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Quark-Pauli effects in three octet-baryons
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To sustain a neutron star with about two times the solar mass, multibaryons including hyperons are expected
to produce repulsive effects in the interior of its high-baryon-density region. To examine possible quark-Pauli
repulsion among the baryons, we solve the eigenvalue problem of the quark antisymmetrizer for three octet-
baryons that are described by most compact spatial configurations. We find that the Pauli blocking effect is weak
in the �nn system, while it is strong in the �−nn system. The appearance of the �− hyperon is suppressed in
the neutron star interior but no quark-Pauli repulsion effectively works for the � hyperon.
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I. INTRODUCTION

Recently, the properties of multibaryons including hy-
perons (Y ’s) have attracted much attention in the study of
neutron stars. Though the neutron star is primarily composed of
neutrons (n’s), the presence of a Y appears to be energetically
unavoidable [1]. If n’s become superabundant in the interior of
the neutron star and the neutron Fermi energy greatly increases,
the n becomes unstable against decaying into the � hyperon
via a weak interaction. On top of that, if the electron (e−)
chemical potential grows with an increase in the baryon density
in the neutron star, the �− hyperon may be formed through
the weak interaction, n + e− → �− + ν. Furthermore, it is
suggested that �− may appear at a lower density earlier than
� in spite of the fact that �− is more massive than � [2]. It is
also suggested that the �− hyperon may appear at a relatively
low density depending on the strength of �− attraction in the
interior of the neutron star [3,4].

The appearance of Y ’s in the neutron star, however,
leads to a softening of the equation of state [5]. Because
of this softening the maximum mass of the neutron star
predicted by solving the equation of state with Y -nucleon
(N ) and YY interactions used in hypernuclear physics turns
out to be incompatible with the recent observation [6,7] that
finds the neutron star with about double the solar mass.
A resolution of this problem calls for a mechanism that
could provide additional repulsion to make the equation of
state stiffer [8]. In search of a candidate mechanism for the
additional repulsion, various proposals have been made, e.g.,
vector-meson exchange in baryon-baryon interactions [9,10], a
repulsive �nn three-body force [11], a universal three-baryon
repulsion [12,13], and cold quark matter rather than hadronic
matter [14]. See also Refs. [15,16] for other cases.

Both of N and Y are members of octet-baryons (B8’s).
Describing them as three-quark clusters, we investigate the
quark-Pauli effect in three-B8 systems because it could be
responsible for the needed additional repulsion. The quark-
Pauli effect becomes most apparent when the three baryons
strongly overlap. Any three-B8 channel that is (almost) Pauli
forbidden provides a short-range three-body repulsion that is
independent of the baryon-baryon interactions.

The quark-Pauli effect in the two-B8 system has already
been studied [17,18]. The effect often leads to important repul-
sion regardless of the detail of the baryon-baryon interaction
[19]. For example, the repulsive � single-particle potential in
nuclei [20] is considered to originate from the strong Pauli
repulsion in the �N (I = 3

2 ) 3S1 state [21]. The most recent
Nijmegen ESC08 potential incorporates this quark effect
phenomenologically because it is difficult to achieve strongly
repulsive short-range interactions in this channel [22]. There
are some earlier studies on the quark-Pauli effect in three- and
more-baryon systems. See, for example, Refs. [23–27]. These
are mostly for multibaryon systems composed of N ’s and a
single hyperon such as Nn and �Nn.

The plan of this paper is as follows. We construct antisym-
metric three-B8 states in Sec. II with a particular emphasis
on the most compact spatial quark configurations. We discuss
in Sec. III the quark-Pauli effect by solving the eigenvalue
problem of the antisymmetrizer of 9 quarks. Conclusions are
drawn in Sec. IV.

II. THREE OCTET-BARYON STATES

The octet baryons (B8) with spin S = 1
2 include N,�,�,

and �, all belonging to a member of the flavor SU(3) symmetry
(λμ) = (11). We use the Elliott notation for the SU(3) group
[28]. The B8’s are classified by the SU(2)×U(1) subgroup
label, a = YI , the hypercharge Y and the isospin I : N (YI =
1 1

2 ), �(00), �(01), �(−1 1
2 ). Assuming that the B8 is a three-

quark cluster, we describe its orbital part φ(orb)(123) by the
(0s)3 harmonic-oscillator wave function with a common size
parameter. Since φ(orb)(123) is totally symmetric and the B8

color wave function C(123) is totally antisymmetric, its spin-
flavor part represented by W [3](123) must be totally symmetric,
as indicated by [3] symmetry. By specifying the z components
of the spin and the isospin by Sz and Iz, respectively, a full
quark-model description of B8 reads [29]

ψ(11)aSzIz
(123) = φ(orb)(123)W [3]

aSzIz
(123)C(123). (1)
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More explicitly, W
[3]
aSzIz

(123) is given by

W
[3]
aSzIz

(123) = 1√
2

∑
S ′(λ′μ′)=0(01),1(20)

[[
w 1

2
(1)w 1

2
(2)

]
S ′w 1

2
(3)

]
1
2 Sz

× [[F(10)(1)F(10)(2)](λ′μ′)F(10)(3)](11)aIz
, (2)

where w 1
2

and F(10) are the spin and flavor functions of the
single quark. The square bracket [ ] is used to stand for spin
and/or flavor SU(3) couplings.

Equation (1) gives the normalized B8 wave function that sat-
isfies the required symmetry at the quark level. By combining
two B8 wave functions, it is possible to express the spin-isospin
coupled basis in terms of a combination of the spin-flavor
coupled basis [18,30]. Physically allowed two-baryon states
have to satisfy the generalized Pauli principle that demands the
total wave function to be antisymmetric under the exchange of
quarks. We extend this to a special three-B8 state in which all
nine quarks occupy the same 0s harmonic-oscillator function.
The orbital configuration of that state is most compact and such
a three-B8 state is expected to be most strongly influenced by
the quark-Pauli principle.

