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In high-energy heavy-ion collisions, forward-backward multiplicity (FB) correlation strengths are affected
greatly by centrality fluctuation and centrality window width. A method called FBrelative is raised to reduce or
remove the influence. This method is tested by a Monte Carlo simulation and is compared with the FBaverage

and FBprofile methods. The FBrelative method is also used for the HIJING event generator of Au+Au collisions,
and comparisons between the correlation strengths of different collision energies

√
sNN from 7.7 to 200 GeV

are shown. As a result, the correlation strengths are all very weak, and the similarities of correlation strengths
b of different centrality windows within 0%–50% are obvious, and it is observed that the correlation strengths
decrease with the increasing pseudorapidity gap at |η| < 2.
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I. INTRODUCTION

The forward-backward multiplicity (FB) correlation is
considered to be one of the most important probes of early
stages of high-energy heavy-ion collisions [1]. The studies
of hadron-hadron collisions show strong FB correlations at
|η| < 1, and the correlation strengths increase with collision
energy obviously [2–16]. This phenomenon was explained
by using a negative binomial distribution [17–20] and was
also studied by models [17,21–36] such as the color glass
condensate (CGC) model and the dual parton model (DPM)
[37–42]. The CGC model also suggests that the correlations
from early stage can spread across a wide range of rapidity
[1,33–36,41,43,44].

In recent years, FB correlation strengths were observed
at intermediate pseudorapidity of nucleus-nucleus collisions
such as Au+Au collisions at

√
sNN = 200 GeV [13,14].

In the experiment of Au+Au collisions at 200 GeV, the
FB correlation strengths b were measured as a function of
centrality ε and pseudorapidity gap �η. It was observed
that b vs �η is flat for the centrality bins 0%–10%, 10%–
20%, 20%–30%, and 30%–40% [13,14]. For 50%–60%, b
falls exponentially in pseudorapidity, and this phenomenon
is similar to the results of the pp̄ collisions [5]. It was
considered to be the results of short-range correlations [37].
The existence of long-range correlations was predicted in a
multiple scattering model of hadron-nucleus interactions [42].
For Au+Au collisions at 200 GeV, the flat correlation strengths
b as a function of �η were considered to be the sum of the
short- and long-range correlations in the framework of the dual
parton model of nucleus-nucleus collisions. The short-range
parts were calculated by utilizing the b of the pp collisions at√

s = 200 GeV, which were considered to only include short-
range correlations, and the rest of the parts were considered
to be the results of long-range correlations [13,37]. The b at
�η < 2 were also compared with the results of a parton string
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model [22,23,38] and the similarity is obvious. For 0%–10%,
the b of the HIJING model [45] were similar to the results of
short-range correlations: b decreases with the increasing �η.
In the CGC model, the long-range correlations were expressed
as

σFB = 1

1 + cα2
s

, (1)

where c increases with �η and is related to soft correlated
emission, and α2

s is related to the centrality [33–36].
On the other hand, FB correlation strengths b were

calculated by the FBaverage and FBprofile methods, and these two
methods were described in detail in Ref. [46]. FB correlation
strength is defined as Pearson’s correlation coefficient of
forward multiplicity Nf and backward multiplicity Nb, where
Nf and Nb are the numbers of charged particles falling
into the forward and backward pseudorapidity intervals δη,
respectively,

b = 〈NbNf〉 − 〈Nb〉〈Nf〉√〈
N2

b

〉 − 〈Nb〉2
√〈

N2
f

〉 − 〈
Nf

〉2 = D2
bf

DbbDff
, (2)

where Dbf,Dbb, and Dff are the backward-forward, backward-
backward, and forward-forward dispersions, respectively. Be-
cause these two intervals separate symmetrically around η = 0
and nucleus-nucleus collisions are symmetrical, Eq. (2) can
be also expressed as a linear factor of the relationship be-
tween average backward multiplicity and forward multiplicity
〈Nb(Nf)〉 = a + bNf [4,42], which can be expressed as

b = 〈NbNf〉 − 〈Nb〉〈Nf〉〈
N2

f

〉 − 〈
Nf

〉2 = D2
bf

D2
ff

. (3)

For reducing the bias of the results, the centralities were
determined by the reference multiplicities Nref, which is the
number of charged particles within the η windows other than
the used forward and backward intervals [46].

