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Structure and decay pattern of the linear-chain state in 14C
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The linear-chain states of 14C are theoretically investigated by using the antisymmetrized molecular dynamics.
The calculated excitation energies and the α decay widths of the linear-chain states were compared with the
observed data reported by recent experiments. The properties of the positive-parity linear-chain states reasonably
agree with the observation, which convinces us of the linear-chain formation in the positive-parity states. On the
other hand, in the negative-parity states, it is found that the linear-chain configuration does not correspond to a
single eigenstate but is mixed with other configurations in the eigenstates and does not form a single rotational
band. As a further evidence of the linear-chain formation, we focus on the α-decay pattern. It is shown that the
linear-chain states decay to the excited states of daughter nucleus 10Be as well as to the ground state, while other
cluster states dominantly decay into the ground state. Hence, we regard that this characteristic decay pattern is a
strong signature of linear-chain formation.
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I. INTRODUCTION

A variety of the α cluster structure is known to exist in
light stable nuclei. The most famous example is the Hoyle
state (the 0+

2 state of 12C) whose dilute gas-like 3α cluster
structure has been studied in detail [1–8] and is well identified
today. The linear-chain configuration of 3α clusters, in which
α particles are linearly aligned, is another example of famous
and exotic cluster structure. It was first suggested by Morinaga
[9] to explain the structure of the Hoyle state. However, as
mentioned above, it turned out that the Hoyle state does not
have the linear-chain configuration but has a dilute gas-like
nature. In addition to this, the instability of the linear-chain
configuration against the bending motion (deviation from the
linear alignment) was pointed out by the antisymmetrized
molecular dynamics (AMD) [4] and fermionic molecular
dynamics (FMD) calculations [7]. Thus, the formation of a
perfectly linear-aligned configuration in 12C∗ looks negative
despite many years of research.

The interest in the linear-chain configuration is reinforced
by the physics of unstable nuclei because the valence neutrons
may stabilize it by their glue-like role. Such a glue-like role of
valence neutron is well known for Be isotopes in which the 2α
cluster core is assisted by the valence neutrons occupying the
molecular orbits [10–15]. As a natural consequence, we expect
that the linear-chain configuration can be realized in neutron-
rich C isotopes, and this expectation has been motivating many
theoretical and experimental studies [16–28]. Recently, rather
promising candidates of linear-chain configuration in 14C were
independently reported by two groups [29,30]. Both groups
observed the 4He + 10Be resonances above the α-threshold
energy in both of positive and negative parity. The reported
energies of the positive-parity resonances measured from the
α threshold are in reasonable agreement with the excitation
energies of the linear-chain states predicted by Suhara et al.
[24] on the basis of the antisymmetrized molecular dynamics
(AMD) calculation. Thus, rather promising evidence of the
linear-chain formation has been found.

However, there are still several gaps between theory and
experiment which must be resolved to confirm the linear-chain

formation in 14C. First, when measured from the ground-state
energy, theoretically predicted and experimentally observed
excitation energies of the positive-parity resonances disagree.
This may be because the effective interactions used in the
calculation [31] do not reproduce the α-threshold energy.
Second, the experiments report negative-parity resonances,
while the negative-parity linear-chain states were not clearly
identified in Ref. [24]. Finally, the experiment of Ref. [29]
reported the α-decay width of the resonances which is strong
evidence of α clustering and must be verified by the theoretical
calculations. Thus, further theoretical studies are needed to
identify the linear-chain states in 14C.

For this purpose, we investigated the linear-chain states in
14C. For the sake of quantitative comparison of the excitation
energy, we performed AMD calculation employing the Gogny
D1S effective interaction [32], which reproduces threshold
energies in 14C. From the AMD wave function, we estimated
the α decay widths of the linear-chain states as well as those
of other cluster and noncluster states. It is found that the cal-
culated excitation energies of the positive-parity linear-chain
states are in good agreement with the observation, and only the
linear-chain states have large α decay widths comparable with
the observed data. Hence, we consider that the linear-chain
formation in the positive-parity state is rather plausible. On
the other hand, in the negative-parity state, the linear-chain
configuration does not correspond to a single eigenstate but is
mixed with other configurations in the eigenstates. Thus, the
linear-chain configuration does not form a single rotational
band. As further evidence of the linear-chain formation, we
focus on the α-decay pattern. It is shown that the linear-chain
states decay to the excited states of 10Be as well as to the 10Be
ground state, while other cluster states dominantly decay to
the 10Be ground state. This characteristic decay pattern is, if it
is observed, a strong signature of linear-chain formation.

The contents of this paper are as follows: In the next section,
the AMD framework and the method to estimate the α-decay
width are briefly outlined. In Sec. III, the results of the energy
variation and generator coordinate method are presented. In
the Sec. IV, the energies and α width of the linear-chain states
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are compared with the observed data. In the last section, we
summarize this study.

II. THEORETICAL FRAMEWORK

A. Variational calculation and generator coordinate method

The microscopic A-body Hamiltonian used in this study
reads

H =
A∑

i=1

ti +
A∑

i<j

vN
ij +

Z∑
i<j

vC
ij − t(c.m.), (1)

where the Gogny D1S interaction [32] is used as an effective
nucleon-nucleon interaction vN . It is shown that the Gogny
D1S interaction reasonably describes the one-neutron-, α- and
6He-threshold energies within 1 MeV error. The Coulomb
interaction vC is approximated by a sum of seven Gaussians.
The center-of-mass kinetic energy t(c.m.) is exactly removed.

