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Kinematic sensitivity to the Fierz term of β-decay differential spectra
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The current most stringent constraints on exotic scalar or tensor couplings in neutron and nuclear β decay,
involving left-handed neutrinos, are obtained from the Fierz interference term. The sensitivity to this term in
a correlation coefficient is usually driven by an energy-averaged kinematic factor that increases monotonically
toward smaller values of the β endpoint energies. We first point out here that this property does not hold for
certain differential observables that are directly sensitive to the Fierz term, such as the β or the recoil energy
spectrum. This observation is relevant for the selection of sensitive transitions in searches for exotic couplings
through spectrum shape measurements. We then point out previous errors in the exploitation of measurements
of the β-ν angular correlation coefficient and discuss their impact on the extraction of constraints on exotic
couplings.
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I. INTRODUCTION

Precision measurements in nuclear and neutron decays have
played a crucial role in the development of the V -A theory of
the weak interaction, which is embedded in the framework
of the standard electroweak model (SM). Today, these exper-
iments constitute sensitive probes to “exotic” currents, such
as right-handed vector currents or scalar and tensor currents,
resulting from the exchange of new heavy bosons [1–3].

The description of weak decays using a model-independent
effective-field-theory approach [4] has recently made possible
direct comparisons of sensitivity between searches for exotic
interactions carried out at low energies and at the CERN Large
Hadron Collider (LHC) [5,6]. Under the general assumption
that the scale of new physics occurs at energies much higher
than those accessible at the LHC, it appears that experiments
at the LHC provide tight constraints on scalar and tensor cou-
plings involving right-handed neutrinos [6], which are more
stringent than those obtained from their quadratic contributions
to β decays. On the other hand, for interactions involving left-
handed neutrinos, experiments in nuclear and neutron decay
can potentially be competitive with constraints reached or to be
reached at the LHC provided they address observables that are
linear in the exotic couplings with sufficient precision [5,6].
This competition is also possible thanks to recent calculations
of the corresponding hadronic form factors, which are now
known with ∼10% precision [5,7,8].

One of the most sensitive observables to these nonstandard
scalar and tensor interactions in nuclear β decay, which
is linear in the couplings and that currently provides the
tightest bounds on them [3,9], is the Fierz interference term.
This term enters many measured observables and affects in
particular the shape of the β energy spectrum. The potential
of the Fierz term to probe the presence of exotic couplings
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has motivated new measurements of β energy spectra with
improved precision [10]. In nuclear β decay there is a variety
of transitions that can be selected for such measurements but
there appears to be some confusion as to which are the most
sensitive ones in terms of their kinematic signature to the
Fierz term. We first address this point below by discussing the
sensitivity to the Fierz term of the total decay rate, of the β
energy spectrum, and of the recoil momentum spectrum. We
then point out the improper use of some available experimental
data of the β-ν angular correlation coefficient and its relation
to the Fierz term and discuss the implications of those errors
on the extraction of constraints on exotic couplings.

II. TOTAL DECAY RATE

We restrict ourselves to allowed β-decay transitions de-
scribed by the statistical weight (phase space) of the form

P (W )dW = pWq2dW, (1)

where p and W are respectively the momentum and total
energy of the β particle and q = W0 − W is the momentum
of the neutrino, with W0 being the maximal total energy of
the β particle. We also consider two dynamic terms: the Fierz
term, b, and the β-ν angular correlation coefficient, a. The
decay-rate function, averaged over the spin variables of the
nucleus and the electron, is proportional to [11,12]

N (W,θ )dWd�θ = P (W )

[
1 + b

m

W
+ a

p

W
cos θ

]
dWd�θ,

(2)

where m is the mass of the β particle, θ is the angle between the
momentum directions of the β particle and the neutrino, and
d�θ is the differential solid angle around θ . For simplicity, we
do not include contributions due to recoil order terms [13] or
to Coulomb and radiative corrections [14,15], and we neglect
effects due to the neutrino mass.

