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Colliding solitary waves in quark gluon plasmas
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We study the head-on collision of propagating waves due to perturbations in quark gluon plasmas. We use
the Massachusetts Institute of Technology bag model, hydrodynamics equation, and suitable equation of state
for describing the time evolution of such localized waves. A nonlinear differential equation is derived for
the propagation of small amplitude localized waves using the reductive perturbation method. We show that these
waves are unstable and amplitude of the left-moving (right-moving) wave increases (decreases) after the collision,
and so they reach the borders of a quark gluon plasma fireball with different amplitudes. Indeed we show that
such arrangements are created because of the geometrical symmetries of the medium.
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I. INTRODUCTION

There are acceptable theoretical reasons and experimental
evidence indicating the existence of a new state of matter
with high temperature and/or high density, called quark gluon
plasmas (QGPs). According to the standard model of particle
physics, it is expected that, a few microseconds after the Big
Bang, the universe was made from deconfined quarks in the
state of the QGPs [1–4]. Another astronomical situation in
which one expects to find signatures of the QGPs is at the
core of compact stars [5,6]. For reconstruction of this state
of matter in terrestrial laboratories, the Relativistic Heavy
Ion Collider (RHIC) and the Large Hadron Collider (LHC)
have been utilized. In these machines, when two nuclei with
relativistic velocities collide, most of their nucleons interact
with each other instantly, and many partons are produced.
Depending on the primary energy per nucleon, two different
kinds of deconfined QGP phases with chiral symmetry can be
created. It is possible that a QGP phase produces with large
baryon number density at low incident energy per nucleon
[7]. The other possibility is creating a QGP phase with high
temperature and a very small net baryon number at very high
energy per nucleon [7–9]. Afterwards the system expands and
experiences a phase transition to hadronic gas while the density
decreases more and more due to this expansion. The collision
rate decreases in time, and the system finally reaches a situation
in which the collision rate is not large enough to preserve the
chemical equilibrium. But there are still hadronic interactions,
until finally the produced particles continue their way without
further interactions [2].

Nowadays investigation of the QGP behavior is one of the
main objectives of RHIC and LHC. In order to study the
evolution of the universe before the first few microseconds,
we have to extrapolate cosmological models. In this way quark
gluon plasmas play the role of initial conditions for the next
step of understanding the evolution of the universe. It may be
noted that any fluctuation at QGPs can affect the results.

Since a QGP has very low viscosity [10], it behaves like
a perfect fluid [11,12]. Relativistic hydrodynamical equations
are used for the space-time evolution of the matter, produced
in the high-energy nuclear collisions [13–15]. Also by using
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the hydrodynamics equations we can investigate the evolution
of the observable perturbations at head-on collisions too
[16,17]. There are four different sources of density fluctuations
which create localized waves propagating in the medium.
Quantum fluctuations in the densities of two colliding nuclei
supplemented with energy fluctuations are called initial-state
fluctuations [18,19]. Local thermal fluctuations of the energy
density and flow velocity produce hydrodynamic fluctuations
[20]. Energy loss due to propagation of energetic partons
causes hard process fluctuations. Finally there are event-by-
event fluctuations during and after the freeze-out stage which
are called freeze-out fluctuations [21,22]. So these fluctuations
accompanied by macroscopic fluctuations in the other stage
of the collision can affect global observations [3,23]. In a
microscopic point of view the evolution of the fluctuations
is evaluated using the perturbations through the Boltzmann
equation by Sarwar and Alam [3]. It is worth noting that
the fluctuations have been presented like boundaries of the
critical end point in the quantum chrome-dynamics (QCD)
phase transition [24,25]. Such perturbations are able to create
nonlinear localized waves in the medium which can be detected
and studied during the evolution of the system. Therefore, the
propagation of nonlinear waves and their collisions is a very
attractive subject.