In the FBaverage method, the fluctuations within a centrality
window are not taken into account. The results of the FBaverage

method were explained by the event mixing of a purely
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statistical analysis under the assumption that the charged
particle multiplicity obeys a negative binomial distribution
[17–20]. In this method, the FB correlation is influenced
greatly by the centrality window width, and the comparisons of
correlation strengths between different centrality windows are
obscure [18,19,46–48]. In the FBprofile method, the obscure b of
different centrality windows are still existent (shown in Sec. III
in detail), and the b are also influenced by centrality fluctuation
equivalent to the fluctuation of reference multiplicity Nref

(described in detail in Appendix A). For the reasons above, it
is a natural choice to raise a method in which b of a centrality
window can be calculated without the influence of centrality
fluctuation.

In Sec. II, the FBaverage and FBprofile methods are described
summarily, and then we describe a new method called FBrelative.
In Sec. III, to test the FBrelative method, a Monte Carlo (MC)
simulation with an adjustable correlation is built, and these
three methods are compared for different centrality windows.
For the FBrelative method, the FB correlation strengths b of
HIJING of Au+Au collisions from 7.7 to 200 GeV are also
shown. A summary is given in Sec. IV.

II. METHODS

In this paper, the widths of the forward and backward
intervals are both set to δη = 0.2. The pseudorapidity gaps
are set to �η = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, and 1.8.
Centralities are decided by the reference multiplicities Nref,
and every η gap corresponds to some particular reference
window. For �η = 0.2, 0.4, and 0.6, the reference windows
are set to 0.5 < |η| < 1.0. For �η = 0.8 and 1.0, Nref is the
sum of the multiplicities in |η| < 0.3 and 0.8 < |η| < 1.0. For
�η = 1.2, 1.4, 1.6, 1.8, and bigger pseudorapidity gaps, the
reference windows are set to |η| < 0.5. It is worth noting that
the sums of the reference window widths �ηref are all equal
to 1.0 for different pseudorapidity gaps �η. These parameters
above are set the same as in Ref. [46] and are all illustrated in
Fig. 1.

In the FBaverage method, 〈Nf〉,〈Nb〉,〈NbNf〉, and 〈N2
f 〉 are the

averages over the events in centrality windows. Dbf and Dff

are calculated by utilizing these averages [46]. The measured

η
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FIG. 1. ISets of forward and backward η windows for different
separation �η.

correlation strengths b are dominated by the mixing of different
centrality events [17–20].

In the FBprofile method, 〈Nf〉,〈Nb〉,〈NfNb〉, and 〈N2
f 〉 are

fitted as functions of Nref. Linear fits are made for 〈Nf〉
and 〈Nb〉, and second-order polynomial fits are made for
〈NfNb〉 and 〈N2

f 〉. Dbf and D2
f are calculated by using the

fitting parameters, and are normalized by all the events in
the centrality window [46]. It is worth noting that the FB
correlation strengths b calculated by using the FBprofile method
are very sensitive to the size of the reference-multiplicity range
and the fitting range. This phenomenon is shown in detail in
Appendix A.

In the following parts of this section, we will describe a
new method called the FBrelative method. In this method, the
forward and backward multiplicities Nf and Nb are taken place
by relative multiplicities nf and nb (defined in detail later),
respectively, to remove the fluctuation of centrality, and the
biases caused by the fluctuation of Nref are also modified.

The centralities are vague because of the biases caused by
Nref. For a certain centrality ε (not a centrality window), b can
be expressed as

b = 〈NbNf〉ε − 〈Nb〉ε〈Nf〉ε〈
N2

f

〉
ε
− 〈Nf〉2

ε

, (4)

where 〈· · · 〉ε stands for the average over the events with
centrality ε. For a certain centrality ε, the expectation of the
reference multiplicities Nref is written as με in the following
derivation, and it also can be expressed as a function of
centrality, which is written as μ(ε). Therefore, b of a certain
centrality ε can be expressed as

b =
〈
NbNf
μ2

ε

〉
ε
− 〈

Nb
με

〉
ε

〈
Nf
με

〉
ε〈N2

f
μ2

ε

〉
ε
− 〈

Nf
με

〉2
ε

= 〈n∗
f n

∗
b〉ε − 〈n∗

f 〉ε〈n∗
b〉ε〈

n∗
f

2〉
ε
− 〈n∗

f 〉2
ε

, (5)

where n∗
f = Nf/με and n∗

b = Nb/με. Equation (5) can be also
expressed as an equivalent equation

(〈n∗
f

2〉ε − 〈n∗
f 〉2

ε

)
b = 〈n∗

f n
∗
b〉ε − 〈n∗

f 〉ε〈n∗
b〉ε. (6)

