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We determine the equation of state (EOS) of nuclear matter with the inclusion of hyperons in a self-consistent
manner by using a modified quark meson coupling model where the confining interaction for quarks inside a
baryon is represented by a phenomenological average potential in an equally mixed scalar-vector harmonic form.
The hadron-hadron interaction in nuclear matter is then realized by introducing additional quark couplings to σ ,
ω, and ρ mesons through mean-field approximations. The effect of a nonlinear ω-ρ term on the EOS is studied.
The hyperon couplings are fixed from the optical potential values and the mass-radius curve is determined
satisfying the maximum mass constraint of 2 M� for neutron stars, as determined in recent measurements of the
pulsar PSR J0348+0432. We also observe that there is no significant advantage of introducing the nonlinear ω-ρ
term in the context of obtaining the star mass constraint in the present set of parametrizations.
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I. INTRODUCTION

Over the last few decades intensive theoretical investi-
gations have been pursued to understand the microscopic
composition and properties of dense nuclear matter. It has
been realized by now from such studies [1–9] that high density
nuclear matter may consist not only of nucleons and leptons
but also several exotic components such as hyperons, mesons,
as well as quark matter in different forms and phases. Hyperons
in particular are expected to appear in the inner core of neutron
stars at densities 2–3 times the normal saturation density
ρ0 = 0.15 fm−3. This is because at such high densities the
nucleon chemical potential becomes large enough to facilitate
the formation of hyperons to be energetically favorable by the
inverse β decay process of nucleons in the β-stable nuclear
matter. As a consequence the Fermi pressure exerted by the
baryons is reduced and the equation of state (EOS) describing
such dense matter in neutron stars with hyperon core becomes
softer leading to the reduction of the maximum mass of
the star [10–15]. However relativistic Hartree-Fock models
[16,17], relativistic mean field models [18,19], or quantum
hadrodynamic model [20] show relatively weaker effects on
the EOS due to the presence of strange baryons in the neutron
star core.

Until recently the reliability requirement for any model
EOS was only to predict a maximum neutron star mass
Mmax compatible with the canonical value of 1.4–1.5 M�,
since most of the precisely measured neutron star mass
were clustered around these values only. This constraint was
probably not stringent enough for which without any discrim-
ination, most relativistic models even with the inclusion of
hyperons [10–14] have succeeded to this extent. But recent
discovery of the unusually high mass of the millisecond
pulsars PSR J1903+0327 (1.66 ± 0.021 M�) [21–23], PSR
J1614-2230 (1.97 ± 0.04 M�) [24], and PSR J0348+0432
(2.01 ± 0.04 M�) [25] show that the neutron star mass
distribution is much wider extending firmly up to 1.9–2.0 M�.
Also there has been considerable progress in the measurement
of the neutron star radii by reducing their uncertainties with

a better understanding of the sources of systematic errors to
estimate them in 10.1–11.1 km range for a 1.5 M� neutron
star [26]. Another study by Fortin et al. [27] has shown that the
observational constraint on the maximum mass implies that the
hyperonic stars with masses in the range 1–1.6 M� must be
larger than 13 km due to a prehyperonic stiffening of EOS. It
has been found by Providência and Rabhi [28] that the radius
of a hyperonic star of a given mass decreases linearly with
the increase of the total hyperon content. These observations
may serve to further constrain the EOS in achieving greater
reliability.

Various studies have established that the presence of
hyperons in the neutron star core leads to softening of the EOS
and consequent reduction in the maximum mass of the star.
This has provided a challenge to develop an equation of state
(EOS) stiff enough to give such high mass with the inclusion of
hyperons. In fact most relativistic models obtain maximum star
masses in the range 1.4–1.8M� with the inclusion of hyperons
[11]. However there are some exceptional cases [29] where
maximum mass of the hyperonic star have been realized in the
range 1.8–2.1 M�.

In the present work, we have developed an EOS using a
modified quark-meson coupling (MQMC) model. The MQMC
model is based on confining relativistic independent quark
potential model rather than a bag to describe the baryon
structure in vacuum. In such a picture the quarks inside the
baryon are considered to be independently confined by a
phenomenologically average potential with an equally mixed
scalar-vector harmonic form. Such a potential has character-
istically simplifying features in converting the independent
quark Dirac equation into a Schrödinger-like equation for the
upper component of Dirac spinor which can be solved easily.
The implications of such potential forms in the Dirac frame-
work has been studied earlier [30,31]. The baryon-baryon
interactions are realized by making additional quark couplings
to σ , ω, and ρ mesons through mean-field approximations,
in an extension of previous works based on the MIT bag
model [32–34]. The MQMC model has already been well
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tested in determining various bulk properties of symmetric and
asymmetric nuclear matter [35,36]. The relevant parameters
of the interaction are obtained self-consistently by realizing
the saturation properties such as binding energy and pressure.
Here, we study the role of hyperons on the properties of neutron
stars. In the present work we have also introduced an additional
nonlinear ω-ρ coupling to study its effect on the stiffening of
EOS necessary for the purpose.