Using the conservation of energy-momentum equations
and the conservation of baryon density on the evolution of
localized perturbations led us to a nonlinear equation which we
called the “breaking wave equation” in some literature [21].
The breaking wave equation is similar to the Korteweg–de
Vries (KdV) equation without its third derivative term, which
makes the dispersion effect. Because of neglecting the charge
of quarks in hydrodynamic description of a QGP that omits
the Laplace equation, there is no dispersion expression in the
equation. However the nonlinear term, which is originated
from nonlinear terms of the conservation of baryon density
and the Euler equations, exists in derived wave equation. As
seen in nuclear matter the KdV equation establishes a solitary
wave solution in the medium [26–28]. In these situations
perturbations on the nuclear density are able to propagate like
a nondamped wave [29]. Unfortunately the breaking wave
equation has no known exact solution. Therefore to solve this
equation one can use numerical simulations with the KdV
soliton localized solution as the initial conditions [30].
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FIG. 1. Dijet production in hot and cold quark gluon plasmas.

There are few theories for describing the QGP matter. The
lattice gauge theory is used at low densities and high tempera-
tures without the ability to explore the color-superconducting
phase structure. The weak-coupling theory using a schematic
shows the color-flavor- locked phase takes place at higher
densities, however this method cannot be utilized at high
temperatures. According to the Nambu-Jona-Lasinio model
one gluon at strong interaction is replaced by a four-fermion
interaction.

Besides the energy momentum of the particles, there is
another excess energy of confinement which can be described
by a suitable mean-field theory. The Massachusetts Institute of
Technology (MIT) bag model is a simple and suitable theory
for explaining this energy. It is shown that confinement energy
plays an important role in the evolution of small amplitude
localized waves [21]. In this paper we use the well-known
MIT bag model for completing the equation of state (EoS).

There are many experimental observations of colliding
localized waves in the evolution of a fireball produced after
the heavy ion collisions. Figure 1 presents a schematic for the
creation of such waves.

Head-on collisions of solitary waves in a degenerate hadron
gas have been investigated before. To the best knowledge of
the authors, there are no archival publications considering the
detailed behavior of such dijets. In this paper we try to explain
another source for creating such back-to-back jets during the
evolution of the produced QGP after the heavy ion collisions.
Recently, we have studied the nonrelativistic dynamics of
high-density hadronic gas with shear and bulk viscosities in the
cold hadronic matter [31]. Propagation and head-on collisions
of localized waves in such media have been investigated using
the hadronic gas equation of state which mostly was applied
in cold QGPs as exists in superdense astronomical objects. We
showed that these waves can travel longer distances before
changing into deformed profiles and totally dissolving in
the viscous media in comparison with inviscid environments.
Anyway the traveling distances of such waves are small. In the
present paper we discuss the relativistic dynamics of localized
multisolutions in high- (and low-) temperature quark gluon
plasmas. The results help us to explain the creation of dijets in
heavy ion collisions.

In the next section we will introduce the hydrodynamic
equations for the system. As previously mentioned, these
equations explain the perfect fluid behavior created in heavy
ion collisions. The bag model is presented in Sec. III. Then the
equations which describe the details of head-on collisions in
QGPs are obtained in Sec. IV. The numerical calculation for
the evolution of two QGP colliding waves is investigated in
Secs. V and VI. Finally conclusions are discussed in Sec. VII.

II. RELATIVISTIC HYDRODYNAMICS

Observations in relativistic heavy ion collisions have
confirmed the existence of a new state of matter that behaves
similar to a perfect fluid. For describing the evolution of this
state of matter one can use the relativistic hydrodynamics.
Information of the system is encoded in the thermodynamic
properties and its EoS [32,33].

Produced QGPs in heavy ion collisions are extremely high-
temperature media, consisting of high-energy ingredients. The
energy-momentum tensor of the system by considering natural
units c = 1, � = 1, and kB = 1 (kB is Boltzmann’s constant)
becomes

Tμν = (ε + p)uμuν − pgμν, (1)

where uν is the four-vector velocity with u0 = γ and �u =
γ �v. γ is the Lorentz factor given by γ = (1 − v2)−1/2. �v =
�v(t,r,ϕ,z) is the velocity of matter in a cylindrical coordinate,
and therefore uνuν = 1. The energy density and pressure of
the system are ε and p, respectively. The energy-momentum
conservation equation is as follows:

∂νT
ν
μ = 0. (2)

The relativistic Euler equation is obtained from components
of Eq. (2) perpendicular to the direction of uν as

∂ �v
∂t

+ (�v · �∇)�v = − 1

(ε + p)γ 2
( �∇p + �v). (3)

Conservation of the baryon density is achieved from the
relative continuity equation,

∂νj
ν
B = 0. (4)