The intrinsic wave function �int of AMD is represented by
a Slater determinant of single-particle wave packets,

�int = A{ϕ1,ϕ2, . . . ,ϕA} = 1√
A!

det[ϕi(rj )], (2)

where ϕi is the single-particle wave packet which is a direct
product of the deformed Gaussian spatial part [33], spin (χi),
and isospin (ξi) parts,

ϕi(r) = φi(r) ⊗ χi ⊗ ξi, (3)

φi(r) = exp

{
−

∑
σ=x,y,z

νσ

(
rσ − Ziσ√

νσ

)2
}

,

χi = aiχ↑ + biχ↓, ξi = proton or neutron. (4)

The centroids of the Gaussian wave packets Zi , the direction
of nucleon spin ai,bi , and the width parameter of the deformed
Gaussian νσ are the variational parameters. The intrinsic
wave function is projected to the eigenstate of the parity to
investigate both of the positive- and negative-parity states,

�π = P π�int = 1 + πPx

2
�int, π = ±, (5)

where P π and Px denote parity projector and operator. Using
this wave function, the variational energy is defined as

Eπ = 〈�π |H |�π 〉
〈�π |�π 〉 . (6)

By the frictional cooling method [34], the variational parame-
ters are determined so that Eπ is minimized. In this study, we
add the constraint potential to the variational energy,

E′π = 〈�π |H |�π 〉
〈�π |�π 〉 + vβ(〈β〉 − β0)2 + vγ (〈γ 〉 − γ0)2, (7)

where 〈β〉 and 〈γ 〉 are the quadrupole deformation parameters
of the intrinsic wave function defined in Refs. [24,35], and vβ

and vβ are chosen large enough that 〈β〉 and 〈γ 〉 are equal to
β and γ after the variation. By minimizing E′π , we obtain the
optimized wave function �π (β,γ ) = P π�int(β,γ ) which has
the minimum energy for each set of β and γ .

After the variational calculation, the eigenstate of the total
angular momentum J is projected out from �π (β,γ ),

�Jπ

MK (β,γ ) = P J
MK�π (β,γ )

= 2J + 1

8π2

∫
dDJ∗

MK ()R()�π (β,γ ). (8)

Here, P J
MK , DJ

MK (), and R() are the angular-momentum
projector, the Wigner D function, and the rotation operator,
respectively. The integrals over Euler angles  are evaluated
numerically.

Next, we perform the generator coordinate method (GCM)
calculation by employing the quadrupole deformation param-
eters β and γ as the generator coordinate. The wave function
of GCM reads

�Jπ

Mn =
∑

i

∑
K

cJπ

Kin�
Jπ

MK (βi,γi), (9)

where the coefficients cJπ

Kin and eigenenergies EJπ

n are obtained
by solving the Hill–Wheeler equation [36],∑

i ′K ′
HJπ

KiK ′i ′c
J
K ′i ′n = EJπ

n

∑
i ′K ′

NJπ

KiK ′i ′c
Jπ

K ′i ′n,

HJπ

KiK ′i ′ = 〈
�Jπ

MK (βi,γi)
∣∣H ∣∣�Jπ

MK ′ (βi ′ ,γi ′ )
〉
, (10)

NJπ

KiK ′i ′ = 〈
�Jπ

MK (βi,γi)
∣∣�Jπ

MK ′(βi ′ ,γi ′ )
〉
.

We also calculate the overlap between �Jπ

Mn and the basis wave
function of the GCM �Jπ

MK (βi,γi),∣∣ 〈�Jπ

MK (β,γ )
∣∣�Jπ

Mn

〉 |2/ 〈
�Jπ

MK (β,γ )
∣∣�Jπ

MK (β,γ )
〉
, (11)

to discuss the dominant configuration in each state described
by �Jπ

Mn.

B. Single-particle orbits

Nucleon single-particle energy and orbit are useful to
investigate the motion of the valence neutrons around the
core nucleus. For this purpose, we construct a single-particle
Hamiltonian and calculate the neutron single-particle orbits in
the intrinsic wave function �int(β,γ ). We first transform the
single-particle wave packet ϕi to the orthonormalized basis,

ϕ̃α = 1√
λα

A∑
i=1

giαϕi. (12)

Here, λα and giα are the eigenvalues and eigenvectors of the
overlap matrix Bij = 〈ϕi |ϕj 〉. Using this basis, the single-
particle Hamiltonian is derived,

hαβ = 〈ϕ̃α|t |ϕ̃β〉 +
A∑

γ=1

〈ϕ̃αϕ̃γ |vN + vC |ϕ̃β ϕ̃γ − ϕ̃γ ϕ̃β〉,

+ 1

2

A∑
γ,δ=1

〈ϕ̃γ ϕ̃δ|ϕ̃∗
αϕ̃β

δvN

δρ
|ϕ̃γ ϕ̃δ − ϕ̃δϕ̃γ 〉. (13)

The eigenvalues εs and eigenvectors fαs of hαβ give
the single-particle energies and the single-particle orbits,
φ̃s = ∑A

α=1 fαsϕ̃α . We also calculate the amount of the
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positive-parity component in the single-particle orbit,

p+ =
∣∣∣∣〈φ̃s |1 + Px

2
|φ̃s〉

∣∣∣∣2

, (14)

and angular momenta in the intrinsic frame,

j (j + 1) = 〈φ̃s |j 2|φ̃s〉, |jz| =
√

〈φ̃s |j 2
z |φ̃s〉, (15)

l(l + 1) = 〈φ̃s |l2|φ̃s〉, |lz| =
√

〈φ̃s |l2
z |φ̃s〉, (16)

which are used to discuss the properties of the single-particle
orbits.