We include hyperons as a new degree of freedom in dense
hadronic matter relevant for neutron stars. The interactions
between nucleons and the baryons of the baryon octet in
dense matter is studied and its effects on the mass of the
neutron star is analyzed. The nucleon-nucleon interaction is
well known from nuclear properties. But the extrapolation of
such interactions to densities beyond nuclear saturation density
is a great problem. Most of the hyperon-nucleon interaction
are known experimentally. This has inspired us to set the
hyperon-nucleon interaction potential at saturation density for
the �, �, and � hyperons to U� = −28 MeV, U� = 30 MeV,
and U� = −18 MeV, respectively. Because of the uncertainties
in the measurement of the � hyperon potentials, we make a
variation in the U� and study the effects on the mass of the star.
However, we do not include the hyperon-hyperon interactions
which are experimentally least well known.

In this model we observe that the compressibility of
the neutron star matter depends on the mass of the quark.
The quark mass has been fixed at 150 MeV giving us a
compressibility of 292 MeV which lies within the range
predicted from experimental GMR studies [37] and also from
theoretical predictions of infinite nuclear matter model [38].
We also compare our results at two different quark masses of
mq = 150 MeV and mq = 80 MeV.

The paper is organized as follows. In Sec. II, a brief outline
of the model describing the baryon structure in vacuum is
discussed. The baryon mass is then realized by appropriately
taking into account the center-of-mass correction, pionic
correction, and gluonic correction in Sec. III. The EOS is then
developed in Sec. IV. The results and discussions are made in
Sec. V. We summarize our findings in Sec. IV.

II. MODIFIED QUARK MESON COUPLING MODEL

The modified quark-meson coupling model has been
extensively applied for the study of the bulk properties of both
symmetric as well as asymmetric nuclear matter. Under such a
model the nucleon-nucleon (NN ) interaction was realized in a
mean-field approach through the exchange of effective (σ,ω)
mesonic fields coupling to the quarks inside the nucleon for the
symmetric case [35] and the additional isovector-vector meson
field (ρ) coupling to the quarks for the asymmetric case [36].
In our earlier work [36] this model was used to investigate the
nature of the thermodynamic instabilities and the correlation of
the symmetry energy with its slope. We now extend this model
to investigate the role of nucleons and hyperons in neutron star
matter under conditions of β equilibrium and charge neutrality.

We begin by considering baryons as composed of three
constituent quarks in a phenomenological flavor-independent
confining potential, U (r) in an equally mixed scalar and vector

harmonic form inside the baryon [35], where

U (r) = 1
2 (1 + γ 0)V (r)

with

V (r) = (ar2 + V0), a > 0. (1)

Here (a,V0) are the potential parameters. The confining
interaction provides the zeroth-order quark dynamics of the
hadron. In the medium, the quark field ψq(r) satisfies the Dirac
equation[

γ 0

(
εq − Vω − 1

2
τ3qVρ

)
− �γ . �p − (mq − Vσ ) − U (r)

]
×ψq(�r) = 0, (2)

where Vσ = g
q
σ σ0, Vω = g

q
ωω0, and Vρ = g

q
ρb03. Here σ0, ω0,

and b03 are the classical meson fields, and g
q
σ , g

q
ω, and g

q
ρ are

the quark couplings to the σ , ω, and ρ mesons, respectively.
mq is the quark mass and τ3q is the third component of the
Pauli matrices. We can now define

ε′
q = (ε∗

q − V0/2) and m′
q = (m∗

q + V0/2), (3)

where the effective quark energy, ε∗
q = εq − Vω − 1

2τ3qVρ and
effective quark mass, m∗

q = mq − Vσ . We now introduce λq

and r0q as

(ε′
q + m′

q) = λq and r0q = (aλq)−
1
4 . (4)

The ground-state quark energy can be obtained from the
eigenvalue condition

(ε′
q − m′

q)

√
λq

a
= 3. (5)

The solution of Eq. (5) for the quark energy ε∗
q immediately

leads to the mass of baryon in the medium in zeroth order as

E∗0
B =

∑
q

ε∗
q . (6)

III. EFFECTIVE MASS OF BARYON

We next consider the spurious center-of-mass correction
εc.m., the pionic correction δMπ

B for restoration of chiral sym-
metry, and the short-distance one-gluon exchange contribution
(�EB)g to the zeroth-order baryon mass in the medium.

Here, we extract the center of mass energy to first order
in the difference between the fixed center and relative quark
co-ordinate, using the method described by Guichon et al.
[32]. The center of mass correction is given by

ec.m.. = e(1)
c.m. + e(2)

c.m., (7)

where

e(1)
c.m. =

3∑
i=1

[
mqi∑3

k=1 mqk

6

r2
0qi

(
3ε′

qi
+ m′

qi

)
]
, (8)
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e(2)
c.m. = a

2

[
2∑

k mqk

∑
i

mi

〈
r2
i

〉 + 2∑
k mqk

∑
i

mi

〈
γ 0(i)r2

i

〉 − 3( ∑
k mqk

)2

∑
i

m2
i

〈
r2
i

〉

− 1(∑
k mqk

)2

∑
i

〈
γ 0(1)m2

i r
2
i

〉 − 1( ∑
k mqk

)2

∑
i

〈
γ 0(2)m2

i r
2
i

〉 − 1( ∑
k mqk

)2

∑
i

〈
γ 0(3)m2

i r
2
i

〉]
. (9)

In the above, we have used for i = (u,d,s) and k = (u,d,s)
and the various quantities are defined as

〈
r2
i

〉 = (11ε′
qi + m′

qi)r
2
0qi

2(3ε′
qi + m′

qi)
, (10)