Since jν
B = uνρB, so modification of the continuity equa-

tion leads to

∂ρB

∂t
+ γ 2vρB

(
∂v

∂t
+ �v · �∇v

)
+ �∇ · (ρB �v) = 0. (5)

Multiplying the conservation Eq. (2) with uν the following
equation is earned [32]:

(ε + p)∂μuμ + uμ∂με = 0. (6)

Now we need to use the thermodynamic equation of the
system. We use the Gibbs relation,

ε + p = T s + μBρB, (7)

and the first law of thermodynamics,

dε = T ds + μBdρB. (8)

Recall that the produced QGP in RHIC involves high
temperatures and nearly zero net baryon density, so the
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chemical potential is equivalent to zero [32]. Therefore the
last term in Eqs. (7) and (8) is neglected. Placing (7) and (8)
into Eq. (6) we obtain

T s(∂μuμ) + T uμ(∂μs) = 0. (9)

By eliminating the temperature in (9), the conservation of
the entropy density resulted as we expected for the perfect
fluid as

∂ν(suν) = 0. (10)

Similar to Eq. (4) we can write the following equation from
(10):

∂s

∂t
+ γ 2vs

(
∂v

∂t
+ �v · �∇v

)
+ �∇ · (s�v) = 0. (11)

At this stage we do not have a complete set of equations
to calculate the evolution of the QGP system. Indeed we need
another equation which should be taken as the equation of state
of the system, which will be discussed in the next section.

III. BAG MODEL DESCRIPTION OF THE QGP

The equation of state for the QGP system can be derived
using the MIT bag model. This model successfully describes
the QGP as an ideal gas of noninteracting quarks and gluons.
Inside the bag, quarks are treated as a noninteracting gas of
quarks moving freely, and interactions with gluons are not
taken into account. The bag constant Bbag represents the effects
of confinement in this model as the needed energy to create
a bag in the QCD vacuum [21]. The confinement boundary
condition in the MIT bag model corresponds to the zero value
for the quark mass inside the bag but infinity at the boundary
and outside the bag [8,30,34].

Due to the MIT bag model the equation of state for the
QGP as a perfect fluid accompanied by the bag constant Bbag

is obtained as a function of baryon density, i.e., p = p(ρB) and
ε = ε(ρB). For this purpose the baryon density arising from
quarks and antiquarks is introduced as

ρB = 1

3

γQ

(2π )3

∫
d3k[n�k − n̄�k], (12)

where

n�k ≡ n�k(T ) = 1

1 + e[k−(1/3)μ]/T
, (13)

and

n̄�k ≡ n̄�k(T ) = 1

1 + e[k+(1/3)μ]/T
. (14)

Henceforth μ represents the baryon chemical potential. At
zero temperature as the compact stars, the baryon density is
equal to

ρB = 2

3π2
k3
F , (15)

where kF displays the highest occupied level. Now the
recognized relations for the energy density and pressure are

obtained from the following expressions:

ε = Bbag + γG

(2π )3

∫
d3kk(ek/T − 1)

−1

+ γQ

(2π )3

∫
d3kk[n�k + n̄�k], (16)

and

p = −Bbag + 1

3

{
γG

(2π )3

∫
d3kk(ek/T − 1)

−1

+ γQ

(2π )3

∫
d3kk[n�k + n̄�k]

}
, (17)

where the statistical factor for the gluons is obtained by
considering eight colors and the two-polarization γG = 16 and
for quarks involving two flavors, two spins, and three colors
γQ = 12.

For a combination of the above two expressions we get the
qualified relations,

3(p + Bbag) = ε − Bbag = 8π2

15
T 4+ 6

π2

∫ ∞

0
dkk3[n�k + n̄�k],

(18)
and

p = 1
3ε − 4

3Bbag, (19)

and the speed of sound is obtained as

c2
s = ∂p

∂ε
= 1

3
. (20)

As previously mentioned, considering ρB = 0 for the
high-temperature region created at the center of the heavy
ion collision area, Eqs. (13) and (14) are identical, i.e.
(n�k = n̄�k = 1

1+ek/T ) and replacing them in Eq. (18) we arrive at

3(p + Bbag) = ε − Bbag = 37

30
π2T 4. (21)

