce fairly well
the constant measured value, provided the energy shift �, as
described in Sec. II B, is applied.

The need for an energy shift and scaling factor fcorr

corrections to the D1M+QRPA strength is also confirmed
when comparing our B(M1) strength distribution in 208Pb with
experimental data between 7 and 9 MeV. We show in Fig. 8
our D1M+QRPA predictions with and without the energy shift
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FIG. 8. Comparison between experimental [31,42,43] and
D1M+QRPA integrated M1 strength in 208Pb between 7 and 9 MeV
with (solid line) and without (dashed line) energy shift �.
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FIG. 9. (a) Comparison between experimental [44] and
D1M+QRPA strength for 232Th. The dotted, dashed, and solid lines
correspond to the M1, E1, and total E1 + M1 QRPA strengths,
respectively. (b) The same for 238U.

� and clearly experimental data can only be described when
applying the energy shift. The same holds when comparing
our predictions with the 232Th and 238U strengths deduced
from the Oslo method [44], as illustrated in Fig. 9. However,
in this case, the measured data also significantly depends on
the dominant E1 component which for consistency has been
estimated within the same D1M+QRPA approach [6]. Note
however that the E1 strength in the deexcitation process might
be affected by temperature effects and consequently be higher
than predicted in the present zero-temperature QRPA case.

Important information on the M1 strength is also hidden in
the total radiative width 〈�γ 〉 defined as

〈�γ 〉 = D0

2π

∑
X,L,J,π

∫ Sn+En

0
TXL(εγ ) (9)

× ρ(Sn + En − εγ ,J,π )dεγ , (10)

where the summation includes all multipolarities (X,L)
between all spins J and parities π in the electromagnetic
cascade starting at the neutron energy En above the neutron
separation energy Sn. In Eq. (10), D0 is the s-wave neutron
spacing at Sn and ρ the nuclear level density. Since the total
radiative width is sensitive to all multipolarities and to nuclear
level densities, it remains also affected by the M1 strength
below the neutron separation energy. In deformed nuclei, the
M1 scissors mode may contribute significantly, as already
pointed out, e.g., in Ref. [45]. We show in Fig. 10 the total
radiative width obtained within the D1M+QRPA approach,
including both the E1 and M1 contributions, together with
the experimental compilation [3]. The error bars on the
D1M+QRPA predictions are obtained by considering different
nuclear level density prescriptions [23,46,47]. While lower
〈�γ 〉 values are usually predicted for A � 160 nuclei, larger
estimates are obtained above. However, globally, the total
radiative widths are satisfactorily described despite the large
uncertainties stemming from the level densities. The radiative
width obtained by omitting totally the contribution of the M1
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FIG. 10. Comparison between experimental (black dots) [3] and
D1M+QRPA estimate of the 〈�γ 〉 value (open red diamonds)
including both the E1 and M1 contributions. The theoretical
uncertainties stem from the use of different nuclear level density pre-
scriptions [23,46,47]. The blue triangles correspond to the predicted
〈�γ 〉 when omitting the M1 mode totally.

mode is also illustrated in Fig. 10 using the combinatorial
level density model of Ref. [46]. This calculation illustrates
the significant contribution of the M1 strength in the A < 160
region.

V. EXTRAPOLATION TO NEUTRON-RICH NUCLEI

The M1 strength function for the Ni and Sn isotopic chains
are shown in Fig. 11. For the spherical Ni and 120−144Sn
isotopes, the strength is essentially characterized by two main
peaks, one located around 5 MeV and the upper one between
8 and 11 MeV depending on the neutron richness. Such a
double peak structure has been confirmed experimentally in
the spherical stable 58Ni isotope [40]. Only the doubly magic
132Sn strength is single peaked. A secondary low-energy peak
also starts to emerge around 2–3 MeV for the spherical 80–84Ni
and 136–144Sn neutron-rich nuclei; such a low-energy strength is
not present in spherical nuclei close to the valley of β stability.
For the deformed 148–160Sn isotopes, an important strength
from the scissors mode is found to be located systematically
around 2.5–3 MeV, regardless of the neutron richness. In this
case, the strength is essentially distributed between 2.5 and
10 MeV with a four peak structure.

