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Hadronization time of heavy quarks in nuclear matter
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We study the hadronization time of heavy quark in nuclear matter by using the coalescence model and the
spatial diffusion constant of a heavy quark from lattice quantum chromodynamic calculations, assuming that the
main interaction of a heavy quark at the critical temperature is hadronization. It is found that the hadronization
time of a heavy quark is about 3 fm/c for 2πTcDs = 6, if a heavy quark is combined with the nearest light
antiquark in coordinate space without any correlation between the momentum of a heavy quark and that of
a light antiquark which forms a heavy meson. However, the hadronization time reduces to 0.6–1.2 fm/c for
charm and 0.4–0.9 fm/c for bottom, depending on the heavy meson radius, in the presence of momentum
correlation. Considering the interspace between quarks and antiquarks at the critical temperature, it seems that
the hadronization of a heavy quark does not happen instantaneously but gradually for a considerable time, if
started from the thermal distribution of quarks and antiquarks.
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I. INTRODUCTION

Relativistic heavy-ion collisions are practically the only
way to create extremely hot dense nuclear matter in labo-
ratories. The BNL Relativistic Heavy Ion Collider (RHIC)
and the CERN Large Hadron Collider (LHC), respectively,
accelerate heavy nuclei and make collisions up to the energies
of 200 GeV and 2.76 TeV. Such collisions produce a strong
elliptic flow in semicentral collisions and induce a significant
energy loss of high pT particles, which indicate the formation
of extremely dense and strongly interacting nuclear matter,
so-called strongly interacting quark-gluon plasma (sQGP).

Searching for the properties of the hot dense nuclear matter
is very interesting and also challenging. Heavy flavor is one
of the promising probes for the properties. It has a couple
of advantages over other probes. Firstly, it might have the
information about the early stage of nuclear matter, because it
is produced early in relativistic heavy-ion collisions. Secondly,
different from the light quark, its production is well described
in perturbative quantum chromodynamics (pQCD) [1].

Experimental data from RHIC and LHC show a large
suppression of the nuclear modification factor and strong
elliptic flow for heavy flavors [2–7]. This indicates that heavy
flavors also strongly interact with the nuclear matter produced
in relativistic heavy-ion collisions. There have been numerous
theoretical studies to explain and describe the experimental
data of heavy flavors [8–21]. Most of them take the following
steps: First of all, heavy quark pairs are produced through
nucleon-nucleon binary collisions. Produced heavy quarks and
heavy antiquarks then interact with partonic matter in the QGP
phase. At the critical temperature for the phase transition,
heavy quarks and heavy antiquarks are hadronized into heavy
mesons. Finally, the heavy mesons interact with other hadrons
until they freeze-out.
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The interactions of a heavy flavor with nuclear matter
have been extensively studied in the QGP phase as well
as in the hadron gas phase. In the dynamical quasiparticle
model (DQPM), the heavy quark interacts with the off-shell
partons whose spectral functions are determined from a fit to
lattice equation-of-state (EoS) [22]. It shows that the spatial
diffusion constant of the heavy quark decreases as temperature
approaches the critical temperature [23]. This results are in
good agreement with the recent results from lattice quantum
chromodynamics (lQCD) [24]. On the other hand, the spatial
diffusion constant of a heavy meson in hadron gas has been
calculated by using an effective Lagrangian, and it decreases
with increasing temperature [25]. Interestingly the diffusion
constant of the heavy quark in QGP meets that of the heavy
meson in hadron gas around the critical temperature (Tc). In
other words, the diffusion constant is smoothly connected and
has the minimum value around Tc. Since the spatial diffusion
constant is defined as the squared displacement of a particle
per unit time, the small diffusion constant at the critical
temperature implies the strong interaction of a heavy quark
with nuclear matter in phase transition.