Now from thermodynamic relation for entropy density
s = (∂p/∂T )V , we have

s = ∂

∂T

(
−Bbag + 37

90
π2T 4

)
= 4

37

90
π2T 3. (22)

For dense stars the selection for the bag constant is equal to
B

1/4
bag = 170 MeV [35]. For convenience, Tbag attributed to the

bag temperature which is generating the same amount of bag
constant as

Bbag = 37

30
π2(Tbag)4, (23)

and the related temperature is about 14 MeV. Using this
assumption, the energy density from Eq. (21) becomes

ε = 37

30
π2

(
T 4 + T 4

B

)
, (24)

and the temperature will be equal to

T =
(

30

37π2
(ε − Bbag)

)1/4

. (25)
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The background temperature T0 is related to the background
energy density of the medium ε0 through (25), i.e., T0 =
[30/37π2(ε0 − Bbag)]1/4. By replacing (25) into Eq. (22) the
entropy density is obtained as a function of energy density as
follows:

s = s(ε) = 4
37

90
π2

(
30

37π2
(ε − Bbag)

)3/4

. (26)

We take the beam direction along the z axis. Therefore the
transverse momentum of produced particles after the interac-
tion will be on the x − y plane. If we neglect the deflections
due to elliptic flow, in the center of the mass coordinates, the
system can be expressed by the longitudinal proper time and
transverse momentum. The momentum distribution function
on the transverse plane is a symmetric function of radial
distance, i.e., v = v(r).

Substituting (21) and (26) into (11) the one-dimensional
relativistic continuity equation for entropy density is achieved

(1 − v2)

[(
90

148π2T 4

)(
∂ε

∂t
+ v

∂ε

∂r

)
+ ∂v

∂r
+ v

r

]

+v

(
∂v

∂t
+ v

∂v

∂r

)
= 0. (27)

The relation between energy density and pressure from
Eq. (21) is found as

ε + p = 148

90
π2T 4. (28)

According to Eq. (28) and remembering that ∂p
∂t

= 1
3

∂ε
∂t

and using �∇p = 1
3
�∇ε, the relativistic Euler equation in (1+1)

dimensions is obtained as

148

30
π2T 4

(
∂v

∂t
+ v

∂v

∂r

)
− (v2 − 1)

(
∂ε

∂r
+ v

∂ε

∂t

)
= 0.

(29)
Now we have a complete set of equations for studying the

time evolution of the propagating waves in the QGP.

IV. HEAD-ON COLLISION IN A QUARK GLUON PLASMA
WITH CYLINDRICAL SYMMETRY

Hydrodynamics equations with cylindrical symmetry on
the transverse plane and longitudinal scaling flows are usually
applied to calculate the dynamics of the propagated waves in
the central heavy ion collisions. So we expand our derived
equations in cylindrical coordinates. Let us rewrite Eqs. (27)
and (29) by dimensionless variables,

ε̂ = ε

ε0
, v̂ = v

cs

, (30)

where ε0 is the equilibrium energy density of the QGP.
Evolution equations of the system are nonlinear, and so we
cannot find an exact solution, so we have to solve them

numerically. We try to find a simplified equation for the
propagation of small amplitude waves in the QGP. We can
investigate the medium properties from characters of such
traveling waves. The “stretched coordinates” approach is
a powerful technique for this purpose. We have used the
small dimensionless parameter σ to expand the variables and
parameters of the system as a power series of σ [36–38]. Hence
Eq. (30) can be written in terms of σ as [36]

ε̂ = 1 + σ 2ε1 + σ 3ε2 + · · · ,

v̂ = σ 2v1 + σ 3v2 + · · · . (31)

The stretched coordinates for describing the head-on
collision of the traveling waves are introduced as follows:

ξ = σ (r − c1t) + σ 2P0(η,τ ) + σ 3P1(η,ξ,τ ),

η = σ (r + c2t) + σ 2Q0(ξ,τ ) + σ 3Q1(ξ,η,τ ),

τ = σ 3t. (32)

Now by substituting Eqs. (30)–(32) into (27) and (29), the
first nonzero term with respect to σ leads to

90ε0

148π2T 4

(
−c1

∂ε1

∂ξ
+ c2

∂ε1

∂η

)
+ cs

∂v1

∂ξ
+ cs

∂v1

∂η
= 0, (33)

and

148π2T 4cs

30

(
−c1

∂v1

∂ξ
+ c2

∂v1

∂η

)
+ ε0

∂ε1

∂ξ
+ ε0

∂ε1

∂η
= 0.