The integration of Eq. (2) over the kinematic variables of
the β particle and the neutrino, normalized by the integral over
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FIG. 1. Variation of the sensitivity factor 〈m/W 〉 as a function of
the endpoint energy E0.

the phase space, gives

N0 = 1 + b

〈
m

W

〉
, (3)

where 〈m/W 〉 denotes the average of m/W over the statistical
weight given by Eq. (1). Figure 1 shows the variation of the
factor 〈m/W 〉 as a function of the endpoint energy, E0 = W0 −
m, for values in the range 20 keV to 20 MeV. For reference,
the values for neutron decay (E0 = 782 keV) and for 6He
decay (E0 = 3.50 MeV) are indicated with black points. It
is obvious that 〈m/W 〉 increases monotonically toward lower
endpoint energies and tends asymptotically to 1 because the
kinetic energy in the denominator becomes negligible relative
to the electron mass.

This property has been exploited to extract very stringent
constraints on scalar couplings from the contribution of the
Fierz term to the F t values in superallowed pure Fermi
transitions [16]. Nuclei with the lowest endpoint energies, such
as 10C and 14O, have the largest sensitivity to the Fierz term,
whereas the b contamination to the F t values of transitions
with larger endpoints, such as 26mAl, is smaller.

It is clear from Fig. 1 that, from a purely statistical
standpoint, the uncertainty on the Fierz term extracted from a
measurement of the rate in Eq. (3) would decrease monotoni-
cally toward lower energies. For a sample with 108 events, the
smallest statistical uncertainty would be �b = 10−4.

III. DIFFERENTIAL DISTRIBUTIONS

The monotonic increase of sensitivity to b in Eq. (3) does
not imply, however, that this property also holds when the
Fierz term is extracted from the measurement of a differential
distribution such as the β energy spectrum or the recoil
momentum spectrum. This is so, simply because in differential
distributions one measures the effect on the shape of the
distribution and not on the number of events. To illustrate
this quantitatively we have performed simple Monte Carlo
studies where the statistical uncertainty on the Fierz term is
determined from fits of differential spectra.

FIG. 2. The solid red line shows the 1σ statistical uncertainties
obtained from fits of simulated β energy spectra as a function of the
endpoint energy E0. The dashed brown line shows the result obtained
with the approximation given by Eq. (7).

A. The β energy spectrum

We consider first the distribution in electron energy,
resulting from the integration of Eq. (2) over the directions
of the neutrino,

Ne(W )dW ∝ P (W )

(
1 + b

m

W

)
dW (4)

= [P (W ) + b g(W )]dW. (5)

We generated β-energy spectra following the shape of the
phase space P (W ) in Eq. (1), for different values of the
endpoint energy E0. Each spectrum contained 108 events.
The generated spectra were then fitted between 5% and 95%
of their kinetic energy range, with a function given by Eq. (4).
The fits had two free parameters: the overall normalization
and the Fierz term b.

The red solid curve in Fig. 2 shows the 1σ statistical
uncertainty on the Fierz term obtained from these fits as a
function of the endpoint energy E0. For endpoint energies
larger than about 1–2 MeV, the statistical uncertainty increases
roughly linearly with the endpoint energy, due to the 1/W
factor. For endpoint energies smaller than 1–2 MeV, the
statistical uncertainty does not decrease monotonically but,
instead, it also increases and equally fast on the log-log scale.
The origin of this loss of sensitivity toward smaller endpoint
energies is rather simple. The sensitivity to b in the fits is
driven by the differences in shape between g(W ) and P (W )
in Eq. (5). As the average kinetic energy becomes smaller,
these two functions become identical and the fitting function
becomes proportional to (1 + b) with a loss of the specific
kinematic signature to b. In other words, although the effect of
the b term in the overall normalization, cf. Eq. (3), is maximal
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FIG. 3. Energy dependence of the ratio m/W , for two different
endpoint energies. Notice that the E axis is rescaled to ease the
comparison.

for very low endpoints, its effect on the shape becomes very
weak simply because the factor m/W becomes almost energy
independent, namely, m/W ≈ 1. This is illustrated in Fig. 3.