In the centrality window, we assume that the FB correlation
strengths b of different centralities in the window are equal to
each other, and the probability density function of ε is denoted
by f (ε). Therefore, by integrating both sides of Eq. (6), b can
be expressed as

b =
∫

(〈n∗
f n

∗
b〉ε − 〈n∗

f 〉ε〈n∗
b〉ε)f (ε)dε∫ (〈

n∗
f

2〉
ε
− 〈n∗

f 〉2
ε

)
f (ε)dε

= 〈n∗
f n

∗
b〉 − ∫ 〈n∗

f 〉ε〈n∗
b〉εf (ε)dε〈

n∗
f

2〉 − ∫ 〈n∗
f 〉2

εf (ε)dε
, (7)

where 〈· · · 〉 without a subscript stands for the average over
a centrality window, and the equations

∫ 〈n∗
f n

∗
b〉εf (ε)dε =

〈n∗
f n

∗
b〉 and

∫ 〈n∗
f

2〉εf (ε)dε = 〈n∗
f

2〉 are utilized in Eq. (7). For
charged particle multiplicities Nch, the shapes of distributions
dNch
Nchdη

of different centralities ε are nearly the same in a narrow
centrality window: the narrower the centrality window, the
more similar the shapes. So the averages 〈n∗

f 〉ε for different
centralities ε are all approximate to the average 〈n∗

f 〉 over the
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centrality window. Therefore, b can be simplified to

b = 〈n∗
f n

∗
b〉 − 〈n∗

f 〉〈n∗
b〉〈

n∗
f

2〉 − 〈n∗
f 〉2

. (8)

It is worth noting that Eq. (8) is not used to calculate the FB
correlation strength b, because the expectation με of reference
multiplicities Nref for a certain centrality ε cannot be measured
directly.

On the other hand, for a measured Nref, we assume that the
probability of corresponding με obeys a Gaussian distribution

g(με; Nref,
√

Nref) = 1√
2πNref

e− (με−Nref)2

2Nref , (9)

where
√

Nref and με can be thought to be the statistical
error and truth value of Nref, respectively. This requires a
few caveats. The Gaussian approximation is not suited very
well for the most central collisions (such as the centrality
windows covering 0%–5%). The drawbacks are explained in
Appendix B, and the effects are shown in Sec. III. Anyhow, if
the approximation is used, for a centrality window,〈

με

Nref

〉
=

∫∫
με

Nref
g(με; Nref,

√
Nref)h(Nref)dNref = 1,

〈
μ2

ε

N2
ref

〉
=

∫∫
μ2

ε

N2
ref

g(με; Nref,
√

Nref)h(Nref)dNref

=
∫ (

1 + 1

Nref

)
h(Nref)dNref = 1 +

〈
1

Nref

〉
, (10)

where h(Nref) is the distribution function of Nref in the
centrality window. We define the forward and backward
relative multiplicities as nf ≡ Nf/Nref and nb ≡ Nb/Nref,
respectively. By utilizing Eq. (10), the relationships between
the averages 〈nf〉,〈nb〉,〈nfnb〉,〈n2

f 〉 and 〈n∗
f 〉,〈n∗

b〉,〈n∗
f n

∗
b〉,〈n∗

f
2〉

over a centrality window can be expressed as

〈nf〉 =
〈
Nf

με

με

Nref

〉
=

〈
Nf

με

〉〈
με

Nref

〉
= 〈n∗

f 〉,

〈nb〉 =
〈
Nb

με

με

Nref

〉
=

〈
Nb

με

〉〈
με

Nref

〉
= 〈n∗

b〉,
(11)

