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Role of the atomic electron shell in the double β decay
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We demonstrate that the limiting energy available for ejected electrons in the double-β decay is diminished by
about 400 eV due to inelastic processes in the atomic electronic shell.
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I. INTRODUCTION

The double-β decay (2νββ) has been observed for eleven
nuclei [1–3]. There are 35 nuclei for which the β decay is
forbidden while the double β decay

(A,Z) → (A,Z + 2) + 2e− + 2ν̄e (1)

can take place [4]. Several attempts to detect the neutrinoless
double-β decay (0νββ),

(A,Z) → (A,Z + 2) + 2e−, (2)

as well as the future projects in this direction are described in
the review [4]. Observation of the neutrinoless decay would
mean that the electron neutrino is a Majorana particle which
coincides with its antiparticle, i.e., νe ≡ ν̄e. In the process
(2νββ), neutrinos carry the energy MN (Z + 2) − MN (Z) −
E with E being the energy of the ejected electrons while
MN (Z + 2) and MN (Z) are the masses of the nuclei (A,Z +
2) and (A,Z). The ejection of the electrons with the energy
E = MN (Z + 2) − MN (Z) would be a sign of the neutrinoless
process (0νββ). As it stands now, neutrinoless decay has not
been detected [4].

The actual experiments are carried out for the decays
of atoms but not of the bare nuclei. It was claimed in the
preprints [5–7] that this inserts an uncertainty of the order
of 3 keV into the analysis. It was claimed also [7] that the
neutrinoless decay (0νββ) actually has been detected in the
experiments reported in Refs. [8,9]. This stimulated us to
analyze the problem of the role of the atomic electronic shell
in the double β decay. We employ the relativistic system of
units with � = c = 1.

II. DOUBLE β DECAY OF THE ATOM

Now we turn to the decay (2νββ) of the atom AZ with the
nucleus of the charge Z. We assume the atom AZ to be in its
ground state. In the main mode of the decay

AZ → A++
Z+2 + 2e− + 2ν̄e, (3)

the doubly charged positive ion A++
Z+2 is also in the ground

state. The masses of atom AZ and that of ion A++
Z+2 in the

ground state are MAt (Z) = MN (Z) + Eb(Z) and M
(0)
At (Z +

2) = MN (Z) + E
(0)
b (Z + 2), with Eb(Z) and E

(0)
b (Z + 2) be-

ing the total energies of the atomic electronic shells. The upper

index (0) labels that the ion A++
Z+2 is in the ground state. Thus,

the largest energy available for the ejected electrons is

Q(0) = QN + Eb(Z) − E
(0)
b (Z + 2), (4)

with QN = MN (Z) − MN (Z + 2) being the largest electron
energy available in the decay of the nucleus presented by
Eq. (1). One can see that Q(0) > QN , i.e., the electronic shell
becomes more bound. It transfers the energy to the ejected
electrons. The masses of the atom MAt (Z) and of the ion
M

(0)
At (Z + 2) can be measured with good accuracy. Thus the

limiting energy Q(0) is a well-established observable.
The electronic shell can be in an excited state after the

decay. This can be an excited state of the ion A++
Z+2, also some

of the Z bound electrons can be moved to continuum. This
shifts the observable value of Q(0) to

Q = Q(0) − δQ. (5)

To obtain δQ we introduce the excitation energy E∗
n0 =

E(n)(Z + 2) − E(0)(Z + 2) > 0. Denoting the differential dis-
tribution of the double-β decay with excitation of the atomic
electronic shell to the state n as dWn/d�, we can present

δQ =
∑

n

E∗
n0

dWn/d�

dW0/d�
, (6)

with
∑

n meaning the sum over the states of the discrete
spectrum and integration over the continuum states. The
energy of the state n should not exceed the limiting energy
Q(0).

Note that, in the process (2νββ), the energy Q(0) makes
several MeV [4]. A simple analysis based on estimation of the
phase volume shows that both ejected electrons should be fast.
Thus their velocities (in units of c) are of the order of unity.
The atomic velocities are of the order αZ1/3, i.e., they are
much smaller. This enables us to employ the shake-off (SO)
approximation, in which the final state interactions between the
beta electrons and atomic electronic shell are neglected [10]. In
this approach the amplitude for the decay in which the atomic
shell transfers to the state n is

F (n) = FN 〈�n|�〉. (7)

Here, FN is the amplitude for the nuclear decay, � and �n are
the wave functions of Z electrons in the ground state of the
field of the nucleus with charge Z (the atom) and in the state
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n of the field of the nucleus with charge Z + 2. This provides

δQ =
∑

n

E∗
n0|〈�n|�〉|2. (8)

Introducing the total change of the electronic shell energy
En0 = E(n)(Z + 2) − Eb(Z) > 0 and presenting E∗

n0 =
En0 + Eb(Z) − E(0)(Z + 2), we can write δ = δ1 + δ2 with

δQ = δ1 + δ2, δ1 = [Eb(Z) − E(0)(Z + 2)]
∑

n

|〈�n|�〉|2,

δ2 =
∑

n

En0|〈�n|�〉|2. (9)

Since Eq. (9) contains only the differences of the energies
we can write it in terms of the binding energies subtracting
the mass terms. We can put Eb(Z) = meZ + εb(Z), E(0) =
meZ + ε(0)(Z), and E(n)(Z + 2) = meZ + ε(n)(Z + 2) with
me being the electron mass at rest and En0 = εn0. Thus, the
two last equalities of Eq. (9) can be presented as

δ1 = [εb(Z) − ε(0)(Z + 2)]
∑

n

|〈�n|�〉|2,
(10)

δ2 =
∑

n

εn0|〈�n|�〉|2.