〈
γ 0(i)r2

i

〉 = (ε′
qi + 11m′

qi)r
2
0qi

2(3ε′
qi + m′

qi)
, (11)

〈
γ 0(i)r2

j

〉
i �=j

= (ε′
qi + 3m′

qi)
〈
r2
j

〉
3ε′

qi + m′
qi

. (12)

The pseudovector nucleon pion coupling constant, fNNπ

can be obtained from Goldberg-Treiman relations by using the
axial-vector coupling constant value gA in the model as

√
4π

fNNπ

mπ

= gA(N )

2fπ

, (13)

where

gA(n → p) = 5

9

(5ε′
u + 7m′

u)

(3ε′
u + m′

u)
. (14)

The pionic corrections in the model for the nucleons become

δMπ
N = −171

25
Iπf 2

NNπ . (15)

Taking wk = (k2 + m2
π )1/2Iπ becomes

Iπ = 1

πmπ
2

∫ ∞

0
dk.

k4u2(k)

w2
k

(16)

with the axial vector nucleon form factor given as

u(k) =
[
1 − 3

2

k2

λq(5ε′
q + 7m′

q)

]
e−k2r2

0 /4 . (17)

The pionic correction for �0 and �0 becomes

δMπ
�0 = −12

5
f 2

NNπIπ , (18)

δMπ
�0 = −108

25
f 2

NNπIπ . (19)

Similarly the pionic correction for �− and �+ is

δMπ
�+,�− = −12

5
f 2

NNπIπ . (20)

The pionic correction for �0 and �− is

δMπ
�−,�0 = −27

25
f 2

NNπIπ . (21)

The one-gluon exchange interaction is provided by the
interaction Lagrangian density

Lg
I =

∑
J

μa
i (x)Aa

μ(x) , (22)

where Aa
μ(x) are the octet gluon vector-fields and J

μa
i (x) is

the ith quark color current. The gluonic correction can be
separated in two pieces, namely, one from the color electric
field (Ea

i ) and another from the magnetic field (Ba
i ) generated

by the ith quark color current density

J
μa
i (x) = gcψ̄q(x)γ μλa

i ψq(x) (23)

with λa
i being the usual Gell-Mann SU (3) matrices and αc =

g2
c /4π . The contribution to the mass can be written as a sum

of color electric and color magnetic part as

(�EB)g = (�EB)Eg + (�EB)Mg , (24)

where

(�EB)Eg = 1

8π

∑
i,j

8∑
a=1

∫
d3rid

3rj

|ri − rj |

× 〈B|J 0a
i (ri)J

0a
j (rj )|B〉, (25)

and

(�EB)Mg = − 1

8π

∑
i,j

8∑
a=1

∫
d3rid

3rj

|ri − rj |

× 〈B| �J a
i (ri) �J a

j (rj )|B〉 . (26)

Finally, taking into account the specific quark flavor and
spin configurations in the ground state baryons and using the
relations 〈∑a(λa

i )2〉 = 16/3 and 〈∑a(λa
i λ

a
j )〉i �=j = −8/3 for

baryons, one can write the energy correction due to color
electric contribution, as

(�EB)Eg = αc

(
buuI

E
uu + busI

E
us + bssI

E
ss

)
, (27)

and due to color magnetic contributions, as

(�EB)Mg = αc

(
auuI

M
uu + ausI

M
us + assI

M
ss

)
, (28)

where aij and bij are the numerical coefficients depending on
each baryon and are given in Table I. In the above, we have

IE
ij = 16

3
√

π

1

Rij

[
1 − αi + αj

R2
ij

+ 3αiαj

R4
ij

]
,

IM
ij = 256

9
√

π

1

R3
ij

1

(3ε
′
i + m

′
i)

1

(3ε
′
j + m

′
j )

, (29)
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TABLE I. The coefficients aij and bij used in the calculation of
the color-electric and and color-magnetic energy contributions due to
one-gluon exchange.

Baryon auu aus ass buu bus bss

N −3 0 0 0 0 0
� −3 0 0 1 −2 1
� 1 −4 0 1 −2 1
� 0 −4 1 1 −2 1

where

R2
ij = 3

[
1(

ε
′
i

2 − m
′
i

2) + 1(
ε

′
j

2 − m
′
j

2)
]
,

αi = 1

(ε
′
i + m

′
i)(3ε

′
i + m

′
i)

. (30)

The color electric contributions to the bare mass for nucleon
(�EN )Eg = 0. Therefore the one-gluon contribution for nu-
cleon becomes

(�EN )Mg = −256αc

3
√

π

[
1

(3ε′
u + m′

u)2R3
uu

]
. (31)

The one-gluon contribution for �+,�− becomes

(�E�+,�− )Eg = αc

16

3
√

π

[
1

Ruu

(
1 − 2αu

R2
uu

− 3α2
u

R4
uu

)

− 2

Rus

(
1 − αu + αs

R2
us

+ 3αuαs

R4
us

)

+ 1

Rss

(
1 − 2αs

R2
ss

+ 3α2
s

R4
ss

)]
, (32)

(�E�+,�− )Mg = 256αc

9
√

π

[
1

(3ε′
u + m′

u)2R3
uu

− 4

R3
us(3ε′

u + m′
u)(3ε′

s + m′
s)

]
, (33)

(�E�+,�− )g = (�E�+,�− )Eg + (�E�+,�− )Mg . (34)

