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The isospin- and momentum-dependent interaction using the isospin-dependent quantum molecular dynamics
model is improved. The momentum dependence of the interaction is fitted to the optical potentials extracted with
proton-nucleus scattering data, while the isospin dependence is adjusted based on the current constraints on the
symmetry energy and its density slope at normal density. The resulting parameters of the interaction are used to
calculate the effective masses characterized by the nonlocality of the nuclear potential in the spatial coordinates
(the so-called effective k masses). It is found that this parametrization can reproduce the effective k masses
calculated by the Dirac-Brueckner-Hartree-Fock model. The current constraints on the total symmetry energy
can accommodate a wide-range adjustment of the local symmetry energy and effective k-mass splitting. Four
groups of parameters, which provide different density dependences of symmetry energy and effective k-mass
splitting, are applied to investigate the