(34)
Variables ε1 and v1 can be grouped into two different terms,

one depending on ξ and τ and the other, a function of η and τ
as ε1 = ε1

1(ξ,τ ) + ε2
1(η,τ ) and v1 = v1

1(ξ,τ ) + v2
1(η,τ ). If we

apply these assumptions into Eqs. (33) and (34) we find

90ε0

148π2T 4

(
−c1

∂ε1
1

∂ξ
+ c2

∂ε2
1

∂η

)
+ cs

∂v1
1

∂ξ
+ cs

∂v2
1

∂η
= 0,

(35)
and

148π2T 4cs

30

(
−c1

∂v1
1

∂ξ
+ c2

∂v2
1

∂η

)
+ ε0

∂ε1
1

∂ξ
+ ε0

∂ε2
1

∂η
= 0.

(36)
The velocity can be found in terms of energy density as

v1 = 90ε0

148π2T 4cs

(
c1ε

1
1 − c2ε

2
1

)
. (37)

Also the phase velocities are earned as

c2
1 = c2

2 = 1
3 . (38)

The second order of expansions in Eqs. (33) and (34) leads
to the same result when the index “1” is replaced by “2” and
vice versa. By inserting (37) and (38) into (33) and (34) and
collecting the terms of order σ 3 we have

90ε0

148π2T 4

⎧⎨
⎩

( ∂ε1
1

∂τ
+ ∂ε2

1
∂τ

− 2c2Q0ξ
∂ε2

1
∂η

+ 2c1P0η
∂ε1

1
∂ξ

− c1
∂ε3
∂ξ

+ c2
∂ε3
∂η

+ ε1
1
τ

− ε2
1
τ

)
+ 30ε0

74π2T 4

(
c1ε

1
1

∂ε1
1

∂ξ
− c2ε

2
1

∂ε1
1

∂ξ
+ c1ε

1
1

∂ε2
1

∂η
− c2ε

2
1

∂ε2
1

∂η

)
⎫⎬
⎭ + cs

∂v3

∂ξ
+ cs

∂v3

∂η
= 0, (39)
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and

3ε0

(
c1

∂ε1
1

∂τ
− c2

∂ε2
1

∂τ

)
+ 2ε0Q0ξ

∂ε2
1

∂η

+ 2ε0P0η

∂ε1
1

∂ξ
+ ε0

∂ε3

∂ξ
+ ε0

∂ε3

∂η

+ 30ε2
0

74π2T 4

(
ε1

1
∂ε1

1

∂ξ
− ε2

1
∂ε1

1

∂ξ
− ε1

1
∂ε2

1

∂η
+ ε2

1
∂ε2

1

∂η

)

− 148π2T 4cs

30

(
c1

∂v3

∂ξ
− c2

∂v3

∂η

)
= 0. (40)

Differentiating Eqs. (39) and (40) with respect to ξ and η,
we will find four different equations. Combining these new
equations and using (38) we obtain

∂

∂ξ

(
6c1

∂ε1
1

∂τ
+ 2

60ε0

148π2T 4
ε1

1
∂ε1

1

∂ξ
+ 3c1

ε1
1

τ

)

− ∂

∂η

(
6c2

∂ε2
1

∂τ
− 2

60ε0

148π2T 4
ε2

1
∂ε2

1

∂η
− 3c2

ε2
1

τ

)

+ ∂

∂η

[(
4Q0ξ − 2

60ε0

148π2T 4
ε1

1

)
∂ε2

1

∂η

]

+ ∂

∂ξ

[(
4P0η − 2

60ε0

148π2T 4
ε2

1

)
∂ε1

1

∂ξ

]
+ 4

∂2ε3

∂ξ∂η
= 0.