C. α reduced width amplitude and decay width

From the GCM wave function, we estimate the α reduced
width amplitude (RWA) yljπ ′ (r), which is defined as

yljπ ′ (r) =
√

A!

4!(A − 4)!
〈φα[φBe(jπ ′

)Yl0(r̂)]Jπ M

∣∣�Jπ

Mn

〉
, (17)

where φα and φBe(jπ ′
) denote the wave functions for α particle

and daughter nucleus 10Be with spin-parity jπ ′
. The square of

the RWA |ryljπ ′ (r)|2 is equal to the probability to observe the α

particle and 10Be with spin-parity jπ ′
at intercluster distance r

with relative orbital angular momentum l in the 14C described
by the GCM wave function �Jπ

Mn.
Using RWA, the partial α-decay widths for the decay

process 14C(Jπ ) → α + 10Be(jπ ′
) is estimated as

�α
ljπ ′ = 2Pl(a)γ 2

ljπ ′ (a), Pl(a) = ka

F 2
l (ka) + G2

l (ka)
, (18)

where a denote the channel radius, and the penetration factor Pl

is given by the Coulomb regular and irregular wave functions
Fl and Gl . The wave number k is given by the decay Q value
and the reduced mass as k = √

2μEQ. The reduced width γljπ ′

is

γ 2
ljπ ′ (a) = �

2

2μa
[ayljπ ′ (a)]2. (19)

To calculate RWA with reduced computational cost, we
employ the method given in Ref. [37], which suggests an
approximation validated for sufficiently large intercluster
distance a,

|ayljπ ′ (a)|2 �
√

γ

2π

∣∣ 〈�Jπ
BB(a)

∣∣�Jπ

Mn

〉 ∣∣2
,

γ = 4(A − 4)

A
νBB, (20)

which means that RWA is reasonably approximated by the
overlap between the GCM wave function and the Brink–Bloch
wave function �Jπ

BB(a) composed of the 10Be and α particle
with the Gaussian width parameter νBB . In this study, the
channel radius a is chosen as 5.2 fm, which is the same with
that used for the R-matrix analysis of the experiment [29].

In the case of the present study, since 10Be is deformed, it
must be projected to the eigenstate of the angular momentum.
Therefore, we constructed �Jπ

BB as follows: We first calculate
the approximate intrinsic wave function ψBe for 10Be by the

AMD energy variation in which the width parameter νBB is
fixed to 0.16 fm−2. We obtained two different configurations
for 10Be; so-called π2 and σ 2 configurations, which have
valence neutrons in the p shell and sd shell, respectively.
It is known that the former is dominant in the ground band
and the latter is dominant in the excited band. Therefore, we
regard the π2 configuration as the ground band (the 0+

1 , 2+
1 ,

and 4+
1 states) configuration, while the σ 2 configuration as

the excited band (the 0+
2 , 2+

3 , and 4+
2 states) configuration.

Then, these wave functions are projected to the eigenstate
of the angular momentum and combined with the α cluster
wave function to constitute the intrinsic wave function of
14C∗ having 10Be(0+

1 ,2+
1 ,4+

1 ) ⊗ α and 10Be(0+
2 ,2+

3 ,4+
2 ) ⊗ α

configurations,

|�BB(a)〉 =
∣∣∣∣A{

ψα

(
− 10

14
a

)
P

j
m0ψBe

(
4

14
a

)}〉
, (21)

where we assumed that ψBe is parity and axially symmetric,
which is validated by the numerical check. Next, the reference
wave function is constructed by the angular-momentum
projection of the total system:

�Jπ
BB(a) = 1

N

2l + 1

2J + 1

∑
m

CJm
l0jmP Jπ

Mm|�BB(a)〉. (22)

Here CJm
l0jm and N denotes the Clebsch–Gordan coefficient and

the normalization factor, respectively. The summation over m
is needed to project the relative angular momentum between
10Be and α particle to l.

Here we comment on the uncertainty of the reduced widths
calculated by this method. There are two main sources of
the uncertainty. The first is the choice of channel radius. In
general, the calculated partial widths �α

ljπ do not depend on
the choice of the channel radius, if the GCM wave function
has the correct asymptotic behavior. However, in the present
calculation, we adopted the bound-state approximation in the
GCM calculation and hence the wave function is not correct
at large distance. In addition to this, we apply the approximate
formula (20) by neglecting the antisymmetrization effect.
Therefore, the approximation is not applicable for the small
channel radius. We estimate it as a < 4 fm, which corresponds
to the touching of the α and 10Be clusters. As a result, the
channel radius should be chosen at the moderate distance. We
numerically checked the stability of the partial width �α

ljπ and
found that it is almost constant in the range of a = 5.0 ± 1.0
fm, but it becomes smaller at larger distance and unstable at
smaller distance.

