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Role of scalar dibaryon and f0(500) in the isovector channel of low-energy neutron-proton scattering
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We calculate the total and the differential cross section for np scattering at low energies in the isospin I = 1
channel within the so-called extended linear sigma model. This model contains conventional (pseudo)scalar and
(axial-)vector mesons, as well as the nucleon and its chiral partner within the mirror assignment. In order to
obtain good agreement with experimental data analysis results we need to consider two additional resonances:
the lightest scalar state f0(500) and a dibaryon state with quantum numbers I = 1, J P = 0+ (also known as
1S0 resonance). The resonance f0(500) is coupled to nucleons in a chirally invariant way through the mirror
assignment and is crucial for a qualitatively correct description of the shape of the differential cross section. On
the other hand, the dibaryon is exchanged in the s channel and is responsible of the large cross section close
to threshold. We compare our results to data analysis results performed by the SAID program of the CNS Data
Analysis Center (in the following “SAID results”).
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I. INTRODUCTION

Nucleon-nucleon scattering at low energies has been
investigated using different effective approaches (see, e.g.,
Refs. [1–13]) which are constructed according to the principles
of chiral perturbation theory (ChPT) [14] (see also Ref. [15]
and references therein), the low-energy effective theory of
the theory of strong interactions, quantum chromodynamics
(QCD). In ChPT, the chiral symmetry of QCD is nonlinearly
realized.

As initiated long ago in Ref. [16] (see also Ref. [17]),
another possibility to describe low-energy hadronic physics
is based on the linear realization of chiral symmetry via
so-called linear sSigma models; see, e.g., Ref. [18]. A modern
variant is the extended linear sigma model (eLSM), which
contains (pseudo)scalar and (axial-)vector mesons and which
was successfully applied in the context of meson-meson inter-
actions [19–22] and also meson-nucleon interactions [23–25].
In particular, baryons and their chiral partners are treated in
the so-called mirror assignment, in which a chirally invariant
mass term is present [26–28]. This is important, since the
smallness of the πN sigma term implies that chiral symmetry
breaking alone cannot be responsible for the nucleon mass and
other sources (such as a gluon condensate) must exist which
contribute to generating the mass of the nucleon.

In this work, we use the eLSM in order to study nucleon-
nucleon scattering. In particular, we investigate neutron-proton
scattering in the I = 1 channel up to a nucleon momentum
of about 0.4 GeV in the center-of-momentum (c.m.) frame.
In order to describe experimental data analysis results, we
need, apart from the usual quark-antiquark fields (see, e.g.,
Ref. [29]), to also incorporate the light f0(500) meson (for
studies of this resonance see, e.g., Refs. [30,31] as well as
the recent review [32]). As first shown in Ref. [23] and then
further investigated in Refs. [33,34], the resonance f0(500)
can be coupled to the eLSM in a chirally invariant way; the
condensation of the field associated with this resonance is then
responsible for the emergence of the chirally invariant mass

term mentioned above. As shown in Ref. [33] by studying
nuclear matter saturation and in Ref. [35] by studying the
binding energy of nuclei, this resonance generates an attraction
between nucleons. In the present work we will confirm that its
coupling to nucleons is necessary for a reasonable description
of neutron-proton scattering data.

However, the exchange of mesons alone (even after the
inclusion of f0(500)) is not capable of describing the enhanced
interaction close to the neutron-proton threshold. As discussed
previously in Ref. [2], an additional resonance with baryon
number 2, isospin 1, as well as JP = 0+ (equivalent to
1S0 in the old spectroscopic notation) can be introduced to
effectively describe neutron-proton scattering. Namely, this
dibaryon resonance (sometimes called “dimeron” [10]) is
exchanged in the s channel and enhances considerably the
cross section at threshold (up to a nucleon c.m. momentum
p of about 0.2 GeV). We will also determine the parameters
of this resonance, such as the nominal mass mR and width
and, more importantly, we will investigate the existence of
a pole in the complex

√
s plane and estimate its position.

It turns out that the on-shell tree-level decay width is larger
than the difference DR ≡ mR − mp − mn of its mass from the
threshold. As a consequence, this state is not a conventional
Breit-Wigner resonance due to strong threshold effects.

Indeed, in some of the previous works [8,9,11] the dibaryon
field was regarded as an auxiliary field that can be integrated
out in order to obtain an effective Lagrangian which contains
only nucleonic degrees of freedom. For the purpose of
nucleon-nucleon scattering phenomenology, this is certainly
a reasonable and well-defined approach. However, we believe
that it is interesting to treat this state as a dibaryon resonance.
Moreover, as a consequence, we also expect an analogous
resonance in the neutron-neutron channel and possibly also in
the proton-proton channel.

This paper is organized as follows: in Sec. II we present
the model with special attention to the resonance f0(500)
and the dibaryon resonance. In Sec. III we discuss our
results for the I = 1 neutron-proton total and differential cross
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sections, step by step including various contributions. The
cross sections are compared to experimental data analysis
results from the SAID program of the CNS Data Analysis
Center1 [36]. Finally, in Sec. IV we give our conclusions and an
outlook.