Quark coalescence is one of the most popular models to
describe the hadronization of partons in nuclear matter [26,27].
In this model, a pair of quark and antiquark forms a meson,
and three quarks and three antiquarks, respectively, form a
baryon and an antibaryon. In this process, the heavy quark
gains momentum from a coalescence partner or coalescence
partners. Since the spatial diffusion constant is related to the
momentum transferred to a heavy quark per unit time, if the
hadronization time of a heavy quark is given, the diffusion
constant can be calculated.

In this study, we calculate the hadronization time of a heavy
quark in nuclear matter by using the spatial diffusion constant
of a heavy quark from lQCD calculations and the momentum
transfer to heavy quark in the coalescence model.

This paper is organized as follows. We describe in Sec. II the
spatial diffusion constant of a heavy quark, and in Sec. III the
coalescence model. Combining them, our results are presented
in Sec. IV, and the summary is given in Sec. V.
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II. DIFFUSION CONSTANT

The spatial diffusion constant, Ds , is defined as the squared
distance per unit time which a particle travels in matter:

〈xi(t)xj (t)〉 = 2Dstδij , (1)

where 〈· · · 〉 is the ensemble average and the particle is located
at x = 0 at t = 0. Using the relation in the nonrelativistic limit

xi(t) =
∫ t

0
dt ′

pi(t ′)
M

, (2)

where M is the heavy quark mass, we have

6Dst = 〈x(t) · x(t)〉 = 1

M2

∫ t

0
dt1

∫ t

0
dt2〈p(t1) · p(t2)〉. (3)

On the other hand, the momentum as a function of time is
given by random kicks in matter:

pi(t) =
∫ t

−∞
dt ′eηD (t ′−t)ξi(t

′), (4)

where ηD is a momentum drag coefficient and ξi is the random
force which has the correlation

〈ξi(t)ξj (t ′)〉 = κδij δ(t − t ′), (5)

where

κ = 1

3

d〈(�p)2〉
dt

. (6)

Substituting Eq. (4) into Eq. (3) and assuming t � η−1
D ,

we have

Ds = κ

2η2
DM2

. (7)

Using the relation

3MT = 〈p(t) · p(t)〉 = 3κ

2ηD

, (8)

where T is the temperature of matter, the spatial diffusion
constant is reexpressed as

Ds = 2T 2

κ
. (9)

From Eqs. (6) and (9), we finally have

d〈(�p)2〉
dt

= 6T 2

Ds

. (10)

III. HEAVY QUARK COALESCENCE

A heavy quark is produced by pairs through a hard
collision, and hadronized into a heavy meson or baryon.
The hadronization in vacuum is well described by using
a fragmentation function, where a heavy quark emits soft
gluons to be hadronized. On the other hand, a heavy quark
in nuclear matter is mostly hadronized by the coalescence
with a neighboring parton [13,14,16–21]. Therefore, we focus
in this study on the coalescence of a heavy quark.

The squared transition amplitude for two-particle coales-
cence is given by

|M|2 = |〈P|p1p2〉|2 =
∫

d3x1d
3x2d

3x′
1d

3x′
2

×〈P|x1x2〉〈x1x2|p1p2〉〈p1p2|x′
1x′

2〉〈x′
1x′

2|P〉, (11)

where two particles with momenta p1 and p2 form one particle
with the momentum P. Since instant transition is assumed,
there is no time difference between initial and final states in
Eq. (11).

Defining new variables,

R1 = x1 + x′
1

2
, R2 = x2 + x′

2

2
,

r1 = x1 − x′
1, r2 = x2 − x′

2, (12)

the scalar products in Eq. (11) are, respectively, expressed as

〈P|x1x2〉〈x′
1x′

2|P〉

= 1

V
e−iP· x1+x2

2 ψ(x1 − x2)eiP· x′
1+x′

2
2 ψ∗(x′

1 − x′
2)

= 1

V
e−iP· r1+r2

2 ψ

(
R1 + R2 + r1

2
+ r2

2

)