The squared SO matrix element |〈�n|�〉|2 drops as ε−4
n

if the excitation energy ε∗
n0 strongly exceeds the ground-state

energy |ε(0)| [11]. Thus, the sums over n on the right-hand side
of Eqs. (6) and (9) are saturated at ε∗

n0 ∼ |ε0| � Q(0). Hence
we can assume that the sum over n is carried out over all states
with εn0 > 0. If the atom is treated as a nonrelativistic system,
they compose a closed set of states. This enables us to employ
closure. This provides

δ1 = ε(Z) − ε(0)(Z + 2), (11)

while δ2 = 〈�|H (Z + 2) − H (Z)�〉 with H (Z) and H (Z +
2) being the Hamiltonians of Z electrons in the fields of the
nuclei with the charges Z and Z + 2. Thus we obtain [11]

δ2 = 〈�|
∑
k�Z

(−2α

rk

)
|�〉, (12)

with the sum carried out over all electrons bound in the atom
AZ . Both δ1 and δ2 can be calculated with high accuracy. Note
that Eq. (9) presents the shift δE as a difference of two large
values.

Corrections to the SO approximations can be obtained by
inclusion of the final-state interaction (FSI) between the β
electron and the bound electrons. We can write

δQ = δ1 + δ2 + δFSI. (13)

The leading correction is proportional to the squared Sommer-
feld parameter ξ of the β electron moving with the velocity v
which is ξ 2 = α2/v2 with α = 1/137 being the fine structure
constant. The expressions describing probability for transition
of the atomic shell to any excited state with inclusion of the
leading FSI terms are presented in Ref. [11]. Since the latter
drop as ε−2

n at large εn 	 |ε0|, one cannot calculate the FSI
contribution δFSI to the shift δE by using the closure condition.

Assuming that the energy transferred to the bound electrons
does not exceed a certain value εmax we can estimate [11]

δFSI = ξ 2
∑

k

ak〈�|r−2
k |�〉

m
ln

εmax

|εk| , (14)

with ak being the number of electrons in the bound state k. Note
that, if the atomic electrons obtain the energy εmax, the energy
of the β electrons cannot exceed the value E = Q(0) − εmax.

III. NUMERICAL RESULTS

Now we carry out the numerical calculations. In actual
computations the atom is presented as a system of electrons
described (at least in the first step) by single-particle functions.
Note that we can employ only the nonrelativistic functions
since the positive-energy states compose the closed system
only in nonrelativistic case. We use our Hartree–Fock com-
puter codes [12].

Start with the double β decay of germanium (Z = 32) [4,8].
We find ε(Z) = −56 449.2 eV and ε(0) = −65 246.3 eV for
the ground-state energies of the atom of Ge and of the ion Se++

(Z = 34). This provides δ1 = 8797.1 eV. We obtain also δ2 =
−8446.1 eV. This provides δ1 + δ2 = 351 eV. Note that the
value of δ1 calculated in relativistic approach (Hartri–Fock–
Dirac approximation) is about 2% larger. If the relative size
of relativistic correction to δ2 is of the same order as that to
δ1, we find that relativistic corrections to δQ are also of the
order 2%. The small magnitude of relativistic effects makes
the nonrelativistic calculation reasonable.

In calculating the FSI contribution δFSI, we can put ξ 2 = α2

since Q(0) ≈ 2 MeV. Assuming εmax = 3 keV (we choose this
value since such energy loss was claimed in Ref. [7]) we find
that δFSI = 0.6 eV. Thus we obtain

δQ = 352 eV. (15)

For the double-β decay of xenon (Z = 54) [2,3,13] ε(Z) =
−19 6714.2 eV while for the ion Ba++ (Z = 56), ε(0) =
−214 419.3 eV. Thus δ1 = 17 705.1 eV. On the other hand
δ2 = −17 292.4 eV. This provides δ1 + δ2 = 413 eV. The FSI
contribution is δFSI = 1 eV. Hence we find

δQ = 414 eV. (16)

The value of δ1 calculated in the relativistic Hartree–Fock–
Dirac approach provides the value which is about 1 keV
larger. If the relative difference of the Hartree–Fock–Dirac
and Hartree–Fock results for the value δ2 is of the same order
of magnitude as for δ1, the uncertainty of our nonrelativistic
result is of the order of 10%.

IV. SUMMARY

We carried out nonrelativistic calculations for the shift of
the limiting energy available for the ejected electrons in double
β decay caused by inelastic processes in the electronic shell.
We demonstrated that the energy diminishes by about 400 eV.
We estimated the accuracy of our calculations. Our result does
not alter the earlier conclusions that the neutrinoless mode
have not been observed yet.
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We calculated the average energy loss of the β electrons,
which is an integrated characteristic of the process. The
approach is common for the processes which take place in
a bound system after ejection of the fast electron. For well-
studied processes such as ordinary nuclear β decay (see, e.g.,
Ref. [14]), it is reasonable to investigate also the differential
characteristics such as the spectrum of the shake-off electrons
or the probabilities of the shake-up processes. However, the
very possibility of the neutrinoless double β decay is not
clarified yet. Thus, calculations of differential characteristics
for the (0νββ) process are beyond the scope of our paper.

Note also that calculations of differential characteristics in
each process can be a subject of separate work—see, e.g.,
the calculations of the shake-up probabilities in the high-
energy photoionization of the two-electron ions carried out
in Ref. [15].
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