II. THE MODEL

The Lagrangian of the model used in our calculations has
three parts:

(i) The mesonic part of the eLSM Lagrangian. This has
been developed and investigated for the two-flavor
case (Nf = 2) in Refs. [19,20], for the three-flavor
case (Nf = 3) in Refs. [21,22], and recently for the
four-flavor case (Nf = 4) in Ref. [37]. For the explicit
form of the Lagrangian, see the aforementioned
references.

(ii) The nucleonic part of the eLSM Lagrangian. For
Nf = 2, it includes the interaction of the nucleon
and its chiral partner N∗ (both states referred to as
“nucleons” in the following) with q̄q mesons and
a scalar isoscalar meson f0(500) [23,24,33] in a
chirally invariant framework (recently, the baryonic
Lagrangian has been extended to Nf = 3 in Ref. [25]).
In Sec. II A we present the Lagrangian for Nf = 2
together with its parameters, while in Sec. II B we
consider only those terms which enter the calculation
of nucleon-nucleon scattering. Moreover, we also
show how to include a form factor which suppresses
the interaction strength at high momenta.

(iii) The Lagrangian describing the interactions of two
nucleons with the 1S0 dibaryon. This is constructed
in Sec. II C.

A. The eLSM Lagrangian for nucleons

In the mirror assignment and in the two-flavor case,
the eLSM Lagrangian in the nucleon sector has the form
[23]

LeLSM = �̄1LiγμD
μ
1L�1L + �̄1RiγμD

μ
1R�1R

+ �̄2LiγμD
μ
2R�2L + �̄2RiγμD

μ
2L�2R

− ĝ1(�̄1L��1R + �̄1R�†�1L)

− ĝ2(�̄2L�†�2R + �̄2R��2L)

− aχ (�̄1L�2R − �̄1R�2L − �̄2L�1R + �̄2R�1L),

(1)

where

(i) The first line of Eq. (1) describes the interaction
of the nucleons with (axial-)vector mesons via the

1Although SAID provides consistent total and differential np

scattering cross sections summed over both isospin channels, the
individual I = 0 and I = 1 differential np scattering cross sections
seem to be wrong by a factor of 2. In our analysis, we have taken this
factor into account, i.e., we divided SAID data by a factor of 2.

derivatives D1(2)L(R), which are defined as

D
μ
1R = ∂μ − ic1R

μ, D
μ
1L = ∂μ − ic1L

μ, (2)

D
μ
2R = ∂μ − ic2R

μ, D
μ
2L = ∂μ − ic2L

μ. (3)

The left-handed and right-handed fields Lμ and Rμ

contain the vector mesons ω
μ
N and �ρμ and the axial-

vector mesons f
μ
1,N and �aμ

1 :

Lμ = (
ω

μ
N + f

μ
1,N

)
t0 + ( �ρμ + �aμ

1

) · �t, (4)

Rμ = (
ω

μ
N − f

μ
1,N

)
t0 + ( �ρμ − �aμ

1

) · �t, (5)

where t0 and �t represent the isospin matrices [t0 =
12/2 is half the (2 × 2) unit matrix and �t = �σ/2,
σi being the ith Pauli matrix]. The correspondence
of the fields to quark-antiquark mesons listed in the
PDG [38] is reported in Table I. Vector mesons
are an important ingredient for a good description
of low-energy nucleon vacuum phenomenology; see,
e.g., Refs. [23,39].

(ii) The second line of Eq. (1) describes the interaction
of the nucleons with the (pseudo)scalar mesons,
parametrized in terms of the matrix

� = (σN + iηN )t0 + (�a0 + i �π ) · �t ; (6)

see again Table I for the field-resonance correspon-
dence. [Note that the field ηN has quark content
(uū + dd̄)/

√
2 and can be expressed as a combination

of the physical fields η and η′ as ηN = cos ϕP η −
sin ϕP η′ where the mixing angle is ϕP ≈ −44◦ [21];
in the other sectors we neglect the small strange-
nonstrange mixing.] The interaction terms in the
second line provide a contribution to the nucleon
masses via the condensation of σ (σ → σ + φ, where
φ is the chiral condensate). In the original linear sigma
model, this was the only contribution to the nucleon
mass in the chiral limit. Note that the resonances
a0(980), f0(980), and K∗

0 (800) are not included in
the model since they turn out to be predominantly
four-quark objects; see, e.g., Refs. [30,40–42] and
references therein. Namely, these resonances form,
together with the resonance f0(500), a nonet of
nonconventional mesons. As we discuss below, in the
Nf = 2 framework adopted in this work, only f0(500)
will be considered [since it has no (open or hidden)
strangeness content in its wave function].