×ψ∗
(

R1 − R2 + r1

2
− r2

2

)
, (13)

where ψ(p) is the wave function of two particles and V the
volume, and

〈x1x2|p1p2〉〈p1p2|x′
1x′

2〉

= 1

V 2
eip1·(x1−x′

1)eip2·(x2−x′
2) = 1

V 2
ei(p1·r1+p2·r2). (14)

Introducing new variables again,

R = R1 + R2

2
, r = r1 + r2

2
,

R′ = R1 − R2, r′ = r1 − r2, (15)

the squared transition amplitude is simplified into

|M|2 = (2π )3

V 2
δ3(p1 + p2 − P)

∫
d3R′	(R′,k), (16)

where k = (p1 − p2)/2 and 	(R′,k) is the Wigner function,

	(R′,k) =
∫

d3r′eik·r′
ψ

(
R′ + r′

2

)
ψ∗

(
R′ − r′

2

)
. (17)

By using Eq. (16), the particle yield from coalescence is
given by

N = V 3
∫

d3P
(2π )3

d3p1

(2π )3

d3p2

(2π )3
f1(p1)f2(p2)|M|2

= V

∫
d3R′ d3p1

(2π )3

d3p2

(2π )3
f1(p1)f2(p2)	(R′,k), (18)
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and the differential density by

d(N/V )

d3P
= 1

(2π )6

∫
d3R′d3kf1(p1)f2(p2)	(R′,k), (19)

where fi(pi) is the distribution function of particle i.
Equation (19) clearly shows that the coalescence probability is
nothing but the Wigner function which depends on distances
between two particles in coordinate and momentum spaces.

Using the wave function from the simple harmonic oscilla-
tor (SHO),

ψ(r) =
(

mk

π2

)3/8

e− 1
2

√
mkr2

, (20)

where m and k are, respectively, the particle mass and spring
constant, and r = r1 − r2, we have the Wigner function

	(r,p) = 8 exp

[
− r2

σ 2
− σ 2p2

]
, (21)

where σ = 1/
√

mk and p = (p1 − p2)/2.
In the case of the heavy meson which is composed of

partons with asymmetric masses, the mass m in Eq. (20)
is substituted by the reduced mass, μ = m1m2/(m1 + m2),
and σ and p in Eq. (21), respectively, by σ = 1/

√
μk and

p = (m2p1 − m1p2)/(m1 + m2).
Defining the mean-squared radius of a meson as the average

of the squared distance of a quark and that of an antiquark from
their center of mass [28], it is expressed as

〈
r2
M

〉 = 1

2
〈(R − r1)2 + (R − r2)2〉

= 1

2

m2
1 + m2

2

(m1 + m2)2
〈r2〉 = 3

4

m2
1 + m2

2

(m1 + m2)2
σ 2, (22)

where R = (m2r1 + m1r2)/(m1 + m2). We note that the coef-
ficient in Eq. (22) is different from the one in Ref. [20] due to
the different definitions of r and p.

IV. RESULTS

Figure 1 shows the spatial diffusion constant of charm as
a function of temperature. Below the critical temperature (Tc)
the spatial diffusion constants of the D meson are calculated
by using an effective Lagrangian [25], while those of the charm
quark above the critical temperature are calculated by using
the dynamical quasiparticle model (DQPM), which reproduce
the results from the lattice calculations [24].

The DQPM describes QCD properties in terms of resumed
single-particle Greens functions. The degrees of freedom of
the QGP are interpreted as being strongly interacting massive
effective quasiparticles with broad spectral functions whose
pole position and width are directly related to the real and
imaginary parts of the related self-energy [29]. The entropy
density from the dynamical quasiparticles has been fitted to
lattice QCD calculations, which allows to fix entire parameters
in the DQPM.