To construct the fully antisymmetric nine-quark states, we
first start from the three-B8 configuration that is antisymmetric

under the exchange of baryons. The (0s)9 configuration is
apparently symmetric under the exchange of baryons. The
color part is also totally symmetric with respect to the exchange
of baryons. Therefore the spin-flavor part of the three-B8 state
must be antisymmetric under the exchange of baryons. To
construct such three-B8 spin-flavor states, we combine the
spin-isospin coupled two-B8 state, [W [3]

a1
(123)W [3]

a2
(456)]S ′a′ ,

with the third B8 as follows:[[
W [3]

a1
(123)W [3]

a2
(456)

]
S ′a′W

[3]
a3

(789)
]
SaSzIz

. (3)

Here S is the total spin that couples S ′ with 1
2 and a includes

the isospin coupling of I ′ and I3. The hypercharge is trivially
given as Y ′ = Y1 + Y2 and Y = Y ′ + Y3. The z components of
S and I , Sz and Iz, are abbreviated in what follows throughout
this section. Since in this section we focus on constructing such
three-B8 spin-flavor functions that are antisymmetric under the
baryon exchange, we suppress the quark labels and simplify
W [3]

a (123) by Ba(1) and express Eq. (3) as[[
Ba1 (1)Ba2 (2)

]
S ′a′Ba3 (3)

]
Sa

. (4)

The fully antisymmetrized spin-flavor function constructed
from Eq. (4) is

	
(SF)
Sa (a1a2a3,S

′a′) = N {[[
Ba1 (1)Ba2 (2)

]
S ′a′Ba3 (3)

]
Sa

− [[
Ba1 (2)Ba2 (1)

]
S ′a′Ba3 (3)

]
Sa

+ [[
Ba1 (2)Ba2 (3)

]
S ′a′Ba3 (1)

]
Sa

− [[
Ba1 (3)Ba2 (2)

]
S ′a′Ba3 (1)

]
Sa

+ [[
Ba1 (3)Ba2 (1)

]
S ′a′Ba3 (2)

]
Sa

− [[
Ba1 (1)Ba2 (3)

]
S ′a′Ba3 (2)

]
Sa

}
, (5)

which is characterized by S,a and S ′,a′ as well as a1,a2,a3. Here N is a normalization constant.
With use of the angular-momentum recoupling or Racah coefficients U in unitary form, function (5) can be expressed as

	
(SF)
Sa (a1a2a3,S

′a′) = N
{[[

Ba1 (1)Ba2 (2)
]
S ′a′Ba3 (3)

]
Sa

+ (−1)S
′+I1+I2−I ′[[

Ba2 (1)Ba1 (2)
]
S ′a′Ba3 (3)

]
Sa

+
∑
S12I12

[
(−1)1/2+S12−S+I1+I12−IU

(
1

2

1

2
S

1

2
; S ′S12

)
U (I1I2II3; I ′I12)

[[
Ba2 (1)Ba3 (2)

]
S12a12

Ba1 (3)
]
Sa

+ (−1)1/2−S+I1+I2+I3−IU

(
1

2

1

2
S

1

2
; S12S

′
)

U (I3I2II1; I12I
′)
[[

Ba3 (1)Ba2 (2)
]
S12a12

Ba1 (3)
]
Sa

+ (−1)1/2+S ′−S+I ′+I3−IU

(
1

2

1

2
S

1

2
; S12S

′
)

U (I3I1II2; I12I
′)
[[

Ba3 (1)Ba1 (2)
]
S12a12

Ba2 (3)
]
Sa

+ (−1)1/2−S ′+S12−S+I1+2I2+I12−I ′−IU

(
1

2

1

2
S

1

2
; S ′S12

)
U (I2I1II3; I ′I12)

[[
Ba1 (1)Ba3 (2)

]
S12a12

Ba2 (3)
]
Sa

]}
,

(6)

where the order of the particle labels is always arranged to 1, 2, and 3, while that of the baryon species, a1a2a3, is changed
appropriately. In what follows, we often abbreviate [[Ba1 (1)Ba2 (2)]S ′a′Ba3 (3)]Sa as [[Ba1Ba2 ]S ′a′Ba3 ]Sa .

It should be noted that for a given set of a1a2a3, functions (6) generated using all possible values of S ′a′ provide a full set
of antisymmetric functions but they are not always independent. Also the order of a1a2a3 is not important. For example, two
independent functions, 	

(SF)
1
2 1 1

2
(��N,01) and 	

(SF)
1
2 1 1

2
(��N,11), are related to 	

(SF)
1
2 1 1

2
(�N�,0 1

2 ) and 	
(SF)
1
2 1 1

2
(�N�,1 1

2 ) as

	
(SF)
1
2 1 1

2
(��N,01) = 1

2
	

(SF)
1
2 1 1

2

(
�N�,0

1

2

)
+

√
3

2
	

(SF)
1
2 1 1

2

(
�N�,1

1

2

)
,

	
(SF)
1
2 1 1

2
(��N,11) = −

√
3

2
	

(SF)
1
2 1 1

2

(
�N�,0

1

2

)
+ 1

2
	

(SF)
1
2 1 1

2

(
�N�,1

1

2

)
. (7)
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In the case of �NN with S = 1
2 ,I = 1, there are four possible S ′a′ values but only two independent, antisymmetric functions

can be constructed. By introducing a label v to enumerate the antisymmetric, orthogonal functions, they read

	
(SF)
1
2 21

(�NN,v = 1) = 1√
3

[[NN ]021�] 1
2 21 + 1

3

[
[�N ]01 1

2
N

]
1
2 21 + 1√

18

[
[�N ]01 3

2
N

]
1
2 21

− 1√
3

[
[�N ]11 1

2
N

]
1
2 21 − 1√

6

[
[�N ]11 3

2
N

]
1
2 21,

	
(SF)
1
2 21

(�NN,v = 2) = 1√
3

[[NN ]120�] 1
2 21 + 1√

6

[
[�N ]01 1

2
N

]
1
2 21 − 1√

3

[
[�N ]01 3

2
N

]
1
2 21

+ 1√
18

[
[�N ]11 1

2
N

]
1
2 21 − 1

3

[
[�N ]11 3

2
N

]
1
2 21. (8)

In the case where only one antisymmetric function is possible,
the label v is suppressed. All of the totally antisymmetric
spin-flavor functions of three-B8 systems are tabulated for
both S = 1

2 and 3
2 in Appendix A of the Supplemental Material

[31]. The spin part of the three-B8 state with S = 3
2 is totally

symmetric under the baryon exchange, so that its flavor part is
totally antisymmetric.