〈n2
f 〉 =

〈
N2

f

μ2
ε

μ2
ε

N2
ref

〉
= 〈

n∗
f

2〉(1 +
〈

1

Nref

〉)
,

〈nfnb〉 =
〈
NfNb

μ2
ε

μ2
ε

N2
ref

〉
= 〈n∗

f n
∗
b〉

(
1 +

〈
1

Nref

〉)
,

where the correlations between Nf (or Nb) and Nref are ignored.
By taking Eq. (11) into Eq. (8), b can be expressed as

b =
〈nfnb〉 − (

1 + 〈
1

Nref

〉)〈nf〉〈nb〉〈
n2

f

〉 − (
1 + 〈

1
Nref

〉)〈nf〉2
. (12)

The variables nf, nb, and Nref in Eq. (12) can be all determined
experimentally, and this expression dodges the direct and
accurate measurements of centralities. By introducing the
relative multiplicities, the differences between events with
different centralities within a centrality window are removed.
In other words, the correlations caused by the mixing of events
with different centralities can be eliminated. The effect of the

FBrelative method is tested by a Monte Carlo model in the next
section.

On the other hand, if we ignore the biases of Nref, false FB
correlation strengths can be calculated by a similar formula
including the forward and backward relative multiplicities nf

and nb. It is shown in detail in Appendix C.

III. MONTE CARLO TESTING AND RESULTS OF HIJING

To test the FBrelative method, a Monte Carlo (MC) simulation
with a controllable FB correlation is made. The charged
particle multiplicity distribution dσ/dNch at |η| < 1 is set to
that of Au+Au collisions of the HIJING event generator at√

sNN = 200 GeV, where σ and Nch stand for the total cross
section of the A-A collision and the charged particle multiplic-
ity, respectively. The pseudorapidity distribution dNch/dη is
set to be flat at |η| < 1. For a Monte Carlo event, the particles
are divided into two parts: the correlated part (CP) and the
uncorrelated part (UCP), and the proportion of the correlated
part is denoted as α. For an event with Nch particles at |η| < 1,
the αNch particles belong to CP. These particles of CP can
be divided into αNch/2 pairs, and the pseudorapidities of a
pair of particles are set to η and −η, where η is a random
number between 0 and 1. For the remaining part of the event,
the pseudorapidities of (1 − α)Nch UCP particles are set to
random numbers between −1 and 1 independently. For such a
MC source, b can be expressed as

b = α − αp − p

1 − αp − p
, (13)

where p is the probability of a particle falling into the
forward (or backward) bin, and in this paper, p is equal
to δη/(ηmax − ηmin) = 0.1, where (ηmin,ηmax) is the range of
pseudorapidity in the MC model. Equation (13) is deduced in
detail in Appendix D.

When α of the MC source is set to 0, the correlation
strengths b are calculated as a function of the centrality
and pseudorapidity gap �η, and the results of the FBaverage,
FBprofile, and FBrelative methods are shown in Figs. 2(a), 2(b),
and 2(c), respectively. There are no additional correlations in
the MC source, but positive correlations as the results of the
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FIG. 2. FB correlation strengths b of different centrality windows
of the MC source without additional FB correlations (α = 0) for the
FBaverage, FBprofile, and FBrelative methods.
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FIG. 3. Averages of b over �η from 0 to 2 for the FBaverage,
FBprofile, and FBrelative methods. 〈b〉 is plotted as a function of
correlation parameter α. The results of Eq. (13) are denoted by
“Deduced.”

FBaverage and FBprofile methods are obvious. The results of the
FBrelative method are more reasonable: the correlation strengths
b are close to zero and there are nearly no differences between
b of different centrality windows.

For different α from 0 to 1, the FB correlation strengths
b are calculated by these three methods, and the comparisons
of b of these three methods are shown in Fig. 3. The widths
of the forward and backward bins δη are always equal to 0.2
and symmetrical around η = 0, so there are no differences
between b of different pseudorapidity gaps �η for such a
MC source. Therefore, for a certain α, the averages of b of
different �η are made and shown in Fig. 3. For a certain α,
b should be a constant as Eq. (13) for this MC source, and b
of different centrality windows should be the same. For the
FBaverage and FBprofile methods, the correlation strengths b of
centrality windows are different from each other obviously
for the same α. For the FBrelative method, there are nearly no
differences between b of different centrality windows. For the
FBrelative method, the differences between b and Eq. (13) are
thought to be the result of ignoring the correlations between
Nf (or Nb) and Nref and the correlations between the particles
in reference windows.