Another source of the uncertainty is the 10Be wave function.
As already mentioned, the intrinsic wave function of 10Be is
approximated by a single Slater determinant with spherical
Gaussian wave packets to reduce the computational cost. On
the other hand, it has been shown that the property of 10Be is
reproduced by the “full calculation” [38,39] in which many
Slater determinants are superposed (GCM) and the deformed
Gaussian is used. Therefore, the validity of the approximation
can be checked by comparing both calculations and calculating
the overlap of the wave functions. By the full calculation, the
binding energies of the ground and 0+

2 states are calculated to
be 65.8 and 60.1 MeV, and their radii are 2.55 and 3.12 fm,
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respectively. On the other hand, the present approximation
gives the binding energies of 59.0 and 49.0 MeV and the
radii of 2.47 and 2.91 fm. The overlaps of the wave functions
between the full and present calculations are 0.79 for the
ground state and 0.43 for the 0+

2 state. These results remark the
importance of the use of the deformed Gaussian wave packet
as emphasized in Ref. [33]. At the same time, we can say
that the calculated reduced widths for the 10Be(0+

1 ,2+
1 ,4+

1 ) ⊗ α
configurations should be reasonable and uncertainty is around
20% because the overlap of the ground state is large. On
the other hand, the uncertainty for the 10Be(0+

2 ,2+
3 ,4+

2 ) ⊗ α
configurations is as large as 50%, which means the reduced
width can be misestimated by a factor of two. However, we
also note that this uncertainty does not qualitatively affect our
discussion. As we see later, the positive-parity cluster states
have much larger reduced widths than other states and, hence,
the assignment of the positive-parity cluster bands are rather
unique.

III. RESULTS

A. Energy surface and intrinsic structures

Figure 1(a) shows the energy surface as functions of
quadrupole deformation parameters β and γ for Jπ = 0+
states obtained by the constraint variational calculation and
angular-momentum projection. The circles on the energy
surfaces show the position of the energy minima.

The energy minimum of the 0+ state is located at (β,γ ) =
(0.36,14◦) with the binding energy of 106.1 MeV. This intrinsic
wave function is the most dominant component of the ground
band as discussed in the next section. It is interesting that this
minimum state is deformed, as seen in its intrinsic density
distribution shown in Fig. 2(a), despite the neutron magic
number N = 8. However, the deformation is not large enough
to break the neutron magicity because the last valence neutron
occupies a p wave, which can be deduced from the density
distribution of the valence neutron orbit shown in Fig. 2(a).

In the oblate deformed region, the different structure
that we call the triangular configuration appears. Fig. 2(b)
shows the density distribution of the wave function located
at (β,γ ) = (0.60,25◦). The proton density distribution has
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FIG. 1. The angular-momentum projected energy surface for (a)
the J π = 0+ state and (b) J π = 1− state as functions of quadrupole
deformation parameters β and γ . The circles show the position of the
energy minima.
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FIG. 2. The density distribution of (a)–(d) the positive states and
(e)–(h) negative parity states. The contour lines show the proton
density distributions. The color plots show the single-particle orbits
occupied by the most weakly bound neutron. Open boxes show the
centroids of the Gaussian wave packets describing protons.

a triangular shape showing the possible formation of a 3α
cluster core with a triangle configuration. Indeed, as shown
in the next section, this intrinsic wave function becomes the
most dominant component of the triangular band, which has
large α reduced widths. Owing to the parity asymmetric shape,
the valence proton orbit is an admixture of the positive- and
negative-parity component, as confirmed from the properties
of the single-particle orbit listed in Table I. The table also
shows that two valence neutrons occupy a positive-parity
orbit (sd shell), indicating the 2�ω excitation. Note that a
similar configuration, i.e., a triangular 3α cluster core with
2�ω excited valence neutrons, was also found in 16C [27].

TABLE I. The properties of the most weakly bound proton
and neutron orbits in the configurations shown in Figs. 2(a)–2(h).
The column Occ. shows the number of the nucleon occupying the
orbit. When two valence nucleons occupy the almost degenerate
orbits, the single-particle properties are averaged and Occ. = 2. Other
columns show the single-particle energy ε in MeV, the amount of the
positive-parity component p+, and the angular momenta defined by
Eqs. (14)–(16).

Occ. ε p+ j |jz| l |lz|
(a) Proton 2 − 17.4 0.00 1.5 1.5 1.1 1.0

Neutron 2 − 6.6 0.22 1.1 0.6 1.2 0.9
(b) Proton 2 − 14.1 0.08 1.6 1.5 1.2 1.0

Neutron 2 − 5.3 0.98 2.2 0.5 1.8 0.3
(c) Proton 2 − 12.5 0.97 2.2 0.5 2.0 0.2

Neutron 2 − 7.0 0.09 1.8 1.5 1.4 1.0
(d) Proton 2 − 15.6 0.99 2.5 0.5 2.3 0.1

Neutron 2 − 4.4 0.01 2.8 0.5 2.6 0.1
(e) Proton 2 − 16.0 0.00 1.5 1.4 1.1 1.0

Neutron 1 − 3.8 0.99 2.2 0.5 1.8 0.4
(f) Proton 1 − 12.6 0.53 1.9 0.9 1.6 0.8

Neutron 2 − 6.6 0.98 2.1 0.6 1.8 0.3
(g) Proton 1 − 12.4 0.72 2.3 0.9 2.1 0.6

Neutron 2 − 7.2 0.11 1.9 1.4 1.6 1.0
(h) Proton 1 − 13.1 0.52 1.9 1.0 1.6 0.8

Neutron 2 − 8.2 0.92 2.2 0.7 1.9 0.4
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10Be(π-bond)