(41)

Finally by considering the dependency of ε1
1 and ε2

1 on the
variables τ, ξ, and η, we find

∂ε1
1

∂τ
+ 15ε0

37π2T 4
c1ε

1
1
∂ε1

1

∂ξ
+ ε1

1

2τ
= 0, (42)

∂ε2
1

∂τ
− 15ε0

37π2T 4
c2ε

2
1
∂ε2

1

∂η
− ε2

1

2τ
= 0, (43)

Q0ξ = 15ε0

74π2T 4
ε1

1, (44)

P0η = 15ε0

74π2T 4
ε2

1. (45)

Equations (42) and (43) are wave equations which are func-
tions of (ξ,τ ) and (η,τ ) describing the space-time evolution
of energy density lumps in cylindrical coordinates. These
equations are not symmetric as the signs of the last terms
are opposite. For a specific point, such as the locations in

which ∂ε̂1
1

∂r
= ∂ε̂2

1
∂r

= 0, ∂ε1
1

∂τ
< 0, whereas ∂ε2

1
∂τ

> 0. This means
that ε1

1(ε2
1) decreases (increases) in time. P0η and Q0ξ are phase

shifts of the localized waves after their head-on collision. The
derived wave equations in r − t space are derived from (32)
as follows:

∂ε̂1
1

∂t
+ c1

∂ε̂1
1

∂r
+ 15ε0

37π2T 4
c1ε̂

1
1
∂ε̂1

1

∂r
+ ε̂1

1

2t
+ 15ε0

74π2T 4
ε̂2

1

×
(

∂ε̂1
1

∂t
− c2

∂ε̂1
1

∂r
+ ε̂1

1

2t

)
= 0, (46)

and

∂ε̂2
1

∂t
− c2

∂ε̂2
1

∂r
− 15ε0

37π2T 4
c2ε̂

2
1
∂ε̂2

1

∂r
− ε̂2

1

2t

+ 15ε0

74π2T 4
ε̂1

1

(
∂ε̂2

1

∂t
+ c1

∂ε̂2
1

∂r
− ε̂2

1

2t

)
= 0, (47)

where ε̂1
1 = σ 2ε1

1 and ε̂2
1 = σ 2ε2

1 are small perturbations in
the energy density. These equations clearly show that two
localized waves (with amplitudes on the order of σ ) travel
toward each other and undergo a head-on collision.

V. NUMERICAL METHOD

The breaking wave Eqs. (46) and (47) in flat geometry can
be rewritten in the general form of

∂ε̂

∂t
+ c

∂ε̂

∂x
+ αε̂

∂ε̂

∂x
= 0, (48)

where c and α are the pulse velocity and a nonlinear coefficient,
respectively. This equation describes the one-dimensional
evolution of the first-order perturbation in the energy density
of hot QGPs. The nonlinear coefficient α is a function
of equilibrium energy density and the temperature as α =
± 15ε0

37π2T 4 c = ± c
2 [1 + ( Tbag

T
)
4
] where the positive (negative) sign

corresponds to the propagating waves in the direction (opposite
direction) of the coordinate axis.

Since the last equations are nonlinear and there is no
analytical solution for them, in this article Eqs. (46) and
(47) are solved numerically. The finite difference approach
is used to solve the partial differential system of equations
(PDE). Due to the time term in the equations the problem
is transient. Although there is no known exact solution for
(46) and (47), we can examine the localized solutions of
the KdV equation as an initial condition for the numerical
solution as ε(r,t = 0) = A sec h2(r/�) for energy density in
nonplanar geometry, where A is the initial amplitude and �
is its width [21]. In this case, since a direct computation of
the time variable can be performed in terms of spatial (r) and
some known quantities, it is possible to perform the numerical
calculations explicitly as follows:

�
εn+1 = �

εn + dtf

(
∂

�
ε

∂r
,r,α

)
. (49)

We want to compute ε̂ at the (n + 1)th time-step (dt) in
terms of its known value at the old time-step (t = n dt) with
some changes. The idea of the finite difference method is
to substitute the derivatives appearing in the PDE by finite
differences, i.e., discrete terms that approximate them. In this
paper for time and spatial discretizations, we use a central dif-
ferencing scheme. By applying the central differencing scheme
we can benefit the second-order accuracy. In our case (inviscid
flow equations), the central differencing scheme is condition-
ally stable and depends on numerical parameters, such as pulse
velocity (c), time step (dt), and grid size (dx). It is possible
to define a nondimensional parameter for controlling the
stability λ = cdt

dx
. Our results show that one should use λ � 1

2
in order to ensure stability and accuracy. Additionally the
central differencing schemes applied to the inviscid equations
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inherently introduce numerical dispersion near sharp changes
as a deformed profile. Sometimes these undesirable numerical
dispersions may interfere with the physical behavior, thereby
humiliating the fidelity of the results [30]. Of course the central
differencing scheme is not affected by artificial dissipation and
so is favored as an accurate and efficient numerical method.
For controlling these undesirable numerical dispersions we
benefit from a kind of filter using the weighted average as
below,

f (i)filtered = f (i − 1) + 2f (i) + f (i + 1)