(iii) The third and last line of Eq. (1) describes the
interaction of the nucleon fields �1 and �2 with the
scalar nonconventional meson χ . The latter gives a
contribution to the nucleon masses due to the con-
densation of χ (χ → χ + χ0). The mass parameter

m0 = aχ0 (7)

was discussed in the pioneering work of Ref. [26]
and further investigated in Refs. [23–25,27,28]. In
Ref. [33] it was suggested that the mass term m0 arises
from the condensation of the scalar isoscalar field χ .
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TABLE I. Correspondence of the fields to mesons listed in Ref. [38].

Field PDG Quark content I J PC Mass (GeV)

π+,π−,π 0 π ud̄,dū, uū−dd̄√
2

1 0−+ 0.13957

η η(547) uū+dd̄√
2

cos ϕP − ss̄ sin ϕP 0 0−+ 0.54786

η′ η′(958) uū+dd̄√
2

sin ϕP + ss̄ cos ϕP 0 0−+ 0.95778

a+
0 ,a−

0 ,a0
0 a0(1450) ud̄,dū, uū−dd̄√

2
1 0++ 1.474

σN f0(1370) uū+dd̄√
2

0 0++ 1.350

ρ+,ρ−,ρ0 ρ(770) ud̄,dū, uū−dd̄√
2

1 1−− 0.77526

ωN ω(782) uū+dd̄√
2

0 1−− 0.78265

a+
1 ,a−

1 ,a0
1 a1(1230) ud̄,dū, uū−dd̄√

2
1 1++ 1.230

f1,N f1(1285) uū+dd̄√
2

0 1++ 1.2819

χ f0(500) ππ or [u,d][ū,d̄] 0 0++ 0.475

The latter corresponds to the resonance f0(500) in the
context of nuclear physics [33,34].

Finally, the nucleon fields �1 and �2 are related to the
physical states of the nucleon N and its chiral partner N∗ as

�1 = 1√
2 cosh δ

(Neδ/2 + γ5N
∗e−δ/2), (8)

�2 = 1√
2 cosh δ

(γ5Ne−δ/2 − N∗eδ/2), (9)

where

cosh δ = mN + mN∗

2m0
. (10)

The field N corresponds to the nucleon N (939) while N∗
to its chiral partner, which could be N (1535) or N (1650).
For the purposes of the present work, the assignment of N∗
is not crucial. For the sake of definiteness, we will use the
results of Ref. [24], in which N (1650) is regarded as the
chiral partner. On the other hand, in an enlarged mixing
scenario [25], N (1535) is favored as the chiral partner of the
nucleon. However, using this alternative scenario does not lead
to noticeable quantitative changes of our results.

The masses of the nucleon N and its chiral partner N∗ are
given by

mN,N∗ =
√

m2
0 + (ĝ1 + ĝ2)2

16
φ2 ± 1

4
(ĝ1 − ĝ2)φ. (11)

In the limit m0 → 0, one obtains the result mN = ĝ1φ/2; i.e.,
the nucleon mass is solely generated by the chiral condensate
(as in the original linear sigma model [16,17]).

Using the Lagrangian of Eq. (1), we also obtain expressions
for the axial coupling constants gN

A and gN∗
A of the nucleon and

its chiral partner N∗, respectively:

gN
A = 1

2 cosh δ

(
g

(1)
A eδ + g

(2)
A e−δ

)
,

gN∗
A = 1

2 cosh δ

(
g

(1)
A e−δ + g

(2)
A eδ

)
, (12)

where

g
(1)
A = 1 − c1

g1

(
1 − 1

Z2

)
, g

(2)
A = −1 + c2

g1

(
1 − 1

Z2

)
.

(13)

We recall that Z = (1 − g1wφ)−1/2 = 1.67 > 1, where g1 =
5.84 describes the coupling constant of (pseudo)scalar and
(axial-)vector mesons, and w = g1φ/m2

a1
. This parameter

arises from the mixing of pseudoscalar and axial-vector
mesons; see Refs. [19,21]. As a consequence, the condensate
reads φ = Zfπ , where fπ = 0.0924 GeV is the pion decay
constant. The importance of vector mesons is evident, since
only for nonzero c1 and c2 (and for Z > 1), it is possible to get
an agreement of the axial coupling constants with experimental
data and lattice-QCD calculations [43].

In total, the nucleon part of the model has five independent
parameters (a,ĝ1,ĝ2,c1,c2), which are determined by using the
PDG values mN = 0.939 GeV, mN∗ = 1.650 GeV, �N∗→NP =
0.128 GeV, the axial coupling constant gN

A = 1.267, as well
as lattice-QCD calculations of the axial coupling constant
gN∗

A = 0.55 [43], for details and determination of the errors;
see Ref. [23]. Explicitly,

c1 = −3.34, c2 = 14.74, ĝ1 = 9.47 , ĝ2 = 18.69,

m0 = 0.704 GeV. (14)

Finally, as described in Ref. [33], the condensate χ0 takes
the form χ0 = gχππφ2/m2