The gluonic correction for �0 is

(�E�0 )Eg = αc

16

3
√

π

[
1

Ruu

(
1 − 2αu

R2
uu

− 3α2
u

R4
uu

)

− 2

Rus

(
1 − αu + αs

R2
us

+ 3αuαs

R4
us

)

+ 1

Rss

(
1 − 2αs

R2
ss

+ 3α2
s

R4
ss

)]
, (35)

(�E�0 )Mg = 256αc

9
√

π

[
1

(3ε′
u + m′

u)2R3
uu

− 4

R3
us(3ε′

u + m′
u)(3ε′

s + m′
s)

]
, (36)

(�E�0 )g = (�E�0 )Eg + (�E�0 )Mg . (37)

The gluonic correction for � is

(�E�0 )Eg = (�E�)Eg . (38)

The color magnetic contribution is different

(�E�)Mg = −256αc

3
√

π

[
1

(3ε′
u + m′

u)2R3
uu

]
, (39)

(�E�)g = (�E�)Eg + (�E�)Mg . (40)

The color electric contributions for �− and �0 are same as
that of �0 or �0 but the color magnetic contributions to the
correction of masses of baryon are different:

(�E�−,�0 )Mg = 256αc

9
√

π

[
1

(3ε′
s + m′

s)2R3
ss

− 4

R3
us(3ε′

u + m′
u)(3ε′

s + m′
s)

]
. (41)

Finally, the gluonic correction for �− and �0 is given by

(�E�−,�0 )g = (�E�−,�0 )Eg + (�E�−,�0 )Mg . (42)

Treating all energy corrections independently, the mass of the
baryon in the medium becomes

M∗
B = E∗0

B − εc.m. + δMπ
B + (�EB)Eg + (�EB)Mg . (43)

IV. THE EQUATION OF STATE

The total energy density and pressure at a particular baryon
density, encompassing all the members of the baryon octet, for
the nuclear matter in β equilibrium can be found as

E = 1

2
m2

σ σ 2
0 + 1

2
m2

ωω2
0 + 1

2
m2

ρb
2
03 + 3g2

ωg2
ρ�νb

2
03ω

2
0

+ γ

2π2

∑
B

∫ kf,B [
k2 + M∗

B
2]1/2

k2dk

+
∑

l

1

π2

∫ kl

0

[
k2 + m2

l

]1/2
k2dk, (44a)

P = −1

2
m2

σ σ 2
0 + 1

2
m2

ωω2
0 + 1

2
m2

ρb
2
03 + g2

ωg2
ρ�νb

2
03ω

2
0

+ γ

6π2

∑
B

∫ kf,B k4dk[
k2 + M∗

B
2]1/2

+ 1

3

∑
l

1

π2

∫ kl

0

k4dk[
k2 + m2

l

]1/2 , (44b)

where γ = 2 is the spin degeneracy factor for nuclear
matter, B = N,�,�±,�0,�−,�0, and l = e,μ. In the above
expression for the energy density and pressure, a nonlinear ω-ρ
coupling term is introduced with coupling coefficient, �ν [39].

Another important quantity for the study of nuclear matter
is the symmetry energy, which is defined as

Esym(ρB) = k2

6E∗2
N

+ g2
ρ

8m2
ρ

ρB, (45)
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TABLE II. The potential parameter V0 obtained for the quark mass mu = md = 80 MeV, ms = 230 MeV with a = 0.81006 fm−3 and the
quark mass mu = md = 150 MeV, ms = 300 MeV with a = 0.69655 fm−3. Also shown are the contribution of the center of mass correction,
pionic correction, and gluonic correction to the baryon mass in free space.

Baryon MB mq = 80 MeV mq = 150 MeV
(MeV)

V0 (MeV) ec.m. (MeV) δπ
B (MeV) (�EB )g (MeV) V0 (MeV) ec.m. (MeV) δπ

B (MeV) (�EB )g (MeV)

N 939 82.93 357.92 −72.52 −68.69 44.05 331.84 −86.96 −59.02
� 1115.6 87.03 317.80 −46.43 −65.34 50.06 310.39 −55.82 −56.13
� 1193.1 105.27 316.16 −27.36 −52.87 66.44 308.84 −32.38 −45.00
� 1321.3 114.43 319.79 −12.67 −57.65 66.82 302.17 −14.58 −49.64

where E∗
N =

√
k2 + M∗2

N , the index N = n,p for neutrons and
protons. The slope of the symmetry energy L is then obtained
as

L = 3ρ0
∂Esym(ρB)

∂ρB

∣∣∣∣
ρB=ρ0

. (46)

For obtaining a constraint on the quark mass we use the value
of compressibility given by

K = 9

[
dP

dρB

]
ρB=ρ0

(47)

The chemical potentials, necessary to define the β− equilib-
rium conditions, are given by

μB =
√

k2
B + M∗

B
2 + gωω0 + gρτ3Bb03, (48)

where τ3B is the isospin projection of the baryon B.
The lepton Fermi momenta are the positive real solutions of

(k2
e + m2

e)1/2 = μe and (k2
μ + m2

μ)1/2 = μμ. The equilibrium
composition of the star is obtained by solving the equations
of motion of meson fields in conjunction with the charge
neutrality condition, given in Eq. (50), at a given total baryonic
density ρ = ∑