For the FBrelative method, the correlation strengths b of
Au+Au collisions of the HIJING event generator at

√
sNN =

7.7–200 GeV are shown in Fig. 4. The b for 0%–10%,
10%–20%, 20%–30%, and 40%–50% are shown. It is common
for these collision energies that b of different centrality
windows are similar to each other obviously. The weak
FB correlations can be seen at �η < 2, and the correlation
strengths b decrease with the increasing pseudorapidity �η.
Weak negative correlations are also seen at long range such as
1 < �η < 2. If the particles emit randomly and independently
without any additional correlations, a negative b is a natural
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FIG. 4. FB correlation strengths b of different centrality windows
of HIJING event generator of Au+Au collisions at

√
sNN = 7.7 to

200 GeV for the FBrelative method.

result caused by a binomial distribution. But the weak negative
correlations can be overwhelmed easily by the centrality
fluctuation. It is notable that the correlation strengths b of 0%–
10% are different from other centrality windows especially for
the lower collision energies. We consider that this phenomenon
is caused by the unsuitable Gaussian approximation alluded to
in Sec. II and explained in detail in Appendix B.

On the other hand, to see the tendency of b vs
√

sNN ,
the b for centrality windows within 0%–50% of different
�η as a function of

√
sNN are shown in Fig. 5. In Fig. 5,

the negative correlation strengths are seen obviously at long
range, such as �η = 1.8. Additionally, the centrality window
0%–5% is avoided in Fig. 5. In general, the differences
between b of different collision energies are more obvious
than these of different centrality windows. In other words, b
is more sensitive to collision energy than to centrality. For
this phenomenon, we give a rough explanation. We guess that
the FB correlations of nuclear-nuclear collisions is dominated
by the particles emitting from the same sources. A fireball
of a nuclear-nuclear collision is made up by sources of
the nucleon-nucleon collisions. The number of sources in a
collision is affected greatly by centrality, but the property of a
source is dominated by collision energy. The FB correlations
without centrality fluctuations should not be influenced greatly
by superposition of similar sources in an event. Therefore, FB
correlations will not be obviously influenced by centrality.

The decreasing b(�η) were also seen in the pp collisions
[3–13], though the b of the pp collisions were higher and
can be understood as a combined result of centrality fluctu-
ations and short-range correlations. In the pp collisions, FB
correlation strengths b were calculated by using the FBaverage
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FIG. 5. FB correlation strengths b of different pseudorapidity
gaps �η as a function of collision energy

√
sNN from 7.7 to 200 GeV

for the FBrelative method.

method, and the positive correlation strengths were considered
to be dominated by the mixing of events under an assumption
of a negative binomial distribution [7,17–19]. In the process
of calculating b of pp collisions, the mixing of events is
equivalent to the centrality fluctuation, so that the higher b is a
natural result. Therefore, the weak correlation strengths around
0 for the FBrelative method are compatible with the obviously
positive correlations in pp collisions for the FBaverage method
which did not take into account the centrality fluctuation.

Weak correlations were also seen in the model studies of
two-particle-rapidity correlation functions of nuclear-nuclear
collisions. The relationship between the rapidity (or pseu-
dorapidity) bins were expressed as the correlation functions
C(η1,η2) = ρ2(η1,η2)

ρ1(η1)ρ1(η2) or some equivalent formulas, where
ρ1(η) and ρ2(η1,η2) are the inclusive and double inclusive
distributions, respectively [2,49–55]. In Ref. [49] (Figs. 11
and 13), weak correlations were observed obviously for the
AMPT (a multiphase transport) model [21] and the HIJING

model [45] of Pb+Pb collisions at
√

sNN = 2.76 TeV with
impact parameters equal to 8 fm. Some negative correlations
were also seen in Ref. [49] at long range, where C(η1,η2) less
than 1 were observed. Both the FB correlation strength b less
than 0 and the correlation function C less than 1 reflect negative
correlations. In sum, though the correlations measured by the
FBrelative method are very weak and even negative, it is not an
anomalous result.