χ , where gχππ is the χππ coupling
constant [40,44]. Its numerical value was determined to be
0.45 GeV [33] by requiring a correct description of the nuclear
matter ground state. Since we assign χ ≡ f0(500), we use
mχ = (0.475 ± 0.25) GeV [38]. As a consequence of χ0 =
gχππφ2/m2

χ , the constant a in Eq. (1) reads

a = m0

χ0
= m0m

2
χ

gχππ (Zfπ )2
, (15)

which equals 14.8 for mχ = 0.475 GeV.
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The value of a as given by Eq. (15) is the maximum
value for the coupling of χ to nucleons. If other scalar
condensates (e.g., a glueball condensate) contribute to the
mass parameter m0, Eq. (7), the value of a would be
reduced. Hence, for the results presented in Sec. III we
will choose also lower values for a than given by Eq. (15),
if necessary to achieve good agreement with SAID results.

B. Lagrangian for nucleon-nucleon elastic scattering

Only some of the terms contained in Eq. (1) contribute to
elastic nucleon-nucleon scattering (for instance, the nucleon
resonance N∗ does not contribute). We thus split the full
Lagrangian LeLSM = LNN + Lrest , where the relevant terms
for our calculations are contained in LNN . Its explicit form in
terms of physical fields reads

LNN = 1

2 cosh δ

(
eδc1N

{
ω

μ
Nt0 + �ρμ · �t + [

f
μ
1,N t0 + �aμ

1 · �t + wZ(∂μηN t0 + ∂μ �π · �t)]γ5
}
γμN

+ e−δc2N
{
ω

μ
Nt0 + �ρμ · �t − [

f
μ
1,N t0 + �aμ

1 · �t + wZ(∂μηN t0 + ∂μ �π · �t)]γ5
}
γμN

− eδĝ1N{[(σN + ϕ)t0 + �a0 · �t ] + iZ(ηN t0 + �π · �t )γ5}N
+ e−δĝ2N{[(σN + ϕ)t0 + �a0 · �t ] − iZ(ηN t0 + �π · �t )γ5}N − 2aN (χ + χ0)N

)
. (16)

The resulting t- and u-channel Feynman diagrams for nucleon-
nucleon interactions via meson exchange are shown in Fig. 1.
We use the following propagators for the exchanged mesons:

GS = i

q2 − m2
i

, GV,αβ = −i

(
gαβ − qαqβ

m2
i

)
1

q2 − m2
i

(17)

for spinless and spin-1 particles, respectively; mi denotes the
on-shell mass of the exchanged meson.

As a last point, we describe the introduction of form
factors. The model described in Eq. (1) is not a fundamental
model which describes the interactions of point-like parti-
cles, but an effective model whose degrees of freedom are
hadrons (nucleons and mesons) which have a finite extension
(∼0.5 fm). Therefore, the tree-level diagrams derived from the
Lagrangian (1) are valid when the momentum exchanged at a
certain vertex is smaller than ∼2 fm−1 � 0.4 GeV. Therefore,
as various works have shown—see, e.g., Refs. [45–48] and
also Ref. [38] (see the section “Quark Model in Standard
Model and Related Topics”)—and as we shall also see later
on, it is important to introduce a form factor which reduces
the interaction strength when the momenta of the hadrons
are large. In this work we will use the following form factor
attached to each nucleon-nucleon-meson vertex:

F (q2) = exp

(
−|q2 − m2

i |
�2

cut

)
, (18)

M

n

p

n

p

M∗

n

p

p

n

FIG. 1. Feynman diagrams for np scattering in the eLSM.
Left: neutral meson exchange, M ≡ χ,σ,a0

0 ,π
0,η,ω,ρ0,f1,a

0
1 . Right:

charged meson exchange, M∗ ≡ a±
0 ,π±,ρ±,a±

1 .

where q2 is the square of the four-momentum transfer involved
in the process (qμ is the four-momentum of the exchanged
meson, and mi its mass, i = π,ρ, . . .). The parameter �cut is
a hadronic energy scale, which is ∼1 GeV.

An alternative approach to form factors is the imple-
mentation of unitarization approaches (such as the so-called
K-matrix unitarization) which also cause a decrease of cross
section at high energies. However, their use would imply
the need for a partial-wave analysis which goes beyond the
scope of the present paper. We leave this study as well as
the analysis of neutron-proton scattering in all partial waves
(see, e.g., Ref. [12]) for the future.

C. Interaction Lagrangian for the 1 S0 dibaryon

The interaction of nucleons via meson exchange is not
capable of describing the large cross section close to threshold.
Namely, the interaction strength is three orders of magnitude
larger than what can be achieved through meson exchange:
a neutron-proton resonance is responsible for the enhanced
cross section.

In order to describe this resonance within our framework,
we introduce a new field, denoted as �R , which has quantum
numbers I = 1, JP = 0+ (also known as 1S0) and contributes
to I = 1 np scattering close to threshold. The wave function
of the Iz = 0 component (of relevance for the following) is
given by

|�R〉 = |space: ground state〉|↑↓ − ↓↑〉|np + pn〉. (19)

Being part of an isospin multiplet, there are two analogous
states, |pp〉 with Iz = 1, and |nn〉 with Iz = −1; see the
corresponding discussion in Sec. IV.