B γ k3
B/(6π2). The effective masses of the

baryons are obtained self-consistently in this model.
Since we consider the octet baryons, the presence of strange

baryons in the matter plays a significant role. We define the
strangeness fraction as

fs = 1

3

∑
i |si |ρi

ρ
. (49)

Here si refers to the strangeness number of baryon i and ρi is
defined as ρi = γ k3

Bi/(6π2).
For stars in which the strongly interacting particles are

baryons, the composition is determined by the requirements

of charge neutrality and β-equilibrium conditions under the
weak processes B1 → B2 + l + νl and B2 + l → B1 + νl .
After deleptonization, the charge neutrality condition yields

qtot =
∑
B

qB

γ k3
B

6π2
+

∑
l=e,μ

ql

k3
l

3π2
= 0, (50)

where qB corresponds to the electric charge of baryon species
B and ql corresponds to the electric charge of lepton species
l. Since the time scale of a star is effectively infinite compared
to the weak interaction time scale, weak interaction violates
strangeness conservation. The strangeness quantum number
is therefore not conserved in a star and the net strangeness
is determined by the condition of β equilibrium which for
baryon B is then given by μB = bBμn − qBμe, where μB is
the chemical potential of baryon B and bB its baryon number.
Thus the chemical potential of any baryon can be obtained
from the two independent chemical potentials μn and μe of
neutron and electron, respectively.

The hyperon couplings are not relevant to the ground state
properties of nuclear matter, but information about them can
be available from the levels in � hypernuclei [40]:

gσB = xσBgσN, gωB = xωBgωN, gρB = xρBgρN,

and xσB , xωB , and xρB are equal to 1 for the nucleons and
acquire different values in different parametrizations for the
other baryons. We note that the s quark is unaffected by the σ
and ω mesons, i.e., gs

σ = gs
ω = 0.

The vector mean-fields ω0 and b03 are determined through

ω0 = gω

m∗
ω

2

∑
B

xωBρB b03 = gρ

2m∗
ρ

2

∑
B

xρBτ3BρB, (51)

where m∗
ω

2 = m2
ω + 2�νg

2
ρg

2
ωb2

03, m∗
ρ

2 = m2
ρ + 2�νg

2
ρg

2
ωω2

0,
gω = 3g

q
ω, and gρ = g

q
ρ . Finally, the scalar mean-field σ0 is

TABLE III. The contribution of the center of mass correction, pionic correction, and gluonic correction to the effective mass M∗
B of the

baryon at saturation density for quark mass mu = md = 80 MeV, ms = 230 MeV and mu = md = 150 MeV, ms = 300 MeV.

Baryon mq = 80 MeV mq = 150 MeV

M∗
B (MeV) ec.m. (MeV) δπ

B (MeV) (�EB )g (MeV) M∗
B (MeV) ec.m. (MeV) δπ

B (MeV) (�EB )g (MeV)

N 834.03 364.64 −35.40 −77.84 797.29 344.38 −46.13 −69.39
� 1039.49 326.18 −46.45 −48.29 1018.10 322.28 −57.05 −33.28
� 1109.39 324.65 −27.47 −40.59 1087.53 320.77 −33.17 −28.47
� 1289.59 322.88 −12.74 −41.86 1282.12 307.00 −14.94 −28.92
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TABLE IV. Parameters for nuclear matter. They are determined from the binding energy per nucleon, EB.E = B0 ≡ E/ρB − MN =
−15.7 MeV and pressure, P = 0 at saturation density ρB = ρ0 = 0.15 fm−3. Also shown are the values of the nuclear matter incompressibility
K and the slope of the symmetry energy L for the quark masses mq = 80 MeV and mq = 150 MeV.

mq gq
σ gω gρ σ0 M∗

N/MN K L (MeV)
(MeV)

�ν = 0 �ν = 0.05 �ν = 0.1 (MeV) (MeV)
�ν = 0 �ν = 0.05 �ν = 0.1

80 4.89039 5.17979 8.92265 9.0790 9.2440 13.34 0.88 246 85.44 87.53 89.77
150 4.39952 6.74299 8.79976 9.2522 9.7825 14.44 0.87 292 86.39 92.45 99.95

fixed by

∂E
∂σ0

= 0. (52)

The isoscalar scalar and isoscalar vector couplings g
q
σ and

gω are fitted to the saturation density and binding energy for
nuclear matter. The isovector vector coupling gρ is set by
fixing the symmetry energy at J = 32.0 MeV. For a given
baryon density, ω0, b03, and σ0 are calculated from Eqs. (51)
and (52), respectively.

Following the determination of the EOS the relation be-
tween the mass and radius of a star with its central density can
be obtained by integrating the Tolman-Oppenheimer-Volkoff
(TOV) equations [41] given by

dP

dr
= −G

r

[E + P ][M + 4πr3P ]

(r − 2GM)
, (53)

dM

dr
= 4πr2E (54)

with G as the gravitational constant and M(r) as the enclosed
gravitational mass. We have used c = 1. Given an EOS, these
equations can be integrated from the origin as an initial value
problem for a given choice of the central energy density, (ε0).
Of particular importance is the maximum mass obtained from
and the solution of the TOV equations. The value of r(= R),
where the pressure vanishes defines the surface of the star.