It is interesting to note that neutron decay and 6He decay,
which are being considered for precision measurements of the
β energy spectrum [17,18], have very comparable kinematic
sensitivities (Fig. 2). It is worth stressing that transitions with
endpoint energies in the range E0 = 200–300 keV, such as
45Ca, which are also currently the focus of new projects [10],
are a factor of 2 less sensitive that those with E0 = 1–2 MeV.
Last but not least, it is observed that transitions with endpoint
energies in the range 0.6–3.8 MeV have sensitivities that
are within 20% of the optimal kinematic sensitivity and are
therefore ideal to search for a nonzero Fierz term, at least on
pure statistical grounds.

The observation of the loss of sensitivity toward smaller
endpoint energies obtained in the Monte Carlo study can
be derived from simple arguments. For this we consider the
central region of a β energy spectrum. If we divide the kinetic
energy range in four equal intervals, the central values of
the kinetic energies of the second and third intervals are,
respectively, E2 = 3E0/8 and E3 = 5E0/8. Following Eq. (4),
the ratio between the number of events in these two central bins
is approximately proportional to

1 + b

(
m

m + E2
− m

m + E3

)
. (6)

We further assume that, for a given spectrum, this ratio
dominates the sensitivity to b. With N events in the spectrum,
the statistical uncertainty on the Fierz term extracted from such
a ratio will approximately be determined from

�b

(
m

m + E2
− m

m + E3

)
≈ 1√

N
. (7)

The values of �b extracted from Eq. (7), for N = 108, are
shown by the dashed brown line in Fig. 2 as a function of
the endpoint energy. This crude approximation gives the main
trend of the sensitivity, independently of any reference to a

fit. As the endpoint energy becomes smaller, the difference in
Eq. (7) also becomes smaller, resulting in the increase of �b.

B. The recoil momentum spectrum

As a second example, we consider the extraction of b
from the distribution of the recoil nucleus momentum r . The
transformation of Eq. (2) in terms of the recoil momentum
gives the distribution [11,19]

N (W,r)dWdr = 1

2
rWq

[
1 + b

m

W
+ a

r2 − p2 − q2

2Wq

]
dWdr,

(8)

where, for a given value of r , the total energy of the β particle
varies between

Wmin(r) = (W0 − r)2 + m2

2(W0 − r)
, (9)

Wmax(r) = (W0 + r)2 + m2

2(W0 + r)
. (10)

The integration of Eq. (8) over the β energy gives the recoil
momentum distribution

Q(r)dr = r

12
[Q0(r) + b Q1(r) + a Q2(r)]dr, (11)

where

Qi(r) = [WFi(W,r)]Wmax(r)
Wmin(r) , (12)

and

F0(W,r) = W (3W0 − 2W ), (13)

F1(W,r) = 3m(2W0 − W ), (14)

F2(W,r) = 3

(
r2 + m2 − W 2

0 + W0W − 2

3
W 2

)
. (15)

To determine the sensitivity to the Fierz term from a mea-
surement of a recoil momentum spectrum we have again
used a Monte Carlo method. We have generated distributions
following Eq. (11), with b = 0, for pure Fermi (a = aF = 1)
and pure Gamow-Teller (a = aGT = −1/3) transitions and
for different values of the endpoint energy. Each spectrum
contained 108 events. The spectra were then fitted between 5%
and 95% of the momentum range, with a function given also by
Eq. (11), with two free parameters: the overall normalization
and b. Because the a coefficient depends on the nonstandard
couplings only quadratically, the procedure above is equivalent
to neglecting those contributions.

The solid lines in Fig. 4 show the 1σ statistical uncertainty
on the Fierz term obtained from these fits as a function of
the endpoint energy for pure Fermi (red curve) and pure
Gamow-Teller (blue curve) transitions. For both types of
transitions, the dependence is qualitatively the same as for the
extractions of b from the β energy spectrum and has the same
origin. This behavior can again be understood analytically
from simple arguments like those used to deduce Eq. (7),
but the expressions are lengthier in this case. Figure 4 shows
that the presence of the term proportional to a in Eq. (11)
gives rise to different sensitivities for Fermi and Gamow-Teller
transitions.
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FIG. 4. The 1σ statistical uncertainties on b obtained from fits
of simulated recoil momentum spectra as a function of the endpoint
energy E0. The solid lines represent �b and correspond to Fermi
(red) and Gamow-Teller (blue) transitions for which the value of a

was, respectively, fixed to aF or aGT. The dotted lines represent �bã ,
that is, the uncertainty on b obtained by incorrectly reinterpreting a
fit of a with b = 0, through the ã prescription [cf. Eq. (18)].