The flavor SU(3) symmetry was used to good advantage
in studying the B8B8 interaction [29]. This is based on the
assumption that the underlying Hamiltonian for the octet-
baryon system is approximately SU(3) scalar. Similarly we
expect that the flavor SU(3) symmetry plays an important
role in the three-B8 systems. To exploit this possibility, we
represent all three-B8 states obtained in the spin-isospin
coupled basis in the flavor SU(3) basis. This is done in exactly
the same way as the two-baryon case [18,30] with use of
reduced SU(3) Wigner coefficients [32]:[
Ba1 (1)Ba2 (2)

]
S12a12

=
∑

(λ12μ12)ρ12

〈(11)a1 (11)a2||(λ12μ12)a12〉ρ12

× [B(11)(1)B(11)(2)]S12(λ12μ12)ρ12a12 , (9)

where (λ12μ12) takes (22), (11), (00) for S12 = 0 and (30),
(03), (11) for S12 = 1, respectively. The label ρ12 distinguishes
possible multiple occurrences of (λ12μ12). Two representations
appear for (λ12μ12) = (11), and ρ12 = 1 stands for an antisym-
metric coupling, while ρ12 = 2 a symmetric coupling. Further
application of the SU(3) coupling with Ba3 (3) makes it possible
to express the three-B8 spin-isospin coupled state as follows:[[

Ba1 (1)Ba2 (2)
]
S12a12

Ba3 (3)
]
Sa

=
∑

(λ12μ12)ρ12(λμ)ρ

〈(11)a1 (11)a2||(λ12μ12)a12〉ρ12

×〈(λ12μ12)a12 (11)a3||(λμ)a〉ρ
× |S12(λ12μ12)ρ12; S(λμ)ρa〉 (10)

with

|S12(λ12μ12)ρ12; S(λμ)ρa〉
= [

[B(11)(1)B(11)(2)]S12(λ12μ12)ρ12B(11)(3)
]
S(λμ)ρa

. (11)

For the sake of convenience, short-hand notation for
|S12(λ12μ12)ρ12; S(λμ)ρa〉 is introduced as shown in Table I.

Applying Eq. (10) in Eq. (6) and following the construction
of the function 	

(SF)
Sa (a1a2a3,v) defines the totally antisym-

metric spin-flavor three-B8 state in the flavor SU(3) basis as
follows:

	
(SF)
Sa (a1a2a3,v)

=
∑

S12(λ12μ12)ρ12(λμ)ρ

G(a1a2a3,v,S12(λ12μ12)ρ12,(λμ)ρ; Sa)

× |S12(λ12μ12)ρ12; S(λμ)ρa〉. (12)

Tables II and III tabulate the coefficients G for some interesting
three-B8 systems including (i) NNN , (ii) YNN and YYN that
couple each other, (iii) high-isospin systems that may be impor-
tant in the neutron-star interior, and (iv) those systems that lead
to almost Pauli-forbidden states. Other three-B8 systems are
tabulated in Appendix B of the Supplemental Material [31].

As Table II shows for the S = 1
2 case, a group of NNN (I =

1
2 ), ��� (I = 5

2 ), and ��� (I = 2) states belongs to |14〉1 −
|14〉2, and likewise a group of �NN (I = 2), ��N (I = 5

2 ),
and ��� (I = 1

2 ) belongs to |41〉1 − |41〉2. In the S = 3
2

sector, Table III shows that �NN (I = 1), ��N (I = 2), and

TABLE I. Short-hand notation |λμ〉n for the antisymmetric spin-
flavor functions in the flavor SU(3) basis, |S12(λ12μ12)ρ12; S(λμ)ρa〉,
where the multiplicity label ρ is explicitly written for the SU(3)
couplings of (11) × (11) → (11) and (22) × (11) → (22), but it is
suppressed in multiplicity-free cases. The total spin S and the label a

are abbreviated in the short-hand notation.

|41〉1 |0(22); S(41)a〉 |11〉1 |0(22); S(11)a〉
|41〉2 |1(30); S(41)a〉 |11〉2 |1(30); S(11)a〉
|30〉1 |0(22); S(30)a〉 |11〉3 |1(03); S(11)a〉
|30〉2 |1(30); S(30)a〉 |11〉4 |1(11)1; S(11)1a〉
|30〉3 |1(11)1; S(30)a〉 |11〉5 |1(11)1; S(11)2a〉
|30〉4 |0(11)2; S(30)a〉 |11〉6 |0(11)2; S(11)1a〉
|22〉1 |0(22); S(22)1a〉 |11〉7 |0(11)2; S(11)2a〉
|22〉2 |0(22); S(22)2a〉 |11〉8 |0(00); S(11)a〉
|22〉3 |1(30); S(22)a〉 |03〉1 |0(22); S(03)a〉
|22〉4 |1(03); S(22)a〉 |03〉2 |1(03); S(03)a〉
|22〉5 |1(11)1; S(22)a〉 |03〉3 |1(11)1; S(03)a〉
|22〉6 |0(11)2; S(22)a〉 |03〉4 |0(11)2; S(03)a〉
|14〉1 |0(22); S(14)a〉 |00〉1 |0(11)1; S(00)a〉
|14〉2 |1(03); S(14)a〉 |00〉2 |0(11)2; S(00)a〉
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TABLE II. Coefficients G in Eq. (12) for some three-B8 systems with S = 1/2. The label v distinguishes the multiple occurrence of the
orthogonal, antisymmetric states for a given SYI .