The Lagrangian coupling �R to nucleons is given by

LR = iGR(NT Cγ 5�Rt1N + N̄γ 5�∗
Rt1CN̄T ), (20)

where C denotes the charge-conjugation matrix. The first term
on the right-hand side of Eq. (20) describes the two incoming
nucleons creating the dibaryon, while the other term describes
the decay of the dibaryon into two outgoing nucleons. A similar
Lagrangian for the deuteron was studied in Ref. [46]. The
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ΦR

n

p

n

p

FIG. 2. Feynman diagram for I = 1 np scattering via the charged
1S0 resonance.

corresponding Feynman diagram for np scattering is shown in
Fig. 2.

Using Eq. (20) we calculate the width �(p) of the 1S0 state
as

�(p) = G2
Rp

4π
, (21)

where p denotes the modulus of the three-momentum of an
outgoing nucleon. The propagator of the 1S0 state is given by

�R(s) = i

s − m2
R + i

√
s �(p)

, (22)

where mR denotes the “mass” of the dibaryon resonance. We
recall that p is a function of the kinematic variable s,

p = p(s) =
√

s2 + (
m2

p − m2
n

)2 − 2s
(
m2

p + m2
n

)
4s

, (23)

where mp and mn are the proton and the neutron masses,
respectively. For a good description of SAID results it is
essential to consider the decay width as a function of p, i.e.,
�(p). Setting the decay width to a constant, �R ≡ �(pR),
where pR ≡ p(m2

R), (i.e., the Breit-Wigner limit) is definitely
not a good approximation in the present context. Hence,
the quantity mR should not be regarded as a conventional
resonance mass, but as a parameter corresponding to the root
of the real part of the denominator of the propagator; see also
the discussion in Sec. III A.

At the end of this section, two comments are in order:

(i) The propagator (22) emerges upon a resummation of
proton-neutron loops. In this respect, it corresponds
to a (partial) unitarization in the s channel for this
particular process. Note, for simplicity the real part of
the propagator’s denominator has not been modified
(see Sec. III A).

(ii) As discussed in Refs. [1,10,12], it is not necessary
to introduce an additional field �R to describe data.
One would obtain an equally good description by
starting with a quartic interaction term proportional
to (NT Cγ 5t1N )

2
and by doing a resummation of the

proton-neutron loop emerging from it. This S-wave
resummation generates an expression which resembles
that of a propagator of a scalar particle. Then, in
the framework of an correct description of data, the
inclusion of an explicit dimeron field �R is possible
but not necessary. Yet, the point that we would like to

address is if a pole in the complex plane on the second
Riemann sheet exists. Namely, this is the condition that
should be met for a state to exist. In fact, the position
of the pole is independent on the particular process
and (in principle) is also independent on the particular
Lagrangian employed, as long as data are correctly
described. Indeed, we show in the next section that we
do find a pole in the complex plane.

III. RESULTS

We now turn to the results. We present them successively
including more ingredients: (i) we consider only the scalar
dibaryon [Eq. (20)]; (ii) we consider a reduced model with
the dibaryon and the scalar meson χ ≡ f0(500) [Eq. (20) and
the last line of Eq. (16)]; (iii) we include all other mesons
without form factor [Eqs. (16) and (20) with �cut → ∞]; (iv)
we include also a form factor [Eqs. (16) and (20) with finite
�cut].

In all cases, the cross section for np scattering in the I = 1
channel was calculated by splitting the scattering amplitudeM
into two parts, MI=0 and MI=1, according to the formalism
presented in Ref. [49]. The masses of the neutron and proton
were set equal to 938.919 MeV (the average of both masses),
except for the study of the pole and spectral function of the
1S0 dibaryon resonance, which was done using the masses
reported in Ref. [38]. The results were cross-checked by
calculating the cross section for pp scattering neglecting
Coulomb interaction using the programs FEYNRULES 2.0 [50]
and MADGRAPH 2.3.0 [51]. Results of both calculations were
identical within numerical precision.

A. Scalar dibaryon only

We first consider the case where only the Lagrangian (20)
is considered. The interaction is mediated by the dibaryon
resonance �R . Figure 3(a) shows the total cross section for
different values of DR = mR − mp − mn, where mR is the
mass parameter entering Eq. (22). As one observes, the total
cross section is very large at threshold and drops rapidly with
increasing momentum. The best agreement with SAID results
is obtained for the dibaryon coupling strength GR = 2.13 and
for DR = 0.0015 GeV. Namely, we obtain a good description
of the SAID results over three orders of magnitudes up to a c.m.
momentum of about 0.2 GeV. Clearly, the calculation using
only the 1S0 resonance cannot describe the SAID results at
higher momenta. For momenta above 0.2 GeV, the interaction
via meson exchange (as, for instance, described via the eLSM
Lagrangian) dominates.