Obtaining an analogous sensitivity curve for mixed tran-
sitions is not possible because in these decays the correlation
coefficient a is a function of the Gamow-Teller to Fermi mixing
ratio, a(ρ), and can therefore not be fixed.1 More precisely, for
pure Fermi and Gamow-Teller transitions, the value of a is
essentially determined by angular momentum arguments and
can then be fixed to the SM value. In contrast, for mixed
transitions, the expression of a depends on ρ, which, in turn,
is extracted from the measurement of another correlation
coefficient such as Ã or from the comparison between the
f t value of the mixed transition and F t(0+ → 0+). However,
these observables also receive a contamination due to b that
affects the ρ extraction and that propagates to a. This “indirect”
effect of the Fierz term, sometimes ignored in the literature
(see, e.g., Ref. [20]), is of the same order as the direct effect in
the recoil spectrum, and therefore it has to be taken into account
in the analysis, because it can lead to strong suppressions of
sensitivity.

IV. CORRELATION COEFFICIENTS

Many past experiments extracted values of various correla-
tion coefficients within an analysis that sets the Fierz term to
zero. There are different reasons to do this. For instance, the
extraction of the axial-vector coupling gA from measurements

1This also means that one can extract both b and ρ (or equivalently
b and a) simultaneously from the recoil spectrum.

of the asymmetry parameter A in neutron decay [21,22]
is usually performed within the SM framework so that
nonstandard effects are simply ignored. Other experiments
have analyzed the data with the Fierz term set to zero, because
existing bounds on it were strong enough, and they focused
on the sensitivity to interactions entering mainly through
quadratic contributions, as, e.g., in Ref. [23].

It was noticed long ago [24] that, if a correlation coefficient
X has been extracted from measurements of an asymmetry in
counting rates assuming b = 0, it can be easily reinterpreted
by including a nonzero Fierz term through the expression

X̃ = X

1 + b〈m/W 〉′ . (16)

The factor 〈m/W 〉′ denotes here the integration over the mea-
sured interval of the β energy spectrum. Such an expression
was introduced for “standard” experimental determinations of
parameters like A, B, G, and D [24,25]. This prescription
has been used in global analyses of data in neutron and
nuclear decays [1,3,26,27] to take into account the various
measurements where the Fierz term was not included in the
original analysis.

Operationally, Eq. (16) was noticed to be valid when
the measured correlation coefficient was deduced from an
asymmetry resulting from the sign inversion of some kinematic
variable or the inversion of the analysis direction of a
variable, such as the direction of a magnetic field. Formally,
the prescription is valid when the integration limits of the
β-particle energy, W , and the relevant kinematic variable, θ ,
are independent, and then the W integration can be performed
without introducing a genuine θ dependence in the Fierz term.
More precisely one would have

N (W,θ )dWdθ

= G(θ )H (W )

[
1 + b

m

W
+ X R(W,θ )

]
dWdθ

→ N (θ )dθ

∼ G(θ )

(
1 + b

〈
m

W

〉)
[1 + X̃ R(θ )]dθ, (17)

where R(θ ) ≡ 〈R(W,θ )〉W and where we have also assumed
that the W and θ dependencies of the normalization function
are factorizable. It is easy to see from this expression that
the X̃ prescription will then apply not only for standard
asymmetries but also for measurements of the θ differential
distribution [28].

However, the recoil momentum r and the β-particle energy
W are not independent. As a result, the term Q1(r) in
Eq. (11) has a different dependence on the recoil momentum
than the term Q0(r) and cannot be factorized to produce a
term of the form (1 + b〈m/W 〉). This is particularly relevant
for measurements of the β-ν angular correlation coefficient.
Unless this coefficient is extracted from an asymmetry in decay
rates [29] or for a fixed β energy [30], the measured distribution
will contain both b and a terms with different recoil momentum
dependencies.