4
. (50)

VI. DISCUSSION

Cold QGP matter is expected to exist in the core of
ultradense neutron and quark stars because of squeezing due
to high pressure. In such situations the temperature is low,
i.e., T0 = Tbag, and the nonlinear coefficient becomes α = ±c.

Other important terms in Eqs. (46) and (47) are ε̂1
1

2t
and ε̂2

1
2t

which
come from cylindrical geometry. If we write the continuity
and the Navier-Stokes equations in nonplanar coordinates, an
extra term (in comparison with the Cartesian coordinate) will
appear as nε̂

2t
with n = 1 (n = 2) for cylindrical (spherical)

symmetry. It is clear that for the Cartesian coordinate, n = 0,
and this term is absent. This term is called the geometric term
in literature [39,40]. Adding this term to (48) gives the full
evolution equation in nonplanar geometry with cylindrical
symmetry which is created in the central rapidity region of a
typical heavy ion collision. At the beginning of the perturbation
evolution, the effects of the geometric terms are considerable.
It may be noted that these terms are singular at t = 0 [39–41].
For |t | � 1 these terms are sufficiently small, so Eqs. (46)
and (47) reduce to (48) for sufficiently large values of time,
whereas these terms become very large at |t | → 0.

The KdV equation has an extra dispersive term in compar-
ison with the breaking wave Eq. (48). This term compensates
the effects of the nonlinear term and therefore stabilizes the

KdV solutions as solitary waves. Therefore in general we can
conclude that the propagating waves in the QGP media are not
stable. But such perturbations can affect the boundary of the
medium if they are able to reach there. So we have to study
the shape of the moving lumps and their traveling distances
before decay.

Equations (44) and (45) present the phase shifts of moving
waves after their head-on collision. These equations indicate
that waves with larger amplitude have smaller absolute values
of phase shift.

Two concepts are introduced for a better explanation of the
figures and the physics behind the figures. One of these two
concepts is the “deformed” profile. In the current paper, the
drastic change in the wave profile in a very small space interval
(dr), i.e., a large gradient ( ∂�ε

∂r
), is introduced and used as the

deformed profile. The other concept is the solitary wave life.
As is known in mathematics and physics, a solitary wave is a
kind of symmetrical wave which maintains its shape while it
propagates at a constant velocity. When the symmetrical form
of the solitary wave changes into the deformed wave, it is
assumed that the lifetime of the solitary wave ends.

Figure 2 shows the time evolution of the propagating
wave at a low-temperature medium as T0 = Tbag in cylindrical
geometry. The initial position of the solitary waves has been
taken as r01 = 3.0 and r02 = 5.0 fm, and their initial width is
� = 0.1. Amplitudes of the left (right) profile in Fig. 2(a) are
taken A = 0.0625 (A = 0.035) and in Fig. 2(b) have been
taken as A = 0.1 (A = 0.0625). As previously stated, due

to the singularity of ε̂1
1

2t
and ε̂2

1
2t

at t = 0, the calculations for
the time evolution of the moving waves should be performed
at longer times, therefore we have started our simulations
from t = 0.5 fm/c after the heavy ion collision. These figures
clearly show that the amplitude of the upward moving solitary
wave reduces in time whereas the amplitude of the downward
moving wave increases rapidly. These figures indicate that the
shapes of the localized perturbations spoil in time. Comparison
of Figs. 2(a) and 2(b) shows that the solitary wave lifetime

FIG. 2. Time evolution of two energy density pulses at T0 = Tbag with cylindrical symmetry. Initial amplitudes of the solitons of (a) the left
panel are 0.0625, 0.035, and � = 0.1 whereas in (b) the right panel they are 0.1, 0.0625, and � = 0.1.
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FIG. 3. Time evolution of two energy density pulses at T = Tbag

with cylindrical symmetry. Initial amplitude and width of the left
(right) soliton are A = 0.1 and � = 0.2 (A = 0.0625 and � = 0.2).

decreases when the amplitude of the initial waves increases.
T0 is the background temperature which is a function of the
energy density described by (24). It may be noted that such a
scale of temperature is related to the cold hadronic matter.
They live long enough to travel distances on the order of
10 fm. Such distances are not of interest in the physics of
dense astronomical objects. On the other hand, heavy ion
collisions are very hot and T0 � Tbag, but the dimension of
the fireballs in RHIC and LHC are assumed to be about
6–10 fm [42].