Y I 3 1
2 2 0 2 1 2 2 1 1

2

NNN �NN �NN �NN �NN �NN �NN �NN �NN ��N ��N ��N

v = 1 v = 2 v = 1 v = 2 v = 1 v = 2

|41〉1 − 1√
2

|41〉2
1√
2

|30〉1

|30〉2

|30〉3

|30〉4

|22〉1
3

4
√

2

√
3

4 − 1
4
√

2

√
15
8 − 1

8

√
3
5 − 9

8
√

10
1
8

√
3
10

1
8
√

5

|22〉2
1
4

√
7
30 − 1

4

√
7
5 − 1

4

√
21
10 −

√
7

40 − 3
√

7
40 − 1

40

√
21
2 − 1

8

√
7
2

√
21

40

|22〉3 − 1√
6

− 1
3 − 1√

30
− 1√

30
− 1√

15
1

3
√

10

|22〉4
1
4 − 1

2
√

6
− 5

12
1

4
√

30
− 1

4

√
5
6 − 3

8
√

5
− 7

8
√

15
1
12

√
5
2

|22〉5 − 1
2 − 1√

6
1
6 − 1

2

√
5
6

1
2
√

30
3

4
√

5
− 1

4
√

15
− 1

6
√

10

|22〉6 − 1
2
√

15
1√
10

1
2

√
3
5

1
10

√
2

3
10

√
2

√
3

20
1
4 − 1

10

√
3
2

|14〉1
1√
2

− 1
2

√
3
2

1
2
√

2
−

√
3

4
1

2
√

2
−

√
3

4 − 1
4
√

6
− 1

4

√
3
2

3
8 − 1

8
√

3
1

4
√

2

|14〉2 − 1√
2

1
2

√
3
2 − 1

2
√

2

√
3

4 − 1
2
√

2

√
3

4
1

4
√

6
1
4

√
3
2 − 3

8
1

8
√

3
− 1

4
√

2

|11〉1 − 11
20

√
3

−
√

3
20 − 3

10
√

2
1

2
√

6
− 1

5

|11〉2 − 1
2
√

30
− 1

2
√

30
2√
15

1√
10

|11〉3 − 1
2
√

30
− 1

2

√
5
6 − 1

2
√

5
1

2
√

15

|11〉4
1√
6

1
4 − 1

4
√

3
1

2
√

2

|11〉5
1√
30

1
4
√

5
1
4

√
3
5

1
2
√

10

|11〉6 − 1√
10

− 1
4

√
3
5 − 3

4
√

5
− 1

2

√
3
10

|11〉7
1√
50

−
√

2
5

1
20

√
3

1
4

3
10

√
3
2

|11〉8
1
4

1
4

1
2
√

6
− 1

2
√

2

|03〉1 − 1
2

√
3
10 − 3

2
√

10
1
4

√
3
5 − 1

4

√
3
5

3
4
√

10
1
4

√
3
10 − 3

4
√

5

|03〉2
1

2
√

6
1

2
√

2
− 1

4
√

3
1

4
√

3
− 1

4
√

2
− 1

4
√

6
1
4

|03〉3
1

2
√

3
1
2 − 1

2
√

6
1

2
√

6
− 1

4 − 1
4
√

3
1

2
√

2

|03〉4 − 1
2
√

5
− 1

2

√
3
5

1
2
√

10
− 1

2
√

10
1
4

√
3
5

1
4
√

5
− 1

2

√
3
10

Y I 1 1
2 1 3

2 1 5
2 −1 5

2 −2 0 −2 2 −3 1
2

��N ��N �NN ��N ��N ��N ��N ��N ��� ��� ��� ��� ���

v = 1 v = 2 v = 1 v = 2 v = 1 v = 2

|41〉1 − 1
4

√
5
3 − 1

8
√

3
−

√
5

8

√
5

8 −
√

15
8

1√
2

− 1
2

√
3
2 − 1

2
√

2
1√
2

|41〉2
1
4

√
5
3

1
8
√

3

√
5

8 −
√

5
8

√
15
8 − 1√

2
1
2

√
3
2

1
2
√

2
− 1√

2

|30〉1 − 1
2

√
3
10

1
4

√
3
2

3
4
√

10
− 3

4
√

10
− 1

4

√
3
10 − 1

2

√
3
10

3
2
√

10

|30〉2
1

2
√

6
− 1

4

√
5
6 − 1

4
√

2
1

4
√

2
1

4
√

6
1

2
√

6
− 1

2
√

2

|30〉3 − 1
2
√

3
1
4

√
5
3

1
4 − 1

4 − 1
4
√

3
− 1

2
√

3
1
2

|30〉4 − 1
2
√

5
1
4

1
4

√
3
5 − 1

4

√
3
5 − 1

4
√

5
− 1

2
√

5
1
2

√
3
5
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TABLE II. (Continued.)

Y I 1 1
2 1 3

2 1 5
2 −1 5

2 −2 0 −2 2 −3 1
2

��N ��N �NN ��N ��N ��N ��N ��N ��� ��� ��� ��� ���

v = 1 v = 2 v = 1 v = 2 v = 1 v = 2

|22〉1
3

4
√

5
− 1

8

√
3
5

1
4

√
3
2

1
8

√
15
2 − 5

8
√

2
− 3

8
√

2
− 1

8

√
3
2

|22〉2
1
20

√
7
3

√
7

8
1
4

√
7
10

1
8

√
7
2 − 1

8

√
21
10

1
8

√
35
6 − 1

8

√
7
10

|22〉3

√
2
15

1
4
√

3
1
8

√
5
3

7
24

3
8 − 1

8
√

3

|22〉4
1

2
√

10
7

4
√

30
1

2
√

3
1
4

√
5
3

1
12

1
4 − 1

4
√

3

|22〉5 − 1√
10

1
2
√

30
− 1

2
√

3
− 1

4

√
5
3

5
12

1
4

1
4
√

3

|22〉6 − 1
5
√

6
− 1

2
√

2
− 1

2
√

5
− 1

4 − 1
4

√
3
5 − 1

4

√
5
3

1
4
√

5

|14〉1
1

2
√

2
− 1

4

√
3
2 − 1

2
√

3
1
4

√
5
3 − 1

4
1
4

√
3

4 − 1√
2

1√
2

|14〉2 − 1
2
√

2
1
4

√
3
2

1
2
√

3
− 1

4

√
5
3

1
4 − 1

4 −
√

3
4

1√
2

− 1√
2

|11〉1
1
5

|11〉2
1√
30

|11〉3 − 1√
10

− 1√
30

|11〉4 − 1
2
√

2

|11〉5
1

2
√

10
1√
30

|11〉6 − 1
2

√
3
10 − 1√

10

|11〉7 − 3
10

√
3
2

|11〉8

|03〉1
1
4

√
3
5

|03〉2 − 1
4
√

3

|03〉3 − 1
2
√

6

|03〉4
1

2
√

10

TABLE III. Same as Table II, but for S = 3/2.

Y I 2 0 2 1 1 1
2 1 3

2 0 2 −1 1
2 −2 0 −2 1

�NN �NN �NN ��N ��N ��N ��N ��N ��N ��� ��� ��� ���

|30〉2
1√
2

1√
6

1√
3

1√
3

√
2
3

|30〉3
1
2

1
2
√

3
1√
6

1√
6

1√
3

|22〉3
2
3

√
2
15

2
3

√
2
5

√
2
15 − 1

3
1√
3

− 2
3

√
2
15 − 2

3

√
2
5 −

√
2
15

2
3

|22〉4 − 2
3 −

√
2
15 − 2

3

√
2
5 −

√
2
15

1
3 − 1√

3
2
3 −

√
2
15

2
3

√
2
5

√
2
15 − 2

3

|22〉5 − 1
3 − 1√

30
− 1

3

√
2
5 − 1√

30
1
6 − 1

2
√

3
1
3 − 1√

30
1
3

√
2
5

1√
30

− 1
3

|11〉2
1√
30

− 1√
10

1√
30

1√
30

1√
10

− 1√
30

|11〉3 − 1√
30

1√
10

− 1√
30

− 1√
30

− 1√
10

1√
30

|11〉5 −
√

2
15

√
2
5 −

√
2
15 −

√
2
15 −

√
2
5

√
2
15

|03〉2

√
2
3

1√
3

− 1√
3

|03〉3 − 1√
3

− 1√
6

1√
6
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��� (I = 1) systems are all expressed by 2|22〉3 − 2|22〉4 −
|22〉5.