Consequently, it is improper to use the prescription given
in Eq. (16) to reinterpret previous extractions of the β-ν
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angular correlation coefficient where b was set to zero and
only a was fitted. For the most precise measurement in a
Gamow-Teller decay [23], a was actually extracted from a
differential measurement of the recoil momentum distribution,
as given by Eq. (11). The result was originally used to
constrain possible tensor couplings through their quadratic
contribution to a, assuming b = 0 and assigning an uncertainty
of �b = 0.012 on the basis of a previous measurement in
22Na. This uncertainty on b is furthermore included in the
total uncertainty of the quoted value of a. This measurement
of a in 6He, with a later revision [31], has been used in several
global fits [1,3,27], reviews [9,32], and articles [20,33], where
a has been reinterpreted as ã.

To illustrate the impact on the extraction of b from this
incorrect interpretation when applied to allowed pure Fermi
and Gamow-Teller transitions, we have performed additional
fits of the recoil momentum spectra, this time with b = 0 and
a left as a free parameter. If the fitted value of a is reinterpreted
as ã one can extract the uncertainty on the Fierz term using
Eq. (16):

�bã = �ã

|aSM|
〈
m

W

〉−1

. (18)

The dotted lines in Fig. 4 show the 1σ statistical uncertainty
on the Fierz term obtained from these fits as a function of
the endpoint energy for pure Fermi (red curve) and pure
Gamow-Teller (blue curve) transitions. The dependence on
the endpoint energy is again qualitatively similar to the direct
extraction of b, with a loss of sensitivity toward small endpoint
values. This is so because the loss of sensitivity in the
extraction of a from the differential distribution dominates over
the mild increase of the factor 〈m/W 〉. For Fermi transitions
the relative differences between the two curves are small,
of about 25% at small endpoint values and of 20% at high
values. However, for Gamow-Teller transitions the differences
between the two results diverge for low endpoint values. It can
be shown analytically that

lim
E0→0

�b

�bã

≈
∣∣∣∣ 3a

1 + 3a

∣∣∣∣, (19)

where �b is the uncertainty extracted from direct fits of
b. This limit tends to infinity for a = aGT and explains the
divergence observed between the values of �b and �bã . If
the ã prescription would have been applied to a Gamow-Teller
transition with an endpoint of E0 = 100 keV the error on
the uncertainty of b would have been of about an order of
magnitude. From this analysis, the relative difference of the
two Gamow-Teller curves at the 6He endpoint, E0 = 3.5 MeV,
is 30%. The position between the two curves, to the right of
the intersection point, indicates that the values of the Fierz
term extracted from an incorrect reinterpretation of a are less
precise than the values extracted from a direct fit of b using
the same data. This result should however be taken with the
proper caution, because the above simplified analysis neglects
systematic effects and other details in the data analysis.

A somewhat different way of analyzing the error of the ã
prescription is obtained by performing a fit of the differential
recoil distributions with both a and b as free parameters.

FIG. 5. The solid red ellipse shows the 1σ region obtained from
a fit of simulated recoil momentum spectra with 107 events, for
the 6He decay, where both a and b were left as free parameters.
The blue shaded band shows the 1σ bound on the combination
â = a + 0.127b, whereas the black dotted lines represent the 1σ

bound obtained using the ã prescription.

Figure 5 shows the result we obtained for the 6He decay
with 107 events in the spectrum. One observes that there
is indeed a large correlation between a and b, i.e., that a
certain linear combination of them, namely, â = a + 0.127 b,
is strongly constrained. We see, however, that the â band is not
aligned with the one obtained using ã ≈ a(1 − 〈m/W 〉b) ≈
a(1 − 0.286b).