10Be(σ-bond)

{ {

{
FIG. 3. The schematic figure showing the π and σ orbits around

the linear chain. The combination of the p orbits perpendicular to the
symmetry axis generates π orbits, while the combination of parallel
orbits generates σ orbits.

In the strongly deformed region, the linear-chain config-
urations appear. There is an energy plateau around the local
energy minimum at (β,γ ) = (1.00,0) which approximately
corresponds to the deformation ratio equal to 3 : 1. This
intrinsic wave function is the most dominant component of
the π -bond linear-chain band. As clearly seen in its density
distribution shown in Fig. 2(c), this local energy minimum has
pronounced 3α cluster structure with linear alignment. The
properties of the proton single-particle orbit show that the last
two protons are promoted into the sd shell, which is because
of the Pauli principle in the linear-chain configuration. The
density distribution and properties of the valence neutron orbits
show that they correspond to the π orbit of the molecular-orbit
picture, which is schematically illustrated in Fig. 3. Namely,
the valence neutron orbit is a linear combination of the p
orbits perpendicular to the symmetry axis and has the angular
momenta |jz| = 1.5 and |lz| = 1.0. We call this configuration
the π -bond linear chain in the following. This property of the
valence neutron orbit is common to that found in 16C [27].
However, note that the π orbit of 14C does not have a parity-
symmetric distribution but is localized between the center and
right α clusters. In other words, this configuration is parity
asymmetric and has a (4He + 10Be)-like structure, which is
consistent with the discussion made in Refs. [24,40]. Because
this linear-chain configuration and the triangular configuration
explained above have asymmetric internal structures, we
expect that the corresponding negative-parity partners may
exist and constitute the inversion doublets.

With further increase of the deformation, the other linear-
chain configuration which we call a σ -bond linear chain
appears around (β,γ ) = (1.27,0), which was not mentioned
in Ref. [24]. This intrinsic wave function is the most dominant
component of the σ -bond linear-chain band discussed in the
next section. From the density distribution [Fig. 2(d)], it is
clear that this configuration has another valence neutron orbit
that corresponds to the σ orbit, which is a linear combination
of a p orbit parallel to the symmetry axis and has the angular
momenta |jz| ≈ 0.50 and |lz| ≈ 0. It is interesting to note that
this configuration has a parity-symmetric shape and, hence,
does not have its negative-parity partner.

The energy minimum of the energy surface for the 1− states
[Fig. 1(b)] is located at (β,γ ) = (0.52,19◦) with the binding
energy of −98.2 MeV, and its density distribution is described
in Fig. 2(e). From Table I, we see that this minimum has the
same proton configuration with the positive-parity minimum,
but a neutron is excited into the sd shell from the p shell (1p1h
configuration).

In the deformed region, many different kinds of config-
urations appear. As reported in Ref. [24], we found that
these configurations are strongly mixed to each other and
that the unique band assignment of negative-parity states is
impossible. Therefore, we do not discuss each configuration
on the energy surface but explain the negative-parity partner of
the cluster configurations found in the positive parity. Because
the triangular configuration and the π -bond linear-chain of the
positive parity are parity asymmetric, their counterparts appear
in the negative parity. Figures 2(f) and 2(g) show the triangular
configuration and the π -bond linear-chain configuration in
the negative-parity state located at (β,γ ) = (0.72,14◦) and
(1.05,3◦), respectively. Although the cluster cores are more
distorted than the positive-parity states, their neutron single-
particle configurations are similar to their positive-parity
counterparts. However, as already mentioned and explained
in the next section, these cluster configurations do not form a
single rotational band and are mixed with other configurations
to yield several excited states. For example, the negative-parity
π -bond linear-chain strongly mixes with the largely deformed
noncluster states such as the configuration shown in Fig. 2(h).

B. Excitation spectrum

Figure 4 shows the spectrum of the positive-parity states
obtained by the GCM calculation. The properties of the several
selected states are listed in Table II. We classified the excited
states which have larger α reduced widths than 0.08 MeV1/2 as
cluster states. The detail of the α reduced widths is given in the
Sec. IV B. In the case of the positive-parity states, the cluster
states are assigned in the rotational bands without uncertainty,
because the band member states are connected by the strong
E2 transitions as listed in Table III.

The ground state and the first-excited state (2+
1 ) are

dominantly composed of the configurations around the energy
minimum of the energy surface. The ground state has the
largest overlap with the configuration shown in Fig. 2(a),
which amounts to 0.98, and the calculated binding energy
is −106.3 MeV, which is reasonably close to the observed
value of −105.3 MeV. The excitation energy of the 2+

1 state
is also reasonably described. However, the calculated B(E2)
strength overestimates the observed value, which may be due
to the overestimation of the deformation. This overestimation
of B(E2) is common to 16C [27].

