Masses of ^{17,18,19,20}Mg

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA (Received 9 July 2016; published 6 October 2016)

A previous simple parametrization of mirror energy differences in pairs of nuclei consisting of a *p*-shell core plus two *sd*-shell nucleons is applied to a series of mirrors that contain *sd*-shell nucleons in the core. Results for ^{19,20}Mg agree with experiment and with a potential model. Predictions are made for 2p separation energies of ^{17,18}Mg.

DOI: 10.1103/PhysRevC.94.044305

I. INTRODUCTION

Recently, I discovered a simple parametrization of mirror energy differences of nuclei whose structures are predominantly a *p*-shell core plus two sd-shell nucleons [1]. For this purpose, I defined the mirror energy difference (MED) as MED = S_{2n} (neutron-excess nucleus) $-S_{2p}$ (proton-excess mirror) and then fitted to the expression MED(A, Z) = ${f[S_{2n}, P(s^2)]}Z_{<}/A^{1/3}$. Here, S_{2n} and S_{2p} are separation energies [2], A is the mass number, $Z_{<}$ is the proton number of the core of the core +2p nucleus, and $P(s^2)$ is the occupation probability of the $2s_{1/2}$ orbital—assumed to be equal in the two members of a mirror pair. The function f = $C + aS_{2n} - bP(s^2)$ produced agreement with experimental values for five pairs of nuclei (¹⁸O, ¹⁷N, ¹⁶C, ¹⁴C, and ¹²Be and their mirrors) with a root-mean-square deviation of 4 keV (better than the experimental uncertainties in some cases). Applying the fit parameters from the other nuclei to ${}^{13}B/{}^{13}O$, I was able to deduce $P(s^2) = 0.21$ for that pair—in reasonable agreement with other estimates [3,4]. As far as I know, this expression is not derivable in any first-principles approach, but its simplicity demands further scrutiny. My aim here is to test this simple parametrization for nuclei for which the cores already have some $2s_{1/2}$ occupancy and then to use it to predict the mass of ¹⁷Mg.

I then estimated the ground-state (g.s.) mass of the unbound nucleus ¹⁵Ne using the known mass of ¹⁵B. Because S_{2n} 's for ¹⁵B and ¹²Be are very similar, the ¹⁵Ne prediction did not involve an extrapolation and is thus likely to be reasonably robust. The s^2 parentage is not well known in ${}^{15}B$, but two estimates [5,6] are that it is large. I gave S_{2p} predictions for ¹⁵Ne for $P(s^2) = 0.66(10)$. If this quantity is ever determined, it is a simple matter to revise the prediction. The result was $S_{2p}(^{15}\text{Ne}) = -2.68(24) \text{ MeV for } P(s^2) = 0.66(10).$ With the mass excess of 23.115(10) MeV [2] for ¹³O, this value of S_{2p} corresponded to a mass excess of $(^{15}Ne) = 40.37(24) MeV$. The dependence of predicted S_{2p} on $P(s^2)$ is plotted in Fig. 1. In a very recent experiment [7], the ¹⁵Ne ground state was found to be unbound by 2.522(66) MeV. Those authors stated that this value corresponded to $P(s^2) = 0.63(5)$. But they must have misread something because Fig. 1 illustrates that agreement occurs for $P(s^2) = 0.73(3)$.

A small caveat is in order here. Approximately the same group of experimenters reported a mass excess for ¹²O of 31.914(24) MeV [8], considerably different from the value of

32.048(18) MeV from the 2003 mass evaluation [9]. The new and old values differ by 134(30) keV—a 4.5 σ difference. Two unpublished results from the ¹²C(π^+,π^-) reaction [10,11] are 32.036(24) and 32.016(22) MeV. I know of nothing wrong with the measurement of Jager *et al.* [8], but I think it needs to be repeated. If they have an undiscovered systematic error that results in lower mass excesses, the value for ¹⁵Ne might need to be revised upward—and hence toward smaller $P(s^2)$.

II. CALCULATIONS AND RESULTS

My purpose here is to attempt to extend the simple parametrization to nuclei that also have *sd*-shell nucleons in the core. I look first at the Mg isotopes with A = 17-20. Long ago, in a potential model assuming mirror symmetry, we calculated the mass excess of ²⁰Mg and missed it by only calc $- \exp = -21(27)$ keV [12]. This simple model uses the same spectroscopic factors for ²⁰Mg \rightarrow ¹⁹Na as for ²⁰O \rightarrow ¹⁹O. In a new calculation using all the ¹⁹O core states for which the spectroscopic factor is larger than 0.02, the prediction for ²⁰Mg(g.s.) was $S_{2p} = 2.341$ MeV [13]. The new mass evaluation [2] lists $S_{2p} = 2.337(27)$. The new calculation had an s^2 occupancy of $P(s^2) = 0.17$.