V. RESULTS AND DISCUSSION

Our MQMC model has two potential parameters, a and
V0 and we obtain them by fitting the nucleon mass MN =
939 MeV and charge radius of the proton 〈rN 〉 = 0.87 fm in
free space. Keeping the value of the potential parameter a same
as that for nucleons, we obtain V0 for the �, �, and � baryons
by fitting their respective masses to M� = 1115.6 MeV, M� =
1193.1 MeV, and M� = 1321.3 MeV. The set of potential
parameters for the baryons along with their respective energy
corrections at zero density are given in Table II. The quark
meson couplings g

q
σ , gω = 3g

q
ω, and gρ = g

q
ρ are fitted self-

consistently for the nucleons to obtain the correct saturation

properties of nuclear matter binding energy, EB.E. ≡ B0 =
E/ρB − MN = −15.7 MeV, pressure, P = 0, and symmetry
energy J = 32.0 MeV at ρB = ρ0 = 0.15 fm−3.

Table III shows the contribution to the spurious center-
of-mass correction, the pionic correction, and the gluonic
correction to obtain the effective mass of the baryon. It is
interesting to note that as the mass of the quark increases from
80 MeV to 150 MeV, the magnitude of the pionic correction
increases whereas that due gluonic correction decreases for all
baryon species.

We have taken the standard values for the meson masses;
namely, mσ = 550 MeV, mω = 783 MeV, and mρ = 763 MeV.
The values of the quark meson couplings, g

q
σ , gω, and gρ at

quark masses 80 MeV and 150 MeV are given in Table IV.
By changing the value of the ω-ρ coupling term �ν there is

a change in the value of gρ . For �ν = 0.05 and 0.1 we obtain
the values of gρ to be 9.25223 and 9.78255, respectively.

Incompressibility K of symmetric nuclear matter as well
as the slope of the symmetry energy L provide important
constraints to the properties of nuclear matter. In the present
work, we determine the value of the compression modulus K
at quark masses 80 MeV and 150 MeV which comes out
to be 246 MeV and 292 MeV, respectively. From various
experimental giant monopole resonance (GMR) studies [37]
and microscopic calculations of the GMR energies [42] the
value of K is predicted to lie in the range 250 < K < 325 MeV
and 230 ± 40 MeV, respectively. The slope of the nuclear
symmetry energy L in the present work is calculated to
be 85.44 MeV and 86.39 MeV for quark masses 80 MeV
and 150 MeV, which agrees well with the value 88 ± 25
extracted from isospin sensitive observables in heavy-ion
reactions [43]. By increasing the value of �ν the value of
L increases to L = 92.45 for �ν = 0.05 and L = 99.95 for
�ν = 0.1. The couplings of the hyperons to the σ meson
need not be fixed since we determine the effective masses
of the hyperons self-consistently. The hyperon couplings
to the ω meson are fixed by determining xωB . The value
of xωB is obtained from the hyperon potentials in nuclear
matter, UB = −(MB − M∗

B) + xωBgωω0 for B = �,�, and �
as −28 MeV, 30 MeV, and −18 MeV, respectively. For the

TABLE V. xωB determined by fixing the potentials for the hyperons.

mq xω� xω� xω�

(MeV)
U� = −28 MeV U� = 30 MeV U� = −18 MeV U� = −10 MeV U� = 0 MeV

80 0.95375 2.25435 0.27168 0.43029 0.62857
150 0.81309 1.58607 0.24769 0.34129 0.45829
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FIG. 1. The pressure at various densities for nuclear matter (NM)
and hyperon matter (HM).

quark masses 80 MeV and 150 MeV the corresponding values
for xωB are given in Table V. The value of xρB = 1 is fixed for
all baryons.

The � hyperon potential has been chosen from the
measured single particle levels of � hypernuclei from mass
numbers A = 3 to 209 [44] of the binding of � to symmetric
nuclear matter. Studies of � nuclear interaction [45,46] from
the analysis of �− atomic data indicate a repulsive isoscalar
potential in the interior of nuclei. However, measurements of
the � hyperon potential exhibit uncertainties. Measurements of
the final state interaction of � hyperons produced in (K−,K+)
reaction on 12C in E224 experiment at KEK [47] and E885
experiment at AGS [48] indicate a shallow attractive potential
U� ∼ −16 MeV and U� ∼ −14 or less, respectively. Hence,
to study the effect of the coupling to the cascade we show
the results at U� = −10 MeV and U� = 0 MeV in addition
to U� = −18 MeV. For U� = −10 MeV xω� = 0.43029 at
mq = 80 MeV and xω� = 0.34129 at mq = 150 MeV. For
U� = 0 MeV xω� = 0.62857 at mq = 80 MeV and xω� =
0.45829 at mq = 150 MeV. The effect of including hyperons
in neutron star matter is shown in Fig. 1. It is observed that
the EOS of neutron star matter with hyperons becomes softer
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FIG. 2. Effective mass of baryon at quark mass mq = 150 MeV.
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FIG. 3. Hyperon (�, �, �) potentials as a function of density.

starting from density ρB = 0.49 fm−3 compared to the one
without the hyperons. The reason for such behavior is that
at ρB = 0.49 fm−3 corresponding to P � 86.2 MeV/fm−3 or
P = 0.437 fm−4 of neutron star matter, slow moving �, �,
and � hyperons appear and the number of energetic nucleons
and leptons decreases.

Figure 2 shows the effective baryon mass, M∗
B/MB , as a

function of baryon density. At saturation density ρ0 the value
of M∗

B/MB increases from 0.87 for nucleons to 0.97 for the
� baryon. With increase in baryon density the effective mass
decreases and then saturates at high baryon densities.