It is worth noting that it is difficult to distinguish fluctuations
caused by different reasons, such as nucleon-nucleon colli-
sion numbers fluctuation in nuclear-nuclear collisions, string
number fluctuations, and statistical fluctuations of reference
multiplicities. The observed long-range correlations can be

considered to be influenced by these kinds of fluctuations.
In the FBrelative method, we try to remove the influence
of centrality fluctuations, but the effects of these kinds of
fluctuations above are also reduced or removed, not only the
influence of centrality fluctuations.

IV. SUMMARY

A new method called FBrelative was used to calculate
the forward-backward multiplicity correlation strength b as
a function of centrality and pseudorapidity gap �η. In
this method, the forward and backward multiplicities Nf

and Nb are replaced by the forward and backward relative
multiplicities nf and nb, respectively, to remove the influence
caused by centrality fluctuations, and the biases caused by
reference multiplicities are modified. This method was tested
by a Monte Carlo simulation with a controllable correlation
factor α, and comparisons between the FBaverage, FBprofile,
and FBrelative methods were made. For the FBrelative method,
when the correlation parameter α of the MC model was
set to the same value for different centrality windows, the
measured correlation strengths b approached the deduced
results [Eq. (13)], and this method did not cause additional
differences between b of different centrality windows. But in
the FBaverage and FBprofile methods, the additional differences
are obvious. With the FBrelative method, the similarity of b of
different centrality windows is observed for Au+Au collisions
of the HIJING event generator at

√
sNN = 7.7–200 GeV. For the

HIJING event generator, b falls with increasing pseudorapidity
gap at �η < 2. The weak correlation strengths less than 0.1
and negative b at 1 < �η < 2 are observed. On the other
hand, with the FBrelative method, b is more sensitive to collision
energy

√
sNN than to the centrality for the HIJING data. We hope

the FBrelative method can be tested by using experimental data.
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APPENDIX A: SENSITIVITY OF b TO REFERENCE
WINDOWS AND FITTING RANGE IN FBprofile METHOD

In the FBprofile method, 〈Nf〉,〈Nb〉,〈N2
f 〉, and 〈NfNb〉 are

counted in reference multiplicity bins (widths are equal to 1).
For a certain reference multiplicity bin, some events of
different centralities are counted together. Therefore, if we
widen the reference windows on the pseudorapidity η axis, the
widths of reference multiplicity bins are still equal to 1 but
the mixing of events will be over a narrower centrality range.
Though seemingly the reference multiplicity bin width may
be narrow enough, the b of the events of Au+Au collisions
produced by the HIJING event generator at

√
sNN = 200 GeV

shows that the results of the FBprofile method are sensitive to the
sum of the widths of reference windows. The sum of the widths
of reference windows is denoted by �ηref, and the values of
�ηref are set to 0.4, 0.6, 1.0 (used in Ref. [46]), 1.2, and 1.4,
respectively, to see the sensitivity of b to �ηref. As shown
in Fig. 6, the differences of b between different windows are
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FIG. 6. FB correlation strengths b of different reference windows
for HIJING event generator at

√
sNN = 200 GeV by using the FBprofile

method. The sums of reference-window widths are denoted by �ηref.

smaller for the bigger �ηref. It is worth mentioning that there
are no cuts used for the HIJING data.

In the FBprofile method, 〈Nf〉,〈Nb〉,〈N2
f 〉, and 〈NfNb〉 are

plotted as a function of Nref, and linear fits to 〈Nf〉 and 〈Nb〉
and second-order polynomial fits to 〈N2

f 〉 and 〈NfNb〉 are made
[46]. We consider that the fitting over all reference bins is
too rough so that the b of a centrality window is influenced
by the other centrality windows. To know the effect of the
fitting range, we calculate b of different centrality windows
with different fitting ranges. As shown in Figs. 7(a)–7(c),
the centrality windows and the fitting ranges are marked in
the right pads. In the piecewise fitting procedure, b of a
certain centrality window is calculated by using the parameters
of fitting over the same centrality window. The results of
the piecewise fitting are similar with the averages of the
correlation strengths of the reference multiplicity bins in the
corresponding centrality window, as shown in Fig. 7(d). The
comparisons above show that b of the FBprofile method is
sensitive to the fitting range. In addition, we consider that the