A spectacular success of our simple potential model was the prediction of the mass of ¹⁹Mg. We predicted $E_{2p} =$ 0.87(7) MeV [14]. A later experiment [15] found E_{2p} = 0.75(5) MeV, just at the 1σ limit of the combined uncertainties. For that calculation, we needed to compute energies of several states in the core nucleus ¹⁸Na because they were not known experimentally. Later, results appeared from an experiment [16] to measure energies in ¹⁸Na, and we used these to recalculate the g.s. energy of ¹⁹Mg(g.s.) [17]. Using the experimental ¹⁸Na energies and a slightly different geometry for the potential well ($r_0 = 1.26, a = 0.60, r_{0c} = 1.40 \text{ fm}$ rather than $r_0 = r_{0c} = 1.25$, a = 0.65 fm), our prediction was 0.76(7) MeV. [These geometrical parameters have long been used for the bound (and unbound) state potentials in the analysis of proton transfer reactions.] We recalculated the energy of ${}^{19}Mg(g.s.)$ for a number of different inputs: potential set 1 vs set 2, S from the shell model vs S from the shell model + weak coupling, and calculated energies in 18 Na vs the new [16] experimental ones. All predictions were in the range of 0.76–0.87 MeV, so we felt our calculation was robust. Of course, we preferred the one that used experimental

FIG. 1. For ¹⁵Ne, the sloping line is the predicted 2p separation energy vs the s^2 occupancy $P(s^2)$. The horizontal lines represent the recent experimental value [7].

core energies and shell-model spectroscopic factors. In that calculation, the s^2 occupancy was $P(s^2) = 0.245$.

Table I lists the ${}^{20}O/{}^{20}Mg$ and ${}^{19}N/{}^{19}Mg$ cases discussed above and the predictions of the parametrization of Ref. [1]. Spectacular agreement can be noted. The aim now is to predict the separation energy of ¹⁸Mg. The 2n separation energy of its mirror ¹⁸C is known [2], but information concerning $P(s^2)$ for that nucleus is sketchy. One method that has been used to estimate s^2 occupancy involves matter radii. Because computed matter radii depend on the identity of the valence orbital(s), if the matter radius is well known, the occupancies can be estimated (Ref. [18], and references therein). Unfortunately, a relatively small uncertainty in R_m gives rise to a somewhat large uncertainty in the occupancies. [On the other hand, if the occupancies are even approximately known, the matter radius can be computed reliably.] For ${}^{18}C$, the only reported matter radius with a small uncertainty is $R_m = 2.82(4)$ fm [19]. For small separation energies, matter radii for configurations s^2 and d^2 differ considerably, but for

TABLE I. Separation energies (MeV) and s^2 parentages for selected Mg nuclei and their mirrors.

Nucl.	S_{2n}^{a}	$P(s^2)^{b}$	Mirror	S_{2p} (expt.) ^a		$S_{2p}(\text{calc})$
					Present	Potential model
²⁰ O	11.564(1)	0.17	²⁰ Mg	2.337(27)	2.270	2.341°
¹⁹ N	8.157(22)	0.245	¹⁹ Mg	-0.75(5)	-0.744	$-0.76(7)^{d}$
¹⁸ C	4.92(3)	0.208	¹⁸ Mg		-3.84	$-3.87(10)^{e}$
		0.375	C.		-3.48	
		0.042			-4.18	
17 B	1.33(17)	0.51	^{17}Mg		-6.51	
		0.59	Ū.		-6.49	
		0.43			-6.53	
aRefe	rence [2].					

^bSee the text.

^cReference [13].

^dReference [17].

^eReference [23].

TABLE II. Comparison of predictions for ¹⁸Mg and ¹⁵Ne.

Nucleus	$S_{2p}({ m MeV})$					
	Reference [27]	Present	Expt.			
¹⁸ Mg	-4.233(34)	$-3.84(35)^{a}, -3.87(10)^{b}$				
¹⁵ Ne	-3.532(23)	-2.64(24)	$-2.522(66)^{\circ}$			

^aPresent paper.

^bReference [23].

^cReference [7].

the ¹⁸C value of $S_{2n} = 4.92 \text{ MeV}$, they are not very different: 3.01 fm for s^2 and 2.77 fm for d^2 [20]. Requiring a fit to the experimental value produces an s^2 occupancy of $P(s^2) =$ 0.21(17)—not very precise, but I have used it in what follows. Two theoretical values are 0.32 from a shell-model calculation [21] and 0.26 from a Hartree-Fock-Bogoliubov approximation [22]. If a better value of $P(s^2)$ becomes available, a new prediction is trivial.