As expected, there is no angular dependence (at any p)
of the theoretically calculated differential cross section when
only the dibaryon is included; see Fig. 3(b). On the contrary,
SAID results show an enhancement at forward and backward
angles. This enhancement increases with momentum and, as
we shall see, can be explained considering meson exchange
[in particular f0(500)].

In conclusion, we find that there is an isotriplet dibaryon
resonance with nominal mass mR = mp + mn + 0.0015 GeV.
The corresponding on-shell decay width is �R = 0.0135 GeV,
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FIG. 3. Total (a) and differential (b) cross section for I = 1 np scattering via the 1S0 resonance only. In (a), the total cross section is
shown for different values of DR = 0.0005 GeV (red dotted curve), 0.0015 GeV (blue solid curve), and 0.01 GeV (green dashed curve). The
corresponding values for GR (chosen to fit the total cross section at threshold) are 1.23, 2.13, and 5.5, respectively. In (b), the differential cross
section is shown for DR = 0.0015 GeV and GR = 2.13 for nucleon c.m. momenta 0.1 GeV (red dotted curve), 0.2 GeV (green dashed curve),
and 0.3 GeV (magenta dash-dotted curve), respectively. Data points are taken from the SAID program [36].

which is much larger than DR . Whenever the tree-level decay
width is comparable to or larger than the distance of the
mass from the threshold, we are not dealing with a standard
resonance; see, e.g., Ref. [52] and references therein. Here, the
situation is even more extreme, since �R � DR . This is also
why many authors were extremely careful in discussing this
putative state as a standard resonance.

In the literature, it is common to investigate the existence
and position of pole(s) in the complex

√
s plane, especially in

presence of wide resonances [as, for instance, in the renowned
case of the resonance f0(500); see Ref. [32] and references
therein]. To this end, we investigate the presence of a pole by
using the formalism discussed in Ref. [41]: we introduce a form
factor in the decay width, �(p) → ��R

(p) = �(p)e−2p2/�2
R .

Then, according to the optical theorem, the one-loop self-
energy �(s) (which consists of a neutron-proton loop) fulfills
Im �(s) = √

s��R
(p). The real part is determined by using

the dispersion integral

Re �(s) = − 1

π
P.V.

∫ ∞

mp+mn

ds ′ Im �(s ′)
s − s ′ , (24)

where P.V. stands for principal value. The dressed propagator
of the dibaryon reads

�dressed
R (s) = 1

s − m2
R + Re �(s) − Re �

(
m2

R

) + i Im �(s)
,

(25)

while its spectral function is given by

dR(
√

s) = 2
√

s

π
Im �dressed

R (s). (26)

The latter is plotted in Fig. 4 using �R = 0.5 GeV (close to
the values obtained in Refs. [41,42]). One notices a peak very
close to threshold (only 0.000 0174 GeV away from it) and
then a rapid descent. Note that the peak does not correspond
to the nominal mass mR . Since �R is a free parameter, we also
show the spectral function for �R = 0.3 GeV. The quantitative

difference to the previous case is small, the qualitative features
remain the same.

Note that, in principle, one should have used from the
very beginning the propagator (25) in the calculation of the
cross section. Such a calculation would require to determine
the parameter GR in a set of complicated coupled equations.
In view of the uncertainty on �R , such a procedure, while
formally correct, goes beyond the scope of the present
work. However, we have a posteriori verified that the full
propagators (22) and (25) deliver similar results for the cross
section.

Finally, we turn to the position of the pole of the dimeron.
For �R = 0.5 GeV we find a pole for

√
spole = mp + mn + 0.014 GeV − i 0.0774 GeV . (27)

We observe that the decay width associated with the imaginary
part of the pole is much larger than the tree-level decay
width: �pole = 0.1548 GeV. In addition, the pole mass, being
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FIG. 4. Spectral function of the scalar dibaryon as function of√
s − mp − mn for �R = 0.5 GeV and �R = 0.3 GeV. We verified

that the spectral functions are correctly normalized to unity.
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FIG. 5. Total (a) and differential (b) cross section for I = 1 np scattering. The theoretical curve in (a) is calculated for scattering including
χ exchange in addition to the contribution of the 1S0 resonance with DR = 0.0018 GeV and GR = 2.27. The mass of the χ meson is set to
0.525 GeV and its coupling a = 8.95. In (b), the differential cross section is shown for nucleon c.m. momenta 0.1 GeV (red dotted curve),
0.2 GeV (green dashed curve), and 0.3 GeV (magenta dash-dotted curve), respectively. Data points are taken from the SAID program [36].

0.014 GeV above the threshold, is larger. For this very peculiar
resonance there is no correspondence between nominal mass,
peak of the spectral function, and pole mass.