III. QUARK EXCHANGES OF THREE
OCTET-BARYON STATES

The nine-quark three-B8 wave function with SaSzIz that is
antisymmetric under the baryon exchange is given by

	SaSzIz
(B1B2B3,v)

= 	(orb)(B1B2B3)	(SF)
SaSzIz

(a1a2a3,v)	(color)(B1B2B3),

(13)

where 	(orb)(B1B2B3) denotes the orbital part with the (0s)9

configuration, and 	(color)(B1B2B3) is the color wave function
C(123)C(456)C(789). The spin-flavor part 	

(SF)
SaSzIz

(a1a2a3,v)
is given by Eq. (12) with Bai

being replaced by the correspond-
ing three-quark wave function W [3]

ai
. In order to examine the

quark-Pauli effect, we have to solve the eigenvalue problem
of the antisymmetrizer A that makes the nine-quark wave
function totally antisymmetric under the exchange of quarks
among the baryons. Those eigenfunctions that correspond to
vanishing eigenvalues or considerably small eigenvalues are
called Pauli forbidden or almost Pauli forbidden. Three-B8

baryons cannot occupy such forbidden configurations, namely,
they exhibit quark-Pauli repulsion.

It is useful to note that A is scalar with respect to the total
spin and flavor SU(3) label, that is, it has no matrix elements
between different SU(3) labels though it mixes the content of
three-baryon species. This is the reason why we express the
basis (13) in the flavor SU(3) representation.

Since we have three baryons each of which consists of three
quarks and is antisymmetrized, A reduces to 55 terms of five
basic types [26]:

A = [1 − 9(P36 + P69 + P93) + 27(P396 + P369)

+ 54(P36P59 + P69P83 + P93P26)]

(
6∑

P=1

(−1)π(P)P
)

− 216P26P59P83, (14)

where Pij exchanges quarks i and j and acts on the full orbital,
color, spin, and flavor degrees of freedom. The six P include
those quark exchanges that are equivalent to baryon exchanges.
Of the five basic types of terms in A, the first is the direct term,
and the second, (P36 + P39 + P69)(

∑6
P=1(−1)π(P)P), involves

only the exchange of baryons and one quark pair. Terms in A
of the third to fifth categories involve the exchange of quark
pairs between different baryon pairs.

Our three-B8 wave function (13) is already antisymmetrized
with respect to the baryon exchanges, so A can be effectively
replaced by A′ = 1

6A. The matrix elements of A′ with the
basis functions (13) are obtained by combining those of the
orbital, spin-isospin, and color parts. The spin-isospin matrix
elements are evaluated by making use of the decomposition
(12) in the flavor SU(3) basis. Apparently A′ conserves S as
well as the subgroup labels I and Y of the flavor SU(3) group.
The orbital matrix element is unity, independent of the quark
exchange because of the fully symmetric (0s)9 configuration.

The color matrix element is also simple: the fifth term in A′,
P26P59P83, has no color matrix element, whereas those of
the other terms are 1

3 , 1
9 , 1

9 , for P36, P396, P36P59, respectively
[23,26]. The full matrix elements including the orbital, spin-
flavor, and color parts between the basis functions,

〈S12(λ12μ12)ρ12; S(λμ)ρa|A′|S ′
12(λ′

12μ
′
12)ρ ′

12; S(λμ)ρa〉,
(15)

are calculated by the use of SU(3) 6-(λμ) and 9-(λμ)
coefficients [33] and are tabulated in Appendix C of the
Supplemental Material [31]. Assuming the eigenfunction of
A′ to be ∑

B1B2B3v

CSa(B1B2B3,v)	SaSzIz
(B1B2B3,v), (16)

we solve the eigenvalue problem∑
B ′

1B
′
2B

′
3v

′

〈
	SaSzIz

(B1B2B3,v)
∣∣A′∣∣	SaSzIz

(B ′
1B

′
2B

′
3,v

′)
〉

×CSa(B ′
1B

′
2B

′
3,v

′)

= μSaCSa(B1B2B3,v). (17)

The eigenvalues μSa are given in Tables IV and V. The
eigenfunctions are available from the authors of this paper
upon request.

As seen in Tables IV and V, some three-B8 systems
do not couple with other systems. They are NNN (I = 1

2 ),
�NN (2), ��N ( 5

2 ), ���( 5
2 ), ���(2), ���( 1

2 ) for S = 1
2

and �NN (0), �NN (1), ��N (2), ���(0), ���(1) for S =
3
2 , respectively. Among these, �NN (2), ��N ( 5

2 ), ���( 1
2 ),

and �NN (1), ��N (2), ���(0), ���(1) are all considered
almost Pauli-forbidden states because the corresponding μSa

values are fairly small. The strong quark-Pauli repulsion
in the S = 1

2 systems, �NN (2), ��N ( 5
2 ), and ���( 1

2 ),
results from the fact that they consist of the |41〉1 and |41〉2

components (see Table II) whose matrix elements of A′

( 2
81 − 2

81

− 2
81

2
81

)
(18)

are small. The reason that the above-mentioned systems with
S = 3

2 become almost Pauli forbidden is similar to the S = 1
2

case. As seen in Table III, �NN (1), ��N (2), and ���(1)
consist of |22〉n components and ���(0) consists of |30〉n
components. The matrix elements of those components are
relatively small as given in Appendix C of the Supplemental
Material [31].

In the coupled-channel three-B8 case, we find many
completely Pauli-forbidden states �FS

Sa . Examples of �FS
Sa that

are uniquely determined are

�FS
1
2 2 0

= 1

2
	 1

2 2 0(�NN ) +
√

3

2
	 1

2 2 0(�NN ),

�FS
1
2 2 1

= −1

4
	 1

2 2 1(�NN ) +
√

3

8
	 1

2 2 1(�NN,v=1)

+ 3

4
	 1

2 2 1(�NN,v=2),

035803-6
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TABLE IV. Eigenvalues μSa in Eq. (17), given in increasing order, for three-B8 systems with S = 1/2. The expectation value of A′

calculated for each B8B8B8 system is given in the 〈A′〉 column.