Owing to its triaxial deformed shape, the triangular con-
figuration generates the rotational bands built on the 0+

2 and
2+

3 states that are shown by triangles in Fig. 4. We call
them Kπ = 0+ and 2+ bands, respectively, in the following,
although the mixing of the K quantum number in their GCM
wave functions is not negligible. Compared to the linear-chain
states, these bands have less-pronounced clustering and α
clusters are considerably distorted; therefore, the band head
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FIG. 4. The positive-parity energy levels up to J π = 10+. Open boxes show the observed states with the definite spin-parity assignments
taken from Ref. [41], and other symbols show the calculated result. The filled circles, triangles and filled boxes show the ground, triangular,
and linear-chain bands, while lines show the noncluster states which have the reduced widths less than 0.08 MeV1/2.

energies are well below the cluster thresholds. The member
states have large overlap with the configuration shown in
Fig. 2(b), which amounts to, for example, 0.91 in the case
of the 0+

2 state.
The linear-chain configurations generate two rotational

bands in Fig. 4. The first one, which we call the π -bond
linear-chain band, is built on the 0+

4 state at 14.6 MeV
close to the α-threshold energy and is composed of the
π -bond linear-chain configurations. The band head state (the
0+

4 state) has large overlap with the configuration shown in
Fig. 2(c) which amounts to 0.87. The other band, which we
call σ -bond linear-chain band, is built on the 0+

7 state at
22.2 MeV (about 9.18 MeV above the α threshold) and is

TABLE II. Excitation energies (MeV) and proton and neutron
root-mean-square radii (fm) of several selected states. Numbers in
the parentheses are the observed data [41,42].

Band J π Ex rp rn

Ground 0+
1 0.00 2.53 2.58

2+
1 8.41 2.58 2.69

(7.01) (2.34)

Triangular 0+
2 7.49 2.67 2.92

Kπ = 0+ 2+
2 9.26 2.64 2.83

4+
1 12.00 2.65 2.89

Triangular 2+
3 10.99 2.68 2.92

Kπ = 2+ 3+
1 12.03 2.68 2.92

4+
2 13.83 2.68 2.92

π -bond 0+
4 14.64 3.27 3.20

Linear chain 2+
5 15.73 3.37 3.28

4+
5 17.98 3.33 3.24

6+
2 21.80 3.39 3.30

σ -bond 0+
7 22.16 3.91 4.12

Linear chain 2+
10 22.93 4.02 4.21

4+
11 24.30 3.97 4.15

composed of the σ -bond linear-chain configurations shown in
Fig. 2(d). This intrinsic wave function has the largest overlap
with the band-head state,which amounts to 0.99. The π -bond
linear-chain band is the candidate of the observed resonances
and the comparison with the observation is discussed in the
next section.

In the case of the negative-parity states shown in Fig. 5,
it is found that the α cluster configurations are mixed with
other configurations and yield many excited states having

TABLE III. The calculated in-band B(E2) strengths for the low-
spin positive-parity states in units of e2fm4. For the negative-parity
states, the transitions between the low-spin cluster states (diamonds
in Fig. 5) are shown and the transitions less than 10e2fm4 are not
shown. The number in parentheses is the observed data [43].

Ji → Jf B(E2; Ji → Jf )

Ground → ground 2+
1 → 0+

1 8.1(3.74)

Triangular Kπ = 0+ 2+
2 → 0+

2 7.6
→ triangular Kπ = 0+ 4+

1 → 2+
2 7.9

6+
1 → 4+

2 19.8

Triangular Kπ = 2+ 3+
1 → 2+

3 17.6
→ triangular Kπ = 2+ 4+

2 → 3+
1 8.5

4+
2 → 2+

3 5.4

π -bond linear chain 2+
5 → 0+

4 165.5
→ π -bond linear chain 4+

5 → 2+
5 257.4

6+
2 → 4+

5 276.5

σ -bond linear chain 2+
10 → 0+

7 441.9
→ σ -bond linear chain 4+

11 → 2+
10 655.9

Negative parity states 3−
4 → 1−

3 21.9
3−

5 → 1−
3 32.4

3−
6 → 1−

5 60.1
3−

10 → 1−
5 31.5

5−
2 → 3−

4 63.0
5−

4 → 3−
5 54.5

5−
7 → 3−

6 53.9
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FIG. 5. The negative-parity energy levels up to J π = 10−. Open boxes show the observed states with the definite spin-parity assignments
taken from Ref. [41], and other symbols show the calculated result. The diamonds show the cluster states having non-negligible α reduced
widths, while lines show the noncluster states which have the reduced widths less than 0.08 MeV1/2.

non-negligible α reduced widths. As a result, the E2 transition
strengths are also spread to several states, and it makes
the band assignment ambiguous. For example, as listed in
Table III, there are two 3− states that strongly decay to the 1−

3
state. Therefore, applying the same standard with the positive
parity, we classified the excited states which have larger α
reduced widths than 0.10 MeV1/2 as cluster states (diamond
symbols). Those cluster states are shown by diamond symbols
which are mainly composed of the configurations shown in
Figs. 2(f)–2(h) and other noncluster configurations. For exam-
ple, the 1−

3 state has the largest overlap with the configuration
shown in Fig. 2(h), which amounts to 0.93. But, at the same
time, this state also has a large overlap with the triangular
configuration shown in Fig. 2(f) and the π -bond linear-chain
shown in Fig. 2(g), which amounts to 0.85 and 0.70, respec-
tively. This means that these excited states are the mixture
of cluster states and noncluster states. The fragmentation of
the cluster configurations can be more clearly seen in their α
reduced widths, which are discussed in the next section.