For �R = 0.3 GeV, the pole is located at
√

spole = mp + mn + 0.0273 GeV − i 0.0309 GeV, (28)

which has a larger mass but a smaller width. While the spectral
function changes only slightly by changing �R , the position
of the pole changes sizably. The precise determination of the
pole is not possible at present, since the value of �R (as well as
the precise form of the form factor) is unknown. Nevertheless,
the existence of a pole in the complex

√
s plane is a definite

result of our analysis.

B. Dibaryon and f0(500)

In the next step, we add the contribution from χ ≡ f0(500)
[last line of Eq. (16)] to that of the dibaryon state of Eq. (20).
Using mχ = 0.525 GeV and a = 8.95, it is indeed possible
to obtain a remarkably good agreement with SAID results up
to a momentum p of about 0.4 GeV; see Fig. 5. This shows
the importance of the lightest scalar state f0(500). We recall
that this meson is not (predominantly) a quark-antiquark state
(the chiral partner of the pion is identified with the heavier
state f0(1370) [21]). Also the description of the differential
cross section is improved, since now the qualitative form is
correctly described (for p = 0.2 GeV the agreement is also
quantitatively quite good).

It is interesting to notice that good agreement with SAID

results is reached for a mass of f0(500) of about 0.5–0.55 GeV,
which is in good agreement with the PDG value. Increasing
or decreasing the value of the mass by about 0.1 GeV or
more considerably worsens the description of the experimental
results.

C. Full model without form factor

We now turn to the case in which the sum of the two
Lagrangians (16) and (20) is considered, i.e., when all other

mesons are also present. First, we do not include any form
factor in the calculation (i.e., �cut → ∞). The mass of f0(500)
is chosen to be mχ = 0.475 GeV and a = 8.95.

The results are shown in Fig. 6. In part (a), one observes
that the theoretically calculated total cross section significantly
overestimates the SAID results for large momenta. The reason
for this is the contribution from the pseudoscalar mesons
(green dashed curve). In addition, the theoretically calculated
differential cross sections, part (b), show the wrong behavior
as a function of scattering angle: they are enhanced at 900,
while the SAID results are suppressed.

Apparently, adding the contributions from exchange of
quark-antiquark mesons worsens the agreement with SAID

results as compared to the previous case. One possibility to
ameliorate the situation could be to modify the parameters
of the Lagrangian (1). Quite curiously, for c1 = 1.5 the
contribution of the pions turns out to be suppressed due to
destructive interference. However, by doing so, one would
inevitably induce a disagreement with other quantities, such
as the nucleon masses and the axial coupling constants.
Another possibility, explored in the following subsection, is
to use a finite cutoff, which effectively takes into account
that hadrons are extended objects, and which suppresses the
contribution from pseudoscalar mesons to an extent that the
good description obtained with the 1S0 resonance and f0(500)
exchange alone is reobtained.

D. Full model with form factors

As a last step we consider both Lagrangians (16) and (20)
as well as the form factor introduced in Eq. (18). As Fig. 7
shows, a cutoff �cut = 0.778 GeV suppresses the contributions
of the quark-antiquark mesons (and in particular pseudoscalar
mesons) at large momenta. The SAID results can be again well
described.

The differential cross sections point also to an interesting
fact: if the contribution from f0(500) is turned off, the angular
distribution is again enhanced at 900, in contradiction with
SAID results which are suppressed at this angle. When f0(500)
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FIG. 6. Total (a) and differential (b) cross section for I = 1 np scattering. The red dotted curve in (a) is for scattering via exchange of the
nine mesons included in Eq. (16) (mχ = 0.475 GeV and a = 8.95) in addition to the 1S0 resonance with DR = 0.0018 GeV and GR = 2.26.
The green dashed curve shows the cross section calculated using only π and η exchange. In (b), the differential cross section is shown for
nucleon c.m. momenta 0.1 GeV (red dotted curve), 0.2 GeV (green dashed curve), and 0.3 GeV (magenta dash-dotted curve) upon exchange
of the nine mesons. Data points are taken from the SAID program [36].
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FIG. 7. Total (a) and differential cross sections (b,c) for I = 1 np scattering. The red dotted and blue solid curves in Fig. a are calculated for
σ,a0,π,η,ω,ρ,f1,a1 exchange as well as including the 1S0 resonance with DR = 0.0016 GeV. The red dotted curve shows the case without the
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the differential cross section without [with] χ meson exchange and �cut = 0.85 GeV [0.778 GeV] upon inclusion of the eight other mesons,
for nucleon c.m. momenta 0.1 GeV (red dotted curve), 0.2 GeV (green dashed curve), and 0.3 GeV (magenta dash-dotted curve), respectively.
Data points are taken from the SAID program [36].
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is taken into account, the correct shape of the differential cross
section is obtained. Apparently, suppressing the contribution
of quark-antiquark mesons by a form factor is not sufficient
to produce the correct angular dependence of the differential
cross section, one needs to include the f0(500) in order to
repair this shortcoming. This confirms once more the important
role of this meson for a good description of nucleon-nucleon
scattering.