Concerning pure Fermi transitions, the two most precise
extractions of a are those in 32Ar [34] and 38mK [35] decays,
which were also used in global fits [1,3]. The direct observable
was the delayed proton spectrum following 32Ar decay and
the time-of-flight spectra of 38Arn+ ions in 38mK decay,
where the β-particle spectrum was either totally or partly
integrated. Thus, according to the results presented above,
the ã prescription is not applicable in such measurements.
Although the corresponding analyses were performed using
a parameter called ã [34–36], it is important to notice that
this parameter does not follow the standard definition of ã, cf.
Eq. (16), also used in the present work. Instead, it corresponds
to what we called â above, i.e., a linear combination of a and b
that is strongly constrained by the fit, with coefficients that have
to be calculated for each transition a posteriori [37,38]. For
example, in the 32Ar experiment the value of the coefficient
that multiplies b in â, namely, 0.1913 [34], is 11% smaller
than the value of 〈m/W 〉 = 0.214 expected for this transition
in the ã expression [34,37]. As can be inferred from Fig. 4,
the numerical expressions of ã and â are quite similar for
pure Fermi transitions independently of the endpoint energy.
It is, however, important to notice that conceptually these two
parameters are completely different.
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V. CONCLUDING REMARKS

The Fierz term b is one of the few parameters in β decays
that is linearly sensitive to nonstandard interactions and its
precise measurement represents a competitive new-physics
probe even in the LHC era [5,6,9]. In this work we have
analyzed a few aspects that are relevant for (i) the selection
of sensitive nuclear decays for future experiments and (ii) the
extraction of precise and correct bounds on b from past and
future measurements.

In Secs. II and III we analyzed how the statistical sensitivity
to the Fierz term changes with the endpoint energy of the decay.
We showed that although the effect in the overall normalization
is maximal for very low endpoints, its effect on the β energy
and recoil momentum differential distribution goes to zero
in that limit. For each case we identified the window of
endpoint values where the sensitivity to b is maximal. These
results are relevant for the selection of the most sensitive
transitions in measurements of b. It is important to stress that
the kinematic sensitivity is only one, and possibly the simplest,
among several criteria for such a selection. Other criteria for
measurements of β-spectrum shapes are related with the size
and accuracy of (i) Coulomb and radiative corrections to the
β spectrum [14,15], (ii) the form factors which enter the weak
hadronic currents in recoil terms [13], and (iii) instrumental
effects such as the scattering of β particles in matter. For
example, atomic effects due to screening are known to be
large for low-energy β particles from transitions in medium-
and heavy-mass nuclei [39] and require, therefore, particular
attention in precision measurements. On the instrumental side,
the effects of scattering of electrons from matter in the setup
and their backscattering from detector surfaces also increases
toward lower energies and the description of the processes
with current simulation tools [40,41] is not yet sufficiently
accurate for competitive measurements of the β-spectrum
shape. These two criteria tend also to disfavor transitions with
small endpoint energies in the selection of candidates.

In Sec. IV we discussed what we called the X̃ prescription
and its relation to the Fierz term. We have shown explicitly

that the prescription cannot be applied to values of a extracted
from differential measurements of the recoil momentum
distributions and we have explained under which conditions
the procedure is justified. The prescription has been applied
however, in a somewhat undiscriminated way, in several recent
global fits [1,3,26,27] for the reinterpretation of values of
a extracted in 6He and in neutron decays. The numerical
impact of this misinterpretation on the constraints of exotic
couplings extracted in global fits is in most cases quite small,
simply because the precision achieved so far in measurements
of recoil distributions has been moderate. The associated
constraints are therefore not competitive with determinations
of b from other observables that dominate the fits. However
it is important to notice that this might change in the
near future with new generation measurements of the recoil
spectrum [42].

Finally, in most of the numerical analyses performed in
this work we neglected quadratic nonstandard effects that
contribute to a. We would like to emphasize that it would
be suitable that future analyses of new measurements of
differential recoil distributions fit both a and b simultaneously,
and provide their correlation, as in Fig. 5. One could then study
specific cases with left-handed and right-handed couplings
separately. For instance, for exotic interactions involving
right-handed neutrinos, the linear terms are absent and then
the quadratic terms become the leading ones.
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