VI. IMPACT ON THE RADIATIVE NEUTRON
CAPTURE CROSS SECTION

The Maxwellian-averaged neutron capture cross section
(MACS) has been systematically estimated, on the basis
of the TALYS code [48–50], for the 1400 nuclei for which
the M1 and E1 strengths have been evaluated within the
present D1M+QRPA approach. The absolute M1 contribution
to the MACS has been obtained by comparing with a
similar calculation where the M1 component has been totally
neglected. The impact of the M1 strength is illustrated in
Fig. 12. In many nuclei, especially deformed ones where the
low-energy scissors mode is present, the M1 contribution is
found to amount to 20% or more. In light Z � N � 18 nuclei,
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FIG. 11. (a) D1M+QRPA M1 strength function in the Ni isotopic
chain. (b) The same for the Sn isotopic chain. Spherical nuclei are
shown with solid lines and deformed ones with dotted lines.

as well as neutron-rich isotopes of Cr, Mn, or Fe, the M1
deexcitation mode is even found to strongly dominate with
a contribution larger than 50%. In actinides, it contributes to
some 20–30% of the MACS.

So far, most of the radiative capture cross sections have
been calculated assuming the M1 giant resonance strength is
described by a SLO function as the one given in Eq. (7) [3,27].
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FIG. 12. Contribution (in %) of the D1M+QRPA M1 strength
function to the total MACS for 1400 nuclei at the energy of
kT = 30 keV.
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FIG. 13. Ratio of the MACS obtained with the D1M+QRPA
M1 strength to the one obtained with the RIPL-1 recommendation
[Eq. (7)] [27] for the 1400 nuclei at the energy of kT = 30 keV.

Such an approximation does not take into account the presence
of the scissors mode at low energies in deformed nuclei
and remains very schematic concerning the spreading of the
strength around the centroid value. The pattern obtained within
D1M+QRPA is significantly more complex, as shown in
Fig. 11 and may consequently impact the radiative capture
cross section. To illustrate such an impact, we show in
Fig. 13 the ratio of the 30 keV MACS obtained with the
D1M+QRPA M1 strength to the one obtained with the RIPL-1
recommendation [Eq. (7)] [27] for the same 1400 nuclei. For
light nuclei as well as spherical nuclei in the vicinity of the
neutron magic numbers, D1M+QRPA strength gives a lower
cross section up to a factor of about 10; this is partially due
to the wide broadening of the prescription in Eq. (7) with a
width � = 4 MeV to be compared to the adopted value of
� = 0.5 MeV which concentrates more strength around the
centroid energy for spherical cases. For open shell nuclei a
MACS larger by about 50% can be obtained. For actinides, the
M1 contribution is also found to affect the MACS by about
10–30% through the low-energy scissors mode absent from
the SLO description [27].

VII. CONCLUSIONS

Our large-scale calculations of the E1 γ -ray strength
function in the framework of the axially-symmetric-deformed
QRPA based on the finite-range D1M Gogny force has been

extended to the M1 mode. This approach is applied to some
412 even-even nuclei, the strength function for odd nuclei
being deduced by interpolation. To take into account for
missing strength as well as effects beyond the 2-qp excitations,
it has been necessary to include an energy shift ranging
between 0.5 and 2 MeV as well as an increase of the global
strength by a factor of 2. Provided such corrections are
applied, our D1M+QRPA M1 strength appears to describe
relatively well available experimental data. These include
measured strengths in the spin-flip giant resonance region
as well as integrated strengths at low energies. In particular,
it is shown that the D1M+QRPA strength embodied in the
scissors mode for deformed nuclei increases quadratically with
deformation, is located around 3 MeV and rather well describes
experimental data. The total radiative width is also found to be
better described when calculated within the QRPA approach,
essentially due to a proper description of the low-energy
strength stemming from the scissors mode.

The D1M+QRPA M1 strength has also been estimated for
neutron-rich nuclei far away from the valley of β stability. It is
found that the scissors mode in deformed nuclei remains rather
unaffected by the neutron richness, in contrast to the spin-flip
resonance centroid energy. Some extra low-lying strength is
also found to appear in exotic neutron-rich spherical nuclei.
The M1 contribution to the radiative neutron capture cross
section in the keV region can be significant, especially in
light and deformed nuclei, but when compared with standard
Lorentzian-type prescriptions, the QRPA predictions only af-
fects the radiative neutron capture cross section within roughly
50%. The present QRPA prediction provides an alternative
accurate and reliable way to estimate the M1 contribution for
a large set of nuclei with respect to the phenomenological and
approximate Lorentzian-type description of the spin-flip giant
resonance mode [3].
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[14] R. R. Hilton, W. Höhenberger, and P. Ring, Eur. Phys. J. A 1,

257 (1998).
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