Figure 3 presents a head-on collision of moving solitons
with the same amplitudes of Fig. 2(b) but different in width.
This figure indicates that wider solitons are more stable during
the downward movement. Indeed solitary profiles with greater
slopes (larger amplitude and smaller width) will spoil sooner.

The maximum value of the nonlinear coefficient is α = c
which occurs in cold hadronic matter. In high relativistic
heavy ion collisions medium temperature (background energy
density) is much higher than the bag temperature (bag energy).
Therefore the nonlinear coefficient α becomes smaller, and
therefore it is expected that localized waves pass longer
distances in the medium. Our simulations show that in the
case of T � Tbag (ε � εbag) solitary waves are able to travel
distances much longer than the size of the fireball after their
head-on collision.

Figure 4 demonstrates the time evolution of colliding waves
with similar identifications of Fig. 3 but for T0 = 12Tbag in the
range of the temperature of the heavy ion collisions. This
figure shows that, for higher temperatures, solitary waves
are more stable, and they are able to pass the fireball and
create detectable effects at the borders. As stated before, the
amplitude of the right moving solitary waves becomes smaller
whereas the left moving one becomes larger. Therefore we
will have two colliding waves with different amplitudes at

FIG. 4. Evolution of colliding solitary waves for T0 = 12Tbag in
the range of RHIC temperature.

the borders which emit energy in the same line but opposite
directions. Figure 4 demonstrates that traveling waves will not
become spoiled within short periods as compared with solitary
waves in cold hadronic matter.

According to the above procedure we have performed
several numerical calculations with different initial conditions.
We have evaluated the solution during time periods in which
the numerical errors are small. Figures 2–4 clearly show that
the solitary profiles smoothly change during the evolution. Our
findings clearly indicate that the periodical breaking profiles
as reported in some papers [30,37,38,43] are due to numerical
instabilities. Indeed there is no physical reason for creating
periodical breaking profiles.

VII. CONCLUSIONS AND REMARKS

In this paper we have investigated the propagation of small
amplitude localized waves in a dense quark gluon plasma
which is produced in the center of relativistic heavy ion
collisions or exists in the core of superdense astronomical
objects. The MIT bag model has been used to describe the
equation of state of the quark gluon plasma. A hydrodynamics
equation and a suitable equation of state have been linearized
using the reductive perturbation method. We showed that
perturbations in energy density are propagated in the medium
as localized waves which move toward each other. Using
numerical calculations we find that localized perturbations in
hot quark gluon plasma travel longer distances in comparison
with cold hadronic matter before changing into deformed
profiles. Hence localized waves travel longer distances in
higher-temperature QGPs and live long enough to reach the
borders of the medium. So they can create detectable effects at
the detectors. Also we have derived the higher-order analytical
phase shifts after the collisions which are proportional to the

034904-7



AZAM RAFIEI AND KUROSH JAVIDAN PHYSICAL REVIEW C 94, 034904 (2016)

amplitudes of two collisional waves. It is shown that incident
waves reach the borders with different amplitudes.

In this paper we have considered a Fermi-Dirac distribution
function for the matter under investigation. Some studies
indicate that the nonextensive distribution function is a better
model for describing the distribution of plasma constituents in
different equations of state of the QGP. Such a situation can
be considered in future works.

In the heavy ion collisions with energy in the range of
100-A MeV–10-A GeV nuclei projectiles absorb each other,
and the nuclear matter is compressed, heated, and produces
a QGP in a spatial region with spherical-like symmetry. The
results in this range of energy have astrophysical relevance
to compact neutron star explosions [44]. One can investigate
such a situation by solving the presented model in spherical
geometry.
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