IV. CONCLUSIONS

In this work, we have studied neutron-proton scattering in
the I = 1 channel in the framework of a chiral model which
contains quark-antiquark (pseudo)scalar and (axial-)vector
mesons as well as a scalar isoscalar state corresponding to the
resonance f0(500) (see Fig. 1 for the corresponding diagrams).
The f0(500) state is coupled to nucleons in a chirally invariant
way using the mirror assignment for the chiral partner of the
nucleon.

The exchange of mesons (Fig. 1) alone is not sufficient to
describe the very large total cross section close to threshold.
For this reason, we have coupled the nucleons to a resonance
with baryon number B = 2, isospin I = 1, total spin zero, and
positive parity, JP = 0+. Then, for a suitably chosen coupling
to the nucleons, s-channel scattering through this resonance
is able to reproduce the magnitude of the total cross section
close to threshold; see Fig. 2.

The results have been presented by including the ingredients
step by step. The total cross section close to threshold can be
well described with the help of the dibaryon alone (Fig. 3). A
more detailed study of this resonance shows that it is not of a
standard Breit-Wigner type, because the width is larger than the
distance of its mass to the neutron-proton threshold. Its spectral
function (Fig. 4) shows a peak very close to threshold. In the
complex plane, we find a pole. For a cutoff of 0.5 GeV the pole
lies at mp + mn + 0.014GeV − i 0.0774GeV, confirming that
the resonance is very broad. However, the pole is not precisely
determined because a slight modification of the parameters
changes its position quite substantially. Nevertheless, the
important point is that a pole is always present, which
shows that a dibaryon resonance exists. Interestingly, a similar
conclusion concerning a metastable neutron-proton state was
also obtained in Ref. [53] and recent experimental activity is
described in Ref. [54].

As a consequence of our results, we also predict the exis-
tence of a neutron-neutron resonance very close to threshold:
this state is the Iz = −1 member of the I = 1 multiplet
of scalar dibaryons. The neutron-neutron resonance is not
affected by Coulomb repulsion, thus the characteristics of
the corresponding resonance are expected to be similar to
the proton-neutron dibaryon studied in this work. Indeed, in
Ref. [55] a scalar neutron-neutron resonance has been observed
experimentally. The corresponding decay width of about
0.01 GeV is actually in good agreement with our results (for the
width of the np state, which should be very similar to the one of
the nn state). The subsequent theoretical study of Ref. [56] by
means of an effective Lagrangian confirmed that such a dineu-
tron state cannot be excluded. Quite interestingly, the existence
of scalar isotriplet dibaryon may also be relevant in the context

of nuclear astrophysics [57]. Also, the recent discovery of a
four-neutron quasibound state [58] shows that the formation
of metastable states made solely of neutrons is possible.

The last member of the isotriplet dibaryon multiplet has
Iz = 1 and consists of two protons. In this channel predictions
are more difficult in view of the Coulomb repulsion that breaks
isospin symmetry. However, also here a resonance could exist,
but would be even more unstable; see the experimental study
in Refs. [59,60] and theoretical discussion in Ref. [61].

In conclusion, in the present work we have found that a pole
on the second Riemann sheet in the S-wave I = 1 channel is
present. As discussed in Refs. [1,10,12,35] one does not need to
include an explicit degree of freedom in the Lagrangian, since a
quartic interaction together with its resummation would mimic
the effect of a propagator in the S wave. Within this context, it
would be very interesting if the position of the pole could be
also investigated in the context of such effective approaches.

Turning back to neutron-proton scattering studied in this
work, the next step has been the inclusion of the resonance
f0(500): a remarkably good agreement with SAID results is
obtained when only the dibaryon and the resonance f0(500)
are considered (Fig. 5). These results show that these two
resonances are most important for the description of the SAID

results.
Switching on the other mesons causes a disagreement at

large momenta, because the contribution of the pions is too
large without introducing a form factor to suppress large mo-
menta. Moreover, also the differential cross sections cannot be
reproduced (Fig. 6). This mismatch can, however, be removed
by including a form factor. One then obtains a good description
of SAID results at high momenta (Fig. 7). Also in this case, the
role of f0(500) is important: by switching it off, the shape of
the differential cross section is qualitatively wrong.

As an outlook for future studies, one could use our chiral
approach to study reactions in which mesons are produced,
such as NN → NNX with X = ω,ρ, . . . (see Ref. [62]
for a preliminary investigation). These reactions are at the
center of experimental studies (see, e.g., Ref. [63]), and their
investigation is important in hadronic physics. Also similar
reactions involving strangeness are relevant: for that purpose
one would need the full version of the eLSM for Nf = 3,
including baryons (a first step towards this goal has been
performed in Ref. [25]) as well as the full nonet of light-scalar
mesons below 1 GeV. For instance, the reaction pp → ppK
has received considerable attention [64]. The determination of
the baryon-baryon-meson couplings in the three-flavor case is
not only relevant for hadron vacuum physics but also in the
context of neutron-star investigations [65].
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