The spatial diffusion coefficients Ds are expressed in two
different ways [15]: It can be obtained from ηD = A/pQ,
where A and pQ are, respectively, the drag coefficient and

FIG. 1. The spatial diffusion constant of charm as a function of
temperature. The black solid line below T = 180 MeV is the hadronic
diffusion coefficients [25], and the red solid line above Tc ≈ 160 MeV
partonic ones [23]. The lattice QCD calculations are from Ref. [24].

heavy quark momentum [23],

Ds = lim
pQ→0

T/(MQηD), (23)

or from the diffusion coefficient, κ = 1
3d〈( pQ − p′

Q)2〉/dt
[25],

Ds = lim
pQ→0

κ

2M2
Qη2

D

. (24)

Both definitions agree with each other, if the Einstein relation
is valid. Since in the case of the DQPM the deviation from
the Einstein relation for small momenta pQ is of the order
10–15%, Eq. (24) is used in Fig. 1.

ηD and κ are calculated using the partonic scatter-
ing processes. The transport coefficient X is defined
by [23]

d〈X 〉
dt

=
∑
q,g

1

(2π )52EQ

∫
d3q

2Eq

f (q)
∫

d3q ′

2Eq ′

∫
d3p′

Q

2E′
Q

× δ(4)(Pin − Pfin) X 1

gQgp

|M2,2|2, (25)

where p′
Q (E′

Q) is the final momentum (energy) of a heavy
quark with the initial energy EQ,q (Eq) and q ′ (Eq ′) the
initial and final momenta (energies) of colliding parton whose
thermal distribution is given by f (q), |M2,2|2 the transition
matrix-element squared for 2 → 2 scattering, and gQ and gp

the degeneracy factors of a heavy quark and colliding parton.
We note that gQ = 6, and gp = 16 for gluons and 6 for light
quarks. We neglect in Eq. (25) the Pauli blocking and Bose
enhancement factors, 1 ± f ( p′), in the final states, since in
our case the occupation numbers f ( p′) are rather small in
the temperature range of interest due to the rather massive
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degrees of freedom with pole masses larger than twice the
temperature. Employing X = E − E′ and X = pQ − p′

Q, we
can calculate, respectively, the energy loss, d〈E〉/dt , and the
drag coefficient, d〈 pQ〉/dt = A(pQ,T ).

Figure 1 shows that the diffusion constant of the D
meson is smoothly connected with that of the charm quark
around the critical temperature and it has the minimum value
there. Since the spatial diffusion constant is defined as the
squared displacement of a particle per unit time, a small
diffusion constant implies a strong interaction with matter.
In other words, a charm strongly interacts with matter near
the critical temperature. It is clearly shown as the strong
coupling which increases rapidly near the critical temperature
in the DQPM [30]. There is a simple reason for the large
strong coupling near the critical temperature: All partons
must be hadronized without exception. The calculations of
the diffusion constant of the D meson and those of a charm
quark in Fig. 1 do not have a hadronization process. However,
the momentum transfer to charm per unit time, which is related
to the diffusion constant of the D meson in the hadronic
side and that of the charm quark in the partonic side, must
be smoothly connected by hadronization, considering the
phase transition is a crossover in baryon-free nuclear matter.
Therefore, though the hadronization at the critical temperature
is a completely different process from the (quasi)elastic
scattering near the critical temperature, the hadronization time
and the diffusion time can be related to each other through the
momentum transfer to charm per unit time, as will be shown
below.

In order to simplify the situation, we prepare a box of
which temperature is slightly above Tc. Then the temperature
suddenly drops slightly below Tc. In this case most interactions
will be hadronization. In fact, the temperature of nuclear matter
produced in relativistic heavy-ion collisions drops slowly near
Tc, because it takes time to change phase from QGP to hadron
gas. In this sense our study provides the minimum time for a
heavy quark to be hadronized.

In coalescence the momentum transfer to heavy quark is
nothing but the momentum of absorbed antiquark. Then the
average of momentum transfer squared to heavy quark is
given by

〈(�pcoal.)
2〉 =

∫
d3k

∫
d3qq2fq̄(q)fQ(k)φ(k,q,rM )∫

d3k
∫

d3qfq̄(q)fQ(k)φ(k,q,rM )
, (26)

where fQ(k) and fq̄(q) are, respectively, the Fermi-Dirac
distribution functions of the heavy quark and of light antiquark
at Tc, and φ(k,p,rM ) the momentum part of the coalescence
probability in Eq. (21): φ(k,q,rM ) ∼ e−σ 2p2

with p = (mq̄k −
mQq)/(mq̄ + mQ) in the center-of-mass frame of k and q,
and mq̄ and mQ being, respectively, the masses of the light
antiquark and heavy quark. In other words, we assume the
homogenous distribution of particles in coordinate space.