Y I B8B8B8 〈A′〉 μSa Y I B8B8B8 〈A′〉 μSa Y I B8B8B8 〈A′〉 μSa

3 1
2 NNN 100

81
100
81 0 0 ��N v = 1 5

6 0 −1 1
2 ��N v = 1 17

81 0

2 0 �NN 25
27 0 ��N v = 2 55

54 0 ��N v = 2 73
81 0

�NN 25
81

100
81 ��N v = 1 5

54 0 ��� 1
2 0

2 1 �NN 25
27 0 ��N v = 2 55

486
200
243 ��� v = 1 83

162 0

�NN v = 1 50
81

200
243 ��� 10

27
130
81 ��� v = 2 17

243
4
81

�NN v = 2 125
243

100
81 0 1 ��N v = 1 33

54 0 ��� v = 1 1
36

200
243

2 2 �NN 4
81

4
81 ��N v = 2 17

162 0 ��� v = 2 83
324

130
81

1 1
2 �NN v = 1 25

27 0 ��N v = 1 11
162 0 −1 3

2 ��N 34
81 0

�NN v = 2 35
81 0 ��N v = 2 17

27 0 ��� v = 1 35
162 0

��N 5
6 0 ��N v = 3 673

1458 0 ��� v = 2 253
486

4
81

��N v = 1 85
162 0 ��N v = 4 295

729
4
81 ��� v = 1 1

3
200
243

��N v = 2 35
243

200
243 ��� 4

9
200
243 ��� v = 2 50

81
100
81

��N v = 1 5
9

100
81 ��� 23

81
100
81 −1 5

2 ��� 100
81

100
81

��N v = 2 20
81

130
81 ��� 19

27
130
81 −2 0 ��� 1

27 0

1 3
2 �NN 10

27 0 0 2 ��N v = 1 1
3 0 ��� 1

81
4
81

��N v = 1 73
162 0 ��N v = 2 125

243
4
81 −2 1 ��� 13

27 0

��N v = 2 235
486

4
81 ��� 13

27
200
243 ��� v = 1 26

81
4
81

��N v = 1 5
18

200
243 ��� 7

9
100
81 ��� v = 2 17

243
200
243

��N v = 2 85
162

100
81 −2 2 ��� 100

81
100
81

1 5
2 ��N 4

81
4
81 −3 1

2 ��� 4
81

4
81

TABLE V. Same as Table IV, but for S = 3/2.

Y I B8B8B8 〈A′〉 μSa

2 0 �NN 25
27

25
27

2 1 �NN 35
243

35
243

1 1
2 �NN 50

81
35
243

��N 95
243

5
9

��N 50
81

25
27

1 3
2 ��N 31

486
1

27

��N 19
162

35
243

0 0 ��N 20
27

35
243

��N 140
243

5
9

��� 55
81

35
27

0 1 ��N 34
81

1
27

��N v = 1 134
729

35
243

��N v = 2 565
729

5
9

��� 23
81

25
27

0 2 ��N 35
243

35
243

−1 1
2 ��N 14

81
1

27

��� 95
243

35
243

��� 14
81

5
9

−1 3
2 ��� 355

486
35
243

��� 55
162

25
27

−2 0 ��� 1
27

1
27

−2 1 ��� 35
243

35
243

�FS
1
2 0 2

=
√

3

4
	 1

2 0 2(��N,v=1) + 3

4
	 1

2 0 2(��N,v=2)

− 1

2
	 1

2 0 2(���),

�FS
1
2 −2 0

= 1

2
	 1

2 −2 0(���) −
√

3

2
	 1

2 −2 0(���),

�FS
1
2 −2 1

= 1

4
	 1

2 −2 1(���) +
√

3

8
	 1

2 −2 1

× (���,v=1) + 3

4
	 1

2 −2 1(���,v=2). (19)

The existence of these Pauli-forbidden states indicates that
they are not allowed to take the (0s)9 configuration in, e.g.,
few-body calculations consisting of N ’s and Y ’s. Other com-
pletely Pauli-forbidden states have degeneracy. In the coupled-
channel three-B8 systems, we also find several almost-Pauli-
forbidden states, for example, ��� + ��� with SI = 1

2 0
and ��N + ��N with SI = 3

2
3
2 .

Whether or not the �NN system receives a strong quark-
Pauli repulsion is particularly interesting for the neutron star
problem as noted in the Introduction. The �NN system takes
I = 0,1 in S = 1

2 and I = 0 in S = 3
2 . In the latter case the

value of μSa is large, indicating that the �NN system with
SI = 3

2 0 is completely allowed. In the former case we have one
completely Pauli-forbidden state in both I = 0,1 states. The
probability of finding the �NN state in those Pauli-forbidden
states is, however, rather small as shown in Eq. (19), so the
�NN system receives a minor quark-Pauli repulsion. Thus the
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quark-Pauli repulsion is unlikely to suppress the emergence of
the � hyperon that is a candidate for the first hyperon in
increasing baryon density.

In contrast to �, the � hyperon is involved in producing
several almost-Pauli-forbidden �NN states. A specific case
is �NN (I = 2) including the �−nn state. The quark-Pauli
effect prevents �− from appearing with increasing baryon
density in the neutron star.

The H dibaryon is conjectured to be a B8B8 bound or
resonant state with S = 0, Y = −1, I = 0. Its flavor symmetry
is SU(3) scalar, that is, (λ12μ12) = (00) in Eq. (9). No clear
experimental confirmation of the H dibaryon has been made
yet. A question arises if the quark-Pauli effect demolishes the
most compact three-B8 configuration consisting of HB8 if
the H is assumed to have a main configuration of (0s)6. The
HB8 state should have (λμ) = (11) and S = 1

2 . We identify
the HB8 state as |11〉8 in Table I. The expectation value of
A′ with this state is 5

12 as seen in the table of Appendix C
in the Supplemental Material [31]. This implies a somewhat
repulsive quark-Pauli effect, which is qualitatively consistent
with the corresponding result of Ref. [34].

IV. CONCLUSION

The hyperons appear to be present in the interior of
the neutron star with increasing baryon density. Since their
appearance generally leads to the softening of its equation
of state, some repulsive mechanism to suppress the role of
the hyperons is called for in order to be consistent with the
observation that the mass of the neutron star can be twice
as heavy as the solar mass. At present the information on
two- and three-baryon forces including the hyperons is very
much limited, and it is hard to draw clear conclusions on
the required repulsion. In this work we have considered the

role of the quark-Pauli blocking effect on the three octet-
baryons.

Assuming a common orbital wave function for all the
octet-baryons, we have considered the most compact spatial
configuration in which the three particles are located on top of
each other, as a possible quark-Pauli effect becomes largest.
We have first constructed all possible states with the total
spin S = 1

2 and 3
2 that are antisymmetric in the simultaneous

exchange of spin and flavor degrees of freedom of the baryons.
The flavor SU(3) symmetry of the three particles is exploited to
classify the constructed states. The quark-Pauli effect is then
quantified by calculating the eigenvalues of the nine-quark
antisymmetrizer in those three-baryon states.