(a) full range fitting centrality(fitting range)
0%-10%(0%-80%)
10%-20%(0%-80%)
20%-30%(0%-80%)
30%-40%(0%-80%)
40%-50%(0%-80%)
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30%-40%(20%-50%)
40%-50%(30%-60%)

(c) piecewise fitting 0%-10%(0%-10%)
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b(d) average 0%-10%
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FIG. 7. Sensitivity of the FB correlation strengths b to the fitting
range for the FBprofile method. (a) Full range fitting. (b) Fitting near the
centrality windows. (c) Results of piecewise fitting. (d) Averages of
b of the reference bins within the centrality windows. The centrality
windows and corresponding fitting ranges are shown in the right
column.

positive correlations are dominated by the biases of reference
multiplicity Nref; the fluctuation of Nref causes a natural mixing
of events of different centralities.

In summary, the results of the FBprofile method are sensitive
to the sum of the widths of reference windows �ηref and the
fitting range.

APPENDIX B: DRAWBACKS OF THE GAUSSIAN
APPROXIMATION

In Sec. III, a Gaussian approximation is utilized to modify
the bias caused by the fluctuation of the reference multiplicity
Nref. In this approximation, the truth value of Nref is denoted
by με, and for a certain Nref, the distribution of με is expressed

as a Gaussian function g(με; Nref,
√

Nref) = 1√
2πNref

e
− (με−Nref)2

2Nref

[Eq. (9)]. Indeed, the probability distribution of με and Nref

can be expressed more accurately as

F (με,Nref) = H (με)
1√

2πμε

e− (Nref−με )2

2με , (B1)

where H (με) is the distribution of με. It is reasonable that με

and
√

με can be understood to be the truth value and statistical
error of Nref, respectively. When H (με) is flat and Nref is
big enough so that

√
Nref is around the value of

√
με, then

F (με,Nref) can be expressed approximately as Eq. (9). But for
most central events such as 0%–5%, these conditions of the
approximation no longer apply; H (με) falls to 0 quickly when
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FIG. 8. On the bottom graph, the probability distribution function
(PDF) of με is set to an even function H (με), and the PDF of
Nref is equal to

∫
H (με) exp [− (Nref−με )2

2με
]dμε . On the top graph, for

different Nref, PDFs of με are calculated as g(με) [Eq. (9)] and F (με)
[Eq. (B1)].

centrality is close to 0%. Especially for the events with the
biggest Nref, με is always less than Nref. Figure 8 illustrates
this phenomenon. To explain it accessibly, we assume the
probability distribution function (PDF) of με,H (με) is even
between 0 and 1000. The PDF of Nref can be calculated by
integrating F (με,Nref) over με. For a certain Nref, g(με) and
F (με) stand for Eq. (9) and Eq. (B1), respectively. From the
comparisons between g(με) and F (με) for different Nref in
Fig. 8, it is seen that the differences between g(με) and F (με)
are obvious for high Nref (where the PDF of Nref falls to 0
quickly). In sum, when the FBrelative method is used, the most
central events (0%–5%) should be avoided.

APPENDIX C: SIMPLE FBrelative METHOD WITHOUT
MODIFICATION OF THE Nref FLUCTUATION

If we ignore the biases of Nref, for a certain Nref in a cen-
trality window, FB correlation strengths b can be expressed as

bNref = 〈NfNb〉Nref − 〈Nf〉Nref〈Nb〉Nref〈
N2

f

〉
Nref

− 〈Nf〉2
Nref

= 〈nfnb〉Nref − 〈nf〉Nref〈nb〉Nref〈
n2

f

〉
Nref

− 〈nf〉2
Nref

, (C1)

where 〈· · · 〉Nref stands for the average over the events with the
same reference multiplicity Nref, and definitions nf ≡ Nf/Nref

and nb ≡ Nb/Nref (defined in Sec. II) are utilized. Just like
the derivation in Sec. II, for a centrality window, the FB
correlation strength can be expressed as

b = 〈nfnb〉 − 〈nf〉〈nb〉〈
n2

f

〉 − 〈nf〉2
. (C2)