Now we apply Eq. (10) into the hadronization process.
Since the left-hand side of Eq. (10) is contributed from all
kinds of interactions, we separate it into the contribution from
coalescence and that from others, for example, from elastic

FIG. 2. Hadronization times of charm (solid) and bottom (dashed)
quarks as functions of heavy meson radius for 2πTcDs = 6 [24].

scattering:

d〈(�p)2〉
dt

= d〈|�pcoal. + �pothers|2〉
dt

= d〈(�pcoal.)2〉
dt

+ d〈(�pothers)2〉
dt

, (27)

where 〈�pcoal. · �pothers〉 = 0, because there is no correlation
between �pcoal. and �pothers. Substituting Eq. (27) into
Eq. (10), the diffusion constant near the critical temperature is
expressed by

Ds = 6T 2
c

t

〈(�pcoal.)2 + (�pothers)2〉 , (28)

where t is the hadronization time and �p the momentum
transfer during the hadronization. Equation (28) clearly shows
that coalescence cannot happen instantaneously (t ≈ 0), unless
the diffusion constant vanishes at Tc. From the equation
we can obtain the minimum time required for heavy quark
coalescence, tmin:

t = Ds〈(�pcoal.)2 + (�pothers)2〉
6T 2

c

� Ds〈(�pcoal.)2

6T 2
c

≡ tmin.

(29)

Since hadronization would be the most dominant process
in the nuclear matter near Tc, t ≈ tmin would not be a bad
approximation.

Figure 2 shows the hadronization times of charm and
bottom quarks as functions of heavy-meson radius for
2πTcDs = 6 [24]. Heavy quark mass mQ is taken to be
1.5 GeV for charm and 4.5 GeV for bottom, and mq̄ and
Tc are, respectively, 0.3 GeV and 160 MeV.

The hadronization time is about 3 fm/c for the vanishing
radius of a heavy meson. From Eqs. (21) and (22), the
vanishing radius implies that a heavy quark does coalesce
with the nearest light antiquark in coordinate space. In this
case, there is no correlation between the momentum of
the heavy quark and that of the light antiquark, and the
momentum transfer due to coalescence is largest. Since the
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momentum transfer per unit time is fixed by Ds from the
lattice calculations, the hadronization time must be longest
from Eq. (29).

As the coalescence radius increases, a small relative
momentum between the heavy quark and light antiquark is
favored for coalescence, and the momentum transfer due to
the absorption of the antiquark becomes small. It reduces the
hadronization time of the heavy quark as shown in Fig. 2. We
can also see that the hadronization time of the bottom quark
is smaller than that of the charm quark as the coalescence
radius is large. The large coalescence radius means that only
the heavy quark and light antiquark which almost comove
can be combined in coalescence. Since the thermal motion
of the charm quark is larger than that of the bottom quark at
the critical temperature, the momentum of the light antiquark
which is combined with the charm quark is larger and the
momentum transfer to charm quark is also larger.

Assuming that the radius of the heavy meson is 0.5–1.0 fm,
the hadronization time of the charm quark is 0.6–1.2 fm/c and
that of the bottom quark 0.4–0.9 fm/c. They are of reasonable
time scale and support the results on the spatial diffusion
constant from lattice calculations. Since we neglect the elastic
scattering which might give additional momentum transfer to
the heavy quark, our estimate on the hadronization time of the
heavy quark is a lower limit.