IV. DISCUSSION

A. Excitation energies of linear-chain bands

In this section, we focus on the excitation energies of the
linear-chain bands and compare them with the experiments
[21,29,30]. The results of the present calculation and the
experimental candidates are summarized in Fig. 6. By the
measurement of the 9Be(7Li ,d)14C reaction, von Oertzen et al.
[21] reported a candidate of the linear-chain band whose
band-head energy is below the α-threshold energy. Freer
et al. [29] and Fritsch et al. [30] independently measured
4He + 10Be resonant scattering by using a radioactive 10Be
beam and reported the candidates above the threshold energy.
The resonance energies of the 4+ state reported by Freer et al.
and Fritsch et al. are close to each other, but those of the 2+ state
differ. However, it must be kept in mind that the assignment of
the 2+ state by Freer et al. is tentative, as mentioned in their
report.

Then, we see that the calculated energy of the π -bond linear
chain is close to the resonances observed in the 4He + 10Be res-
onant scattering except for the tentatively assigned 2+ state. In
addition, as discussed in the next section, the α reduced widths
of the π -bond linear chain and those observed resonances are
close to each other. Hence, we conclude that the resonances
observed in the 4He + 10Be resonant scattering should be
the π -bond linear chain. The excited states reported by von
Oertzen et al. are approximately 5 MeV lower than the π -bond
linear chain, and it energetically corresponds to the triangular
band. The measurement of the α widths of those candidate
will make this assignment sure. The σ -bond linear chain is
energetically located higher than any observed resonances
and does not have the experimental counterpart. As we see
later, the σ -bond linear chain is dominantly composed of the
4He + 10Be(0+

2 ) and 4He + 10Be(2+
3 ) component. Therefore,

we consider that it is not easy to populate this band by ordinary
transfer reaction or resonant scattering.

-95

-90

-85

-80

 0  2  4  6

exp. [Freer et al.]
exp. [Fritsch et al.]
exp. [von Oertzen et al.]

4He+10Be

6He+2α

angular momentum

en
er

gy
 [M

eV
]

π-bond linear chain
σ-bond linear chain

FIG. 6. The calculated and observed linear-chain candidates in
positive parity. Open boxes show the observed data reported by
Refs. [21,29,30]. Filled boxes show the energies of the π -bond and
σ -bond linear-chain states.
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candidates in negative parity. Open boxes show the observed data
reported by Refs. [21,29,30]. Filled diamonds are the excited states
with cluster configuration whose α reduced widths are larger than
0.08 MeV1/2. Red boxes shows the π -bond linear-chain projected to
negative parity.

Figure 7 summarizes the negative-parity results. In contrast
to the positive parity, there are so many excited states with
non-negligible reduced widths in the theoretical result. As a
result, the correspondence between the theory and experiment
is not unique. We also performed an additional test calculation.
We pickup the π -bond linear-chain configuration with positive
parity shown in Fig. 2(c) and artificially project it to the
negative parity to estimate the energy of the ideal π -bond linear
chain with negative parity. The results is shown by the red filled
boxes in Fig. 7. We see that the energy of the ideal linear chain
is too high to be assigned to the observed resonances. Thus,
the present calculation does not support the formation of the
linear chain in negative parity.

B. Reduced widths

Figure 8 shows the α reduced widths of several selected
low-spin states with positive parity. The decay channels are
indicated as [10Be(jπ ) ⊗ l] where jπ and l denote the angular
momenta of the 10Be and the relative motion between 10Be
and α particle, respectively. Here, except for Fig. 8(e), 10Be
is assumed to have two neutrons in a π orbit, i.e., the ground
band [44].

There are two prominent features to be noted in these
results: The first is the magnitude of the reduced widths.
The π -bond linear-chain band (the 0+

4 , 2+
5 , 4+

5 , and 6+
2 states)

have large reduced widths compared to the triangular bands
and the ground state. It is also noted that the α reduced
widths of other excited states are also smaller than the π -bond
linear-chain band, and even smaller than or comparable to the
triangular bands. Hence, in the calculated energy region, the
π -bond linear chain band has the largest reduced width. In
Figs. 8(b)–8(d), the observed reduced widths of the linear-
chain candidates [29] are also shown for 2+, 4+, and 6+ states.

Since the decay to the 10Be ground state was assumed in the
R-matrix analysis made in Ref. [29], those values may be
compared with the calculated results for the [10Be(0+

1 ) ⊗ l]
channel, and we see that only the π -bond linear-chain band
can explain the magnitude of the observed reduced widths.
Thus, both of the observed excitation energies and reduced
widths are reasonably explained by the π -bond linear-chain
band, and we consider that the linear-chain formation in the
positive-parity looks plausible.