The potentials that we have fixed for �, �, and � hyperons
are plotted in Fig. 3. The hyperon potentials reduce with
increasing density due to stronger repulsive effect at higher
densities. In fact all hyperon potentials become repulsive
nearly after twice the saturation density due to the nonlinear
density dependence of the baryon potentials.

In Fig. 4 we plot the equation of state for quark mass mq =
150 MeV at different values of the coupling parameter �ν . The
shaded region shows the empirical EOS obtained by Steiner
et al. from a heterogeneous set of seven neutron stars with
well determined distances [49]. We also show, for comparison,
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FIG. 4. The EOS at various cascade potentials and different
values of �ν for quark mass mq = 150 MeV. The shaded region shows
the empirical EOS obtained by Steiner et al. from a heterogeneous
set of seven neutron stars.
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TABLE VI. Stellar properties obtained at different values of
the parameter �ν and the �-meson coupling for quark mass mq =
80 MeV and mq = 150 MeV.

mq U� �ν ε0 Mmax R R1.4

(MeV) (MeV) (f m−4) (M�) (km) (km)

80 −18 0 4.37 1.81 13.9 16.4
−18 0.05 4.65 1.70 13.6 16.0
−18 0.1 4.98 1.64 13.2 15.5
−10 0 4.73 1.85 13.6 16.4

0 0 5.24 1.88 13.1 16.4
150 −18 0 3.52 2.15 15.6 19.2

−18 0.05 3.99 2.00 14.9 19.1
−18 0.1 4.38 1.95 14.4 18.8
−10 0 3.75 2.18 15.2 19.2
−10 0.05 4.28 2.03 14.6 19.1
−10 0.1 4.66 1.98 14.1 18.9

0 0 4.03 2.21 14.9 19.2
0 0.05 4.64 2.05 14.1 18.9
0 0.1 5.07 2.01 13.7 18.8

the EOS without the hyperons. The EOS with only neutron
and proton (NP) matter is the stiffest and the corresponding
star mass for quark mass mq = 150 MeV is 2.25 M�. The
EOS with hyperons is softer than with NP matter. In fact, the
softness increases by fixing the hyperon nuclear potentials at
U� = −28 MeV, U� = 30 MeV, and U� = −18 MeV. Within
such a set of potentials we observe that by increasing the
coupling parameter �ν the softness of the EOS increases with
a corresponding decrease in radius. The effect of the variation
in the values of the coupling parameter �ν on the star mass
and radius is given in Table VI. By changing �ν from 0 to
0.1 the radius decreases by ∼1.2 km and the mass of the star
decreases by 0.2 M�. The variation in the softness with change
in cascade potential U� is studied. We observe that the EOS
becomes stiffer for less attractive U�. Consequently we see
that the mass increases by 0.06M� if U� increases from −18
to 0 MeV. This can be attributed to the fact that the hyperons
occur at higher densities. For a comparison, we also show in
Table VI the radius corresponding to the canonical mass of
1.4 M�.

Figure 5 shows the particle fractions for various fits of
the cascade potential U� in β-equilibrated matter. At densities
below the saturation value the β decay of neutrons to muons are
allowed and thus muons start to populate. At higher densities
the lepton fraction begins to fall since charge neutrality can
now be maintained more economically with the appearance
of negative hyperon species. In the present case we observe
the appearance of �− first followed by � baryon. Such a
trend seems to be associated with our fittings of the cascade
potential. At high densities all baryons tend to saturate. Given
the growth of hyperons at higher densities, the dense interior
of the star resembles more to a hyperon star than a neutron star.

Moreover, the � hyperon is not present in the matter
distribution for the given set of potentials since we have chosen
a repulsive potential for it. The lepton fractions begin to drop
at around 3ρ0. Hence to balance the positive charge of the
protons the negatively charged �− appear. It may be noted
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FIG. 5. Particle fraction at different cascade potentials of (a)
U� = −18 MeV, (b) U� = −10 MeV, and (c) U� = 0 MeV for the
quark mass mq = 150 MeV.

that the contribution of repulsive vector potential to the overall
potential must be larger in order to prevent a collapse of the
matter. The repulsive vector potential for �− is smaller by a
factor of two for other hyperons and by a factor of three for
nucleons. In this light we can observe from Fig. 5 that the �−
is more favored to appear.

The variation of the strangeness fraction and particle
fraction of the �− with density is compared to that of the
neutron in Fig. 6. The particle fraction of the �− hyperon
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FIG. 6. Strangeness fraction and particle fraction variation with
density. The upper grid is for neutron and the lower one represents
�− hyperon.

increases at higher densities implying the appearance of
strangeness. With increasing densities the particle fraction
of the neutron decreases and tends to saturate. We should
note here that the strangeness content is sensitive to the
meson-hyperon couplings. This can be observed in Fig. 7.
By increasing the cascade potential from U� = −18 MeV to
U� = 0 MeV, the onset of hyperons occurs at higher densities.
This makes the EOS stiffer for a less attractive potential.