The number density of thequark and antiquark at the critical
temperature is about 1 fm−3, and the interspace between
them 1 fm. Considering the typical size of hadrons, it is
highly likely that a heavy quark is combined with the nearest
antiquark in coordinate space for hadronization. In this case,
the hadronization time of the heavy quark is considerably
long and it can be interpreted as follows: Above the critical
temperature, quarks and antiquarks have thermal motion,
which is random and does not have any correlation between the
momentum of the quark and that of the antiquark. As energy
density decreases, the quark and antiquark begin to cluster,
and the relative momentum between quark and antiquark
becomes small. In this environment, the heavy quark needs
a shorter time for hadronization as discussed and shown in
Fig. 2. This interpretation suggests that the hadronization of the
heavy quark does not happen instantaneously, rather requires
a considerable time, if started from the thermal distribution of
quarks and antiquarks.

V. SUMMARY

Heavy flavor is one of the promising probes for the
properties of extremely hot dense nuclear matter created in
relativistic heavy-ion collisions. Since it is massive, heavy
flavor is produced mainly through initial nucleon-nucleon
binary collisions and exists in the very early stages of
relativistic heavy-ion collisions. After production, the heavy
quark interacts with partons in the QGP phase. The interactions
change the energy-momentum of heavy quark, and it is shown
as a highly suppressed nuclear modification factor at large
transverse momentum and large elliptic flow in semicentral
heavy-ion collisions.

From lattice QCD calculations and the DQPM, the spatial
diffusion constant of heavy quark decreases with decreasing

temperature in the QGP phase. On the other hand, the
spatial diffusion constant of the heavy meson from effective
Lagrangian calculations increases with increasing temperature
in the hadron gas phase. Both diffusion constants meet each
other around the critical temperature for the phase transition
and have minimum value there. Since the spatial diffusion
constant is defined as the squared displacement per unit
time, a small diffusion constant near critical temperature
implies that strong interactions happen in phase transition.
It is reasonable in respect that without exception all partons
should be hadronized in the phase transition. In other words,
the small diffusion constant at critical temperature is mostly
attributed to hadronization.

The coalescence model has widely been used in describing
the hadronization of partons. In this model, a heavy quark is
hadronized into a heavy meson by absorbing a light antiquark
nearby in coordinate and momentum spaces. The absorption
transfers the momentum of the antiquark to the heavy quark. If
the radius of the heavy meson is small, the heavy quark favors
the antiquark near coordinate space as its coalescence partner.
It allows the coalescence with the antiquark whose momentum
is rather far from that of the heavy quark. In this case, the
momentum transfer to heavy quark due to hadronization is
large. On the contrary, the momentum transfer is small for the
large radius of the heavy meson.

Since the spatial diffusion constant is proportional to the
squared momentum transfer per unit time, if the momentum
transfer and diffusion constant are given, the time for the
momentum transfer can be calculated. We have calculated
the hadronization time of the heavy quark by using the spatial
diffusion constant from lattice QCD and DQPM calculations,
and the momentum transfer from the coalescence model. If the
radius of the heavy meson is extremely small, in other words,
a heavy quark does coalesce with any nearest antiquark in
coordinate space, the hadronization time is as long as 3 fm/c
for 2πTcDs = 6. Assuming that the heavy meson radius is
0.5–1.0 fm, the hadronization time is 0.6–1.2 fm/c for charm
and 0.4–0.9 fm/c for bottom, where the small (large) radius
corresponds to the long (short) hadronization time. The longer
hadronization time for the smaller radius of the heavy meson
is not so intuitive. It can be understood that the small radius in
coordinate space allows large momentum transfer to the heavy
quark for hadronization in the coalescence model.

In principle, there could be additional interactions such as
elastic scattering other than hadronization near the critical tem-
perature. Considering that, our estimate on the hadronization
time of the heavy quark is a lower limit.

Finally, the consideration of interspace between the quark
and antiquark at the critical temperature favors the coalescence
of the heavy quark with the nearest antiquark in coordinate
space, and it suggests the gradual progress of heavy quark
hadronization for a couple of fermi of time.
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