7.7 GeV 9.2 GeV

19.6 GeV 27 GeV

39 GeV 62.4 GeV

130 GeV 200 GeV

0.5 1 1.5 0.5 1 1.5
0.0
0.1
0.2
0.3
0.0
0.1
0.2
0.3
0.0
0.1
0.2
0.3
0.0
0.1
0.2
0.3

0.0
0.1
0.2
0.3
0.0
0.1
0.2
0.3
0.0
0.1
0.2
0.3
0.0
0.1
0.2
0.3

ηΔ

b
F

B
 c

or
re

la
tio

n 
st

re
ng

th
 

no MDF
0%-10% 10%-20%
20%-30% 40%-50%

MDF
10%-20%

FIG. 9. By using Eq. (C2), the FB correlation strengths b of
different centrality windows for Au+Au collisions of the HIJING event
generator at

√
sNN = 7.7–200 GeV are shown, and are denoted by

“o MDF” short for “no modification”. The results calculated with
Eq. (12) are denoted by “MDF”.

The b of HIJING events at
√

sNN = 7.7–200 GeV are shown in
Fig. 9, and the results are compared with the standard FBrelative

method [Eq. (12)]. The shapes of b(�η) are flat, and the values
of b are much higher than the results of Eq. (12). We consider
that the FB correlation strengths b of this simple FBrelative

method [Eq. (C2)] are dominated by the mixing of events of
different centralities for a certain reference multiplicity Nref,
and this phenomenon is caused by ignoring the fluctuation of
Nref. Anyhow, there are also nearly no differences between b
of different centrality windows.

APPENDIX D: DERIVATION OF FB CORRELATION
STRENGTH b OF THE MC SOURCE

In an event, c and u stand for numbers of corre-
lated and uncorrelated particles, and cf,cb,uf, and ub stand
for the numbers of correlated-forward, correlated-backward,
uncorrelated-forward, and uncorrelated-backward particles,
respectively. For the MC model in Sec. III,

〈cf〉 =
c/2∑
cf=0

cf

( c
2

cf

)
(2p)cf (1 − 2p)

c
2 −cf = pc,

〈
c2

f

〉 =
c/2∑
cf=0

c2
f

( c
2

cf

)
(2p)cf (1−2p)

c
2 −cf = p2c2+p(1−2p)c,
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〈uf〉 =
u∑

uf=0

uf

(
u

uf

)
puf (1 − p)u−uf = pu,

〈
u2

f

〉 =
u∑

uf=0

u2
f

(
u

uf

)
puf (1 − p)u−uf = p2u2 + p(1 − p)u,

〈ufub〉 =
u∑

ubf=0

ubf∑
uf=0

uf(ubf − uf)

(
ubf

uf

)
(
1

2
)ubf

×
(

u

ubf

)
(2p)ubf (1 − 2p)u−ubf

= p2u2 − p2u, (D1)

where ubf = ub + uf, and 〈cb〉 = 〈cf〉,〈ub〉 = 〈uf〉,〈c2
b〉 =

〈c2
f 〉 = 〈cfcb〉 (because of cf = cb) are used in the following

derivation. The parameter p is equal to δη/(ηmax − ηmin) where
δη is the forward (or backward) bin width and (ηmax,ηmin) is

the range of η in the MC model. Therefore, the variables of
Eq. (3) can be expressed as

〈Nf〉 = 〈cf + uf〉 = 〈cf〉 + 〈uf〉,
〈Nb〉 = 〈cb + ub〉 = 〈cb〉 + 〈ub〉,〈
N2

f

〉 = 〈(cf + uf)
2〉 = 〈

c2
f

〉 + 〈
u2

f

〉 + 2〈cf〉〈uf〉,
〈NfNb〉 = 〈(cf + uf)(cb + ub)〉

= 〈cfcb〉 + 〈ufub〉 + 〈cf〉〈ub〉 + 〈uf〉〈cb〉. (D2)

By taking Eq. (D1) into Eq. (D2), D2
bf = 〈NbNf〉 − 〈Nb〉〈Nf〉

and D2
ff = 〈N2

f 〉 − 〈Nf〉2 can be expressed as

D2
bf = p(1 − 2p)c − p2u,

D2
ff = p(1 − 2p)c + p(1 − p)u. (D3)

By taking c = αNch and u = (1 − α)Nch into Eq. (D3), b =
D2

bf/D
2
ff can expressed as Eq. (13).
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