In Fig. 8 we plot the mass-radius relations at two quark
masses of mq = 80 MeV and mq = 150 MeV for the various
scenarios and observe a direct correlation with the degree of
stiffness of the EOS. As discussed earlier, for low values of the
coupling parameter �ν the EOS is stiffer giving higher mass
as compared to higher values of �ν . Moreover, if we vary the
cascade potential, we observe that for less attractive potential,
the mass is the highest giving Mstar = 1.88M� for quark mass
mq = 80 MeV and Mstar = 2.21M� at mq = 150 MeV. The
detailed results are shown in Table VI. The recently observed
pulsar PSR J0348+0432 provide a mass constraint of 2.01 ±
0.04M� [25] while an earlier accurately measured pulsar PSR
J1614-2230 gives a mass of 1.97 ± 0.04M� [24]. From our
calculations we obtain a range of masses varying from 1.95M�
to 2.21M� depending on the values of the coupling term as
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FIG. 7. Strangeness fraction as a function of density for various
cascade potentials.

well as the variation of the cascade potential. The neutron star
mass has been obtained under a similar framework in QMC
using bag model with variation in the values of �ν and the
cascade potential [50]. In this model the star mass obtained
for the fixed cascade potential of −18 MeV gives a value
1.776 M�, 1.880 M�, and 1.888 M� for �ν = 0,0.05, and
0.1, respectively.

Though the measurement of the mass of the pulsars PSR
J0348+0432 and PSR J1614-2230 is precise, the corre-
sponding radii measurements are not available. In fact, the
simultaneous measurement of mass and radius of the same
stellar object is uncertain. Radius measurements are primarily
carried out from the studies of bursting neutron stars that
show photospheric radius expansion [51] and from transiently
accreting neutron stars in quiescence [52]. Results from such
measurements have been used to infer the pressure at several
fiducial densities [53–55] as well as to put constraints on
the neutron star equation of state at high densities [56]. A
recent study [26] involving radius measurements to develop
a neutron star equation of state predicts the radius to be
10.1–11.1 km for a star of mass M = 1.5M�. Another analysis
[57] encompassing variations in EOS and interpretations of
the astrophysical data predicts the radius of a M = 1.4M�
neutron star to lie between 10.4 km and 12.9 km. In the
present work the radius corresponding to the canonical mass
of 1.4M� is between 15.5–16.4 km for mq = 80 MeV and
between 18.8–19.2 for mq = 150 MeV, which is quite higher
than the radius range of 10.7–13.1 km for M = 1.4M� stars
[58–60] obtained from nuclear experimental studies. One of
the reasons for this discrepancy on the radius may be due to
the fact that the EOS considered here for the TOV equation
does not include at high density, the effects of other phases
of matter such as quark matter, mixed matter or paired quark
matter. However within the context of the present model, an
improvement on this result may be explained by introducing
additional interactions through δ, σ ∗, and φ meson exchanges
without taking any other nonlinear interactions.

VI. CONCLUSION

In the present work we have developed the EOS using a
modified quark-meson coupling model which considers the
baryons to be composed of three independent relativistic
quarks confined by an equal admixture of a scalar-vector
harmonic potential in a background of scalar and vector
mean fields. Corrections to the center of mass motion, pionic,
and gluonic exchanges within the nucleon are calculated
to obtain the effective mass of the baryon. The baryon-
baryon interactions are realized by the quark coupling to the
σ , ω, and ρ mesons through a mean field approximation.
The nuclear matter incompressibility K is determined to
agree with experimental studies. Further, the slope of the
nuclear symmetry is calculated which also agrees well with
experimental observations.

The EOS is analyzed for different values of the nonlinear
coupling �ν and quark mass. The variation in the degree of
softness or stiffness of the EOS is concluded to be directly
related to the higher or lower values of the coupling �ν and
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FIG. 8. Star mass as a function of radius for various values of the coupling parameter and cascade potential at quark masses (a) mq = 80 MeV
and (b) mq = 150 MeV. Also shown is the mass observed for the pulsar PSR J0348+0432 in [25].

quark mass mq . The increase in the value of the coupling �ν

softens the EOS and decreases the maximum mass of star. In
fact, we observe that there is no significant advantage of such
a term in the context of obtaining the star mass constraint in
the present set of parametrizations.

By increasing the quark mass the scalar coupling tends to
be less sensitive to density variations, i.e., decreases more
slowly and to fit to the nuclear matter properties more
repulsion is required. The maximum star mass and strangeness
fraction are quite sensitive to that, being larger/smaller by
increasing/decreasing the quark mass. Further, by fixing the
hyperon-ω coupling from information of the hypernuclei as
well as increasing the potential U� to make it less attractive
we have analyzed the variation in the stiffness of the EOS and
the strangeness fraction at higher densities. We observe that
the hyperon interactions influence the amount of strangeness
in the star and thus have a strong impact on the maximum
mass. We were able to obtain the observed mass of two
accurately calculated pulsars, namely, PSR J0348+0432 and
PSR J1614-2230 by varying the quark mass and cascade
potentials, but more information on hypernuclei is required
to further streamline the hyperon-meson couplings, such that

we can constrain the quark mass parameter and strangeness
fraction in the star.

In the present set of parametrization, although we get the
mass of the neutron star within the constraint of 2 M�, the
radius corresponding to the canonical mass of 1.44 M� is
beyond the predicted values. From the studies of the effects of
symmetry energy and strangeness content on neutron stars,
Providência and Rabhi [28] observe that the radius of a
hyperonic star of a given mass decreases linearly with the
increase of the total hyperon content. By incorporating δ, σ ∗,
and φ meson exchange contributions, we may expect some
improvement in the prediction of the radius. Work in this
direction is in progress.
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