It is also interesting to note that the other linear-chain band,
i.e., the σ -bond linear-chain band, has suppressed reduced
widths despite its prominent α clustering. The reason is
simple. Because the σ -bond linear-chain band does not have
valence neutron in a π orbit, it is orthogonal to the decay
channels to the 10Be ground state that has a π -orbit neutron.
This is confirmed in Fig. 8(e) where the reduced widths for
the decays to the 10Be with σ bond [the excited rotational
band, 10Be(0+

2 ,2+
3 ,4+

2 )] are shown. Since other bands do not
have valence neutrons in a σ orbit, their reduced widths are
suppressed, and only the σ -bond linear-chain band has large
widths. Very interestingly, an experiment [45] reported the
possible existence of the resonances around Ex = 22 and 24
MeV, which primary decays to 10Be(0+

2 ). Since the reported
energies and the decay pattern are in good accordance with the
σ -bond linear-chain, further investigation is very fascinating
and in need.

Another point to be noted is the decay pattern of the π -bond
linear-chain band. The reduced widths in the [10Be(2+

1 ) ⊗ l]
channels are as large as or even larger than those in the
[10Be(0+

1 ) ⊗ l] channel. This dominance of the 10Be(2+
1 )

component in the π -bond linear-chain band is due to its
unique structure. When three α particles are linearly aligned,
because of the strong angular correlation between α particles,
the 10Be(2+

1 ) and 10Be(4+
1 ) components become large. This

property is in contrast with the Hoyle state where α particles
are mutually orbiting with l = 0 and. hence, the 8Be(0+

1 ) com-
ponent dominates [8]. Similar properties of the linear-chain
configuration were also discussed for 12C [46]. Therefore, if the
large contamination of the 10Be(2+

1 ) component is confirmed,
it will be strong evidence for the linear-chain formation.

The 10Be(2+
1 ) component in the triangular bands also shows

an interesting feature. There are two triangular bands with
Kπ = 0+ and Kπ = 2+. The 0+

2 , 2+
2 , and 4+

1 states are the
member of the Kπ = 0+ band, while the 2+

3 , 4+
2 and 6+

1
are member of the Kπ = 2+ band. Here, we clearly see that
the 10Be(0+

1 ) component is dominant in the Kπ = 0+ band,
while the 10Be(2+

1 ) component is dominant in the Kπ = 2+

band. This feature is explained by Fig. 9. In the triangular
bands, 4He and 10Be are placed in a triangular shape and the
intrinsic z axis is chosen to be perpendicular to the deformation
axis of 10Be. Since the K quantum number is the angular
momentum directed to the intrinsic z axis, K must be equal to
the angular momentum of 10Be. This makes the difference in
the amount of the 10Be(2+

1 ) component in the Kπ = 0+ and
2+ bands.

For negative parity, we show the states that have reduced
widths larger than 0.08 MeV1/2 in Figs. 8(f)–8(h). We can
see that there are many states which have non-negligible α
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FIG. 8. The calculated α-decay reduced widths compared with the observed widths reported in Ref. [29]. Panels (a)–(d) show the decay
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10Be(π-bond)

K

z

FIG. 9. The schematic figure explains the relationship between
the K quantum number and the angular momentum of 10Be.

reduced widths and are not able to identify the linear-chain
band. As already mentioned, the linear-chain configurations
are mixed with the noncluster configurations and yield many
excited states, as found in Ref. [24]. We also see that none of
the calculated state can explain the observed reduced widths
that are twice as large as the present results. This requires
further theoretical study of the negative-parity states, although
the current result looks negative to the linear-chain formation
in the negative-parity.

V. SUMMARY

To investigate the existence of the linear-chain state, we
have studied the excited states of 14C based on the AMD
calculations.

In the positive-parity states, we found that three different
configurations appear depending on the magnitude of the
deformation and the valence neutron configurations. At the
oblate deformed region, the triangular configuration of 3α
cluster was obtained, while at strong deformed prolate region,
two different linear-chain configurations with valence neutrons
in the π orbit and σ orbit were obtained.

These cluster configurations generate clear rotational
bands. The π -bond linear chain generates a rotational band

around the α-threshold energy, while triangular and σ -bond
linear chain generates rotational bands well below and well
above the threshold. The energy of the π -bond linear chain is
in reasonable agreement with the resonances observed by the
4He + 10Be, while the triangular band is close to the excited
states observed by the 9Be(7Li ,d)14C reaction. The analysis
of the α reduced width confirms the assignment of the π -bond
linear chain to the observed resonances, because the calculated
and measured widths showed reasonable agreement. Thus, the
positive-parity linear-chain formation in 14C looks plausible.
Furthermore, the calculation predicts that the π -bond linear-
chain will also decay to the 10Be(2+

1 ) as well as to the 10Be(0+
1 ).

This characteristic decay pattern will be, if measured, more
evidence of the linear-chain formation.

In the negative-parity states, the negative-parity partners
of the cluster states were also obtained by the energy
variation. However, because of the mixing with the noncluster
configurations, these cluster configurations do not correspond
to a single eigenstate in excited states. As a result, many
excited states that have sizable α reduced width are obtained,
and it makes the correspondence between the theory and
experiment ambiguous. Thus, the present result is negative for
the linear-chain formation in negative parity, although further
studies are in need to identify the structure of the observed
negative-parity resonances.
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