With this range of $P(s^2)$ values, the predicted separation energies are as listed in the table: $S_{2p} = -3.84(36)$ MeV, still a reasonably narrow range. Earlier, we used a potential model, together with spectroscopic factors from a combination of weak coupling and a shell-model calculation, to compute the mass of the ground state of ¹⁸Mg, considered as a mirror of ¹⁸C. The result was $E_{2p} = 3.87(10)$ MeV [23]—not very different from the present result. I encourage an experiment to measure this quantity.

There must be some fundamental reason why this simple parametrization produces results that are nearly identical to results of a potential model, but I do not know what it is. The question clearly deserves further thought.

I turn now to ¹⁷Mg, whose mirror ¹⁷B is bound by 1.33(17) MeV to ¹⁵B +2n. Several values of $P(s^2)$ are available for ¹⁷B [18,24–26], and their weighted average is 0.51(8) [18]. Predictions of S_{2p} for ¹⁷Mg are listed in the table. The uncertainty in $P(s^2)$ causes only a small uncertainty in S_{2p} , but, of course, the uncertainty in S_{2n} produces an uncertainty of about 170 keV. This nucleus may be very difficult to populate, but it would be interesting to try.

A paper concerning improved Kelson-Garvey mass relations for proton-rich nuclei [27] contains calculations for ¹⁸Mg and ¹⁵Ne discussed above. Their results for these two nuclei are compared with mine in Table II.

III. CONCLUSIONS

To summarize, a simple parametrization of mirror energy differences of nuclei whose structures are predominantly a *p*-shell core plus two *sd*-shell nucleons also appears to work well even if the core contains some *sd*-shell nucleons. For ^{19,20}Mg, the simple parametrization agrees, both with experimental values and with results of a potential model. I then used the model to predict 2p separation energies for ^{17,18}Mg. The ¹⁸Mg results agree with the potential-model calculations. I urge an attempt to produce these two nuclei and measure their separation energies. Some explanation for why the simple parametrization produces the same results as a potential-model calculation would be very welcome.

- [1] H. T. Fortune, Phys. Lett. B 718, 1342 (2013).
- [2] M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. Mac-Cormick, X. Xu, and B. Pfeiffer, Chin. Phys. C 36, 1603 (2012).
- [3] H. T. Fortune and R. Sherr, Phys. Rev. C 68, 024301 (2003).
- [4] N. Aoi et al., Phys. Rev. C 66, 014301 (2002).
- [5] E. Sauvan et al., Phys. Rev. C 69, 044603 (2004).
- [6] M. Labiche et al., Phys. Rev. Lett. 86, 600 (2001).
- [7] F. Wamers et al., Phys. Rev. Lett. 112, 132502 (2014).
- [8] M. F. Jager et al., Phys. Rev. C 86, 011304(R) (2012).
- [9] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003).
- [10] R. A. Ivie, Master's thesis, University of Pennsylvania, 1992.
- [11] H. T. Fortune and R. Sherr, J. Phys. G: Nucl. Part. Phys. 40, 055102 (2013).
- [12] R. Sherr, H. T. Fortune, and B. A. Brown, Eur. Phys. J. A 5, 371 (1999).
- [13] H. T. Fortune, R. Sherr, and B. A. Brown, Phys. Rev. C 85, 054304 (2012).

- [14] H. T. Fortune and R. Sherr, Phys. Rev. C 76, 014313 (2007).
- [15] I. Mukha et al., Phys. Rev. Lett. 99, 182501 (2007).
- [16] M. Assie et al., Phys. Lett. B 712, 198 (2012).
- [17] H. T. Fortune and R. Sherr, Phys. Rev. C 85, 051302 (2012).
- [18] H. T. Fortune and R. Sherr, Eur. Phys. J. A 48, 103 (2012).
- [19] A. Ozawa et al., Nucl. Phys. A691, 599 (2001).
- [20] H. T. Fortune and R. Sherr, Eur. Phys. J. A 47, 154 (2011).
- [21] Y. Kondo et al., Phys. Rev. C 79, 014602 (2009).
- [22] K. Hagino, N. Takahashi, and H. Sagawa, Phys. Rev. C 77, 054317 (2008).
- [23] H. T. Fortune and R. Sherr, Phys. Rev. C 87, 044315 (2013).
- [24] Y. Yamaguchi et al., Phys. Rev. C 70, 054320 (2004).
- [25] T. Suzuki et al., Nucl. Phys. A 658, 313 (1999).
- [26] T. Suzuki et al., Phys. Rev. Lett. 89, 012501 (2002).
- [27] J. Tian, N. Wang, C. Li, and J. Li, Phys. Rev. C 87, 014313 (2013).