Several systems have been found to have vanishing or small
eigenvalues that lead to the strong quark-Pauli repulsion. In
the S = 1

2 case, they are �NN (I = 2), ��N ( 5
2 ), ���( 1

2 ),
���(0), and ���(0), where I is the total isospin of the
three baryons. In the S = 3

2 case, they are �NN (1), ��N (2),
���(0), ���(1), ��N ( 3

2 ), and ��N ( 3
2 ). The � and �

hyperons behave differently with respect to the quark-Pauli
repulsion. The �NN system receives minor quark-Pauli
effects and are allowed to be present in the interior of the
neutron star unless the �NN three-body force is strongly
repulsive, whereas the �NN (I = 2) system regardless of
S = 1

2 or 3
2 , including, e.g., �−nn is almost Pauli forbidden.

It will be interesting to study three octet-baryon forces
using a quark-model Hamiltonian. The spin and flavor SU(3)
symmetry developed here should be useful to the extent to
which the underlying Hamiltonian is SU(3) scalar. Work along
this direction is in progress.
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[10] M. Oertel, C. Providȩncia, F. Gulminelli, and A. R. Raduta,
J. Phys. G 42, 075202 (2015).

[11] D. Lonardoni, A. Lovato, S. Gandolfi, and F. Pederiva,
Phys. Rev. Lett. 114, 092301 (2015).

[12] T. Takatsuka, S. Nishizaki, and R. Tamagaki, Prog. Theor. Phys.
Suppl. 174, 80 (2008).

[13] Y. Yamamoto, T. Furumoto, N. Yasutake, and T. A. Rijken,
Phys. Rev. C 90, 045805 (2014).

[14] E. S. Fraga, A. Kurkela, and A. Vuorinen, Astrophys. J. Lett.
781, L25 (2014).

[15] I. Bombaci, arXiv:1601.05339v1 [nucl-th].
[16] I. Vidaña, J. Phys. Conf. Ser. 668, 012031 (2016).
[17] M. Oka, K. Shimizu, and K. Yazaki, Nucl. Phys. A 464, 700

(1987).
[18] C. Nakamoto, Y. Suzuki, and Y. Fujiwara, Prog. Theor. Phys.

94, 65 (1995).
[19] C. Nakamoto, Y. Suzuki, and Y. Fujiwara, Prog. Theor. Phys.

97, 761 (1997).
[20] H. Noumi, P. K. Saha, D. Abe, S. Ajimura, K. Aoki, H. C. Bhang,

T. Endo, Y. Fujii, T. Fukuda, H. C. Guo, K. Imai, O. Hashimoto,
H. Hotchi, E. H. Kim, J. H. Kim, T. Kishimoto, A. Krutenkova,

035803-8

http://dx.doi.org/10.1016/j.nuclphysa.2005.01.023
http://dx.doi.org/10.1016/j.nuclphysa.2005.01.023
http://dx.doi.org/10.1016/j.nuclphysa.2005.01.023
http://dx.doi.org/10.1016/j.nuclphysa.2005.01.023
http://dx.doi.org/10.1103/PhysRevC.89.065801
http://dx.doi.org/10.1103/PhysRevC.89.065801
http://dx.doi.org/10.1103/PhysRevC.89.065801
http://dx.doi.org/10.1103/PhysRevC.89.065801
http://dx.doi.org/10.1088/0004-637X/813/2/135
http://dx.doi.org/10.1088/0004-637X/813/2/135
http://dx.doi.org/10.1088/0004-637X/813/2/135
http://dx.doi.org/10.1088/0004-637X/813/2/135
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1016/j.nuclphysa.2013.01.015
http://dx.doi.org/10.1016/j.nuclphysa.2013.01.015
http://dx.doi.org/10.1016/j.nuclphysa.2013.01.015
http://dx.doi.org/10.1016/j.nuclphysa.2013.01.015
http://dx.doi.org/10.1103/PhysRevC.85.065802
http://dx.doi.org/10.1103/PhysRevC.85.065802
http://dx.doi.org/10.1103/PhysRevC.85.065802
http://dx.doi.org/10.1103/PhysRevC.85.065802
http://dx.doi.org/10.1103/PhysRevC.90.019904
http://dx.doi.org/10.1103/PhysRevC.90.019904
http://dx.doi.org/10.1103/PhysRevC.90.019904
http://dx.doi.org/10.1088/0954-3899/42/7/075202
http://dx.doi.org/10.1088/0954-3899/42/7/075202
http://dx.doi.org/10.1088/0954-3899/42/7/075202
http://dx.doi.org/10.1088/0954-3899/42/7/075202
http://dx.doi.org/10.1103/PhysRevLett.114.092301
http://dx.doi.org/10.1103/PhysRevLett.114.092301
http://dx.doi.org/10.1103/PhysRevLett.114.092301
http://dx.doi.org/10.1103/PhysRevLett.114.092301
http://dx.doi.org/10.1143/PTPS.174.80
http://dx.doi.org/10.1143/PTPS.174.80
http://dx.doi.org/10.1143/PTPS.174.80
http://dx.doi.org/10.1143/PTPS.174.80
http://dx.doi.org/10.1103/PhysRevC.90.045805
http://dx.doi.org/10.1103/PhysRevC.90.045805
http://dx.doi.org/10.1103/PhysRevC.90.045805
http://dx.doi.org/10.1103/PhysRevC.90.045805
http://dx.doi.org/10.1088/2041-8205/781/2/L25
http://dx.doi.org/10.1088/2041-8205/781/2/L25
http://dx.doi.org/10.1088/2041-8205/781/2/L25
http://dx.doi.org/10.1088/2041-8205/781/2/L25
http://arxiv.org/abs/arXiv:1601.05339v1
http://dx.doi.org/10.1088/1742-6596/668/1/012031
http://dx.doi.org/10.1088/1742-6596/668/1/012031
http://dx.doi.org/10.1088/1742-6596/668/1/012031
http://dx.doi.org/10.1088/1742-6596/668/1/012031
http://dx.doi.org/10.1016/0375-9474(87)90371-X
http://dx.doi.org/10.1016/0375-9474(87)90371-X
http://dx.doi.org/10.1016/0375-9474(87)90371-X
http://dx.doi.org/10.1016/0375-9474(87)90371-X
http://dx.doi.org/10.1143/ptp/94.1.65
http://dx.doi.org/10.1143/ptp/94.1.65
http://dx.doi.org/10.1143/ptp/94.1.65
http://dx.doi.org/10.1143/ptp/94.1.65
http://dx.doi.org/10.1143/PTP.97.761
http://dx.doi.org/10.1143/PTP.97.761
http://dx.doi.org/10.1143/PTP.97.761
http://dx.doi.org/10.1143/PTP.97.761


QUARK-PAULI EFFECTS IN THREE OCTET-BARYONS PHYSICAL REVIEW C 94, 035803 (2016)

K. Maeda, T. Nagae, M. Nakamura, H. Outa, M. Sekimoto,
T. Saito, A. Sakaguchi, Y. Sato, R. Sawafta, Y. Shimizu, T.
Takahashi, L. Tang, H. Tamura, K. Tanida, T. Watanabe, H. H.
Xia, S. H. Zhou, L. H. Zhu, and X. F. Zhu, Phys. Rev. Lett. 89,
072301 (2002); 90, 049902(E) (2003).

[21] M. Kohno, Y. Fujiwara, T. Fujita, C. Nakamoto, and Y. Suzuki,
Nucl. Phys. A 674, 229 (2000).

[22] T. A. Rijken, M. M. Nagels, and Y. Yamamoto, Prog. Theor.
Phys. Suppl. 185, 14 (2010).

[23] H. Toki, Y. Suzuki, and K. T. Hecht, Phys. Rev. C 26, 736
(1982).

[24] Y. Suzuki, K. T. Hecht, and H. Toki, KINAM, Rev. Fis. 4, 99
(1982).

[25] S. Takeuchi and K. Shimizu, Phys. Lett. B 179, 197 (1986).
[26] Y. Suzuki and K. T. Hecht, Phys. Rev. C 29, 1586 (1984).
[27] K. Maltman, Nucl. Phys. A 439, 648 (1985).

[28] J. P. Elliott, Proc. R. Soc. London Ser. A 245, 128 (1958); 245,
562 (1958).

[29] Y. Fujiwara, Y. Suzuki, and C. Nakamoto, Prog. Part. Nucl.
Phys. 58, 439 (2007).

[30] Y. Fujiwara, M. Kohno, C. Nakamoto, and Y. Suzuki, Phys. Rev.
C 64, 054001 (2001).

[31] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevC.94.035803 for (A) antisymmetric three
octet-baryon spin-flavor functions, (B) coefficients G in
Eq. (12), and (C) matrix elements of quark antisymmetrizer
for three octet-baryons.

[32] J. P. Draayer and Y. Akiyama, J. Math. Phys. 14, 1904
(1973).

[33] D. J. Millener, J. Math. Phys. 19, 1513 (1978).
[34] T. Sakai, K. Shimizu, and K. Yazaki, Prog. Theor. Phys. Suppl.

137, 121 (2000).

035803-9

http://dx.doi.org/10.1103/PhysRevLett.89.072301
http://dx.doi.org/10.1103/PhysRevLett.89.072301
http://dx.doi.org/10.1103/PhysRevLett.89.072301
http://dx.doi.org/10.1103/PhysRevLett.89.072301
http://dx.doi.org/10.1103/PhysRevLett.90.049902
http://dx.doi.org/10.1103/PhysRevLett.90.049902
http://dx.doi.org/10.1103/PhysRevLett.90.049902
http://dx.doi.org/10.1016/S0375-9474(00)00164-0
http://dx.doi.org/10.1016/S0375-9474(00)00164-0
http://dx.doi.org/10.1016/S0375-9474(00)00164-0
http://dx.doi.org/10.1016/S0375-9474(00)00164-0
http://dx.doi.org/10.1143/PTPS.185.14
http://dx.doi.org/10.1143/PTPS.185.14
http://dx.doi.org/10.1143/PTPS.185.14
http://dx.doi.org/10.1143/PTPS.185.14
http://dx.doi.org/10.1103/PhysRevC.26.736
http://dx.doi.org/10.1103/PhysRevC.26.736
http://dx.doi.org/10.1103/PhysRevC.26.736
http://dx.doi.org/10.1103/PhysRevC.26.736
http://dx.doi.org/10.1016/0370-2693(86)90565-4
http://dx.doi.org/10.1016/0370-2693(86)90565-4
http://dx.doi.org/10.1016/0370-2693(86)90565-4
http://dx.doi.org/10.1016/0370-2693(86)90565-4
http://dx.doi.org/10.1103/PhysRevC.29.1586
http://dx.doi.org/10.1103/PhysRevC.29.1586
http://dx.doi.org/10.1103/PhysRevC.29.1586
http://dx.doi.org/10.1103/PhysRevC.29.1586
http://dx.doi.org/10.1016/0375-9474(85)90331-8
http://dx.doi.org/10.1016/0375-9474(85)90331-8
http://dx.doi.org/10.1016/0375-9474(85)90331-8
http://dx.doi.org/10.1016/0375-9474(85)90331-8
http://dx.doi.org/10.1098/rspa.1958.0072
http://dx.doi.org/10.1098/rspa.1958.0072
http://dx.doi.org/10.1098/rspa.1958.0072
http://dx.doi.org/10.1098/rspa.1958.0072
http://dx.doi.org/10.1098/rspa.1958.0101
http://dx.doi.org/10.1098/rspa.1958.0101
http://dx.doi.org/10.1098/rspa.1958.0101
http://dx.doi.org/10.1016/j.ppnp.2006.08.001
http://dx.doi.org/10.1016/j.ppnp.2006.08.001
http://dx.doi.org/10.1016/j.ppnp.2006.08.001
http://dx.doi.org/10.1016/j.ppnp.2006.08.001
http://dx.doi.org/10.1103/PhysRevC.64.054001
http://dx.doi.org/10.1103/PhysRevC.64.054001
http://dx.doi.org/10.1103/PhysRevC.64.054001
http://dx.doi.org/10.1103/PhysRevC.64.054001
http://link.aps.org/supplemental/10.1103/PhysRevC.94.035803
http://dx.doi.org/10.1063/1.1666267
http://dx.doi.org/10.1063/1.1666267
http://dx.doi.org/10.1063/1.1666267
http://dx.doi.org/10.1063/1.1666267
http://dx.doi.org/10.1063/1.523858
http://dx.doi.org/10.1063/1.523858
http://dx.doi.org/10.1063/1.523858
http://dx.doi.org/10.1063/1.523858
http://dx.doi.org/10.1143/PTPS.137.121
http://dx.doi.org/10.1143/PTPS.137.121
http://dx.doi.org/10.1143/PTPS.137.121
http://dx.doi.org/10.1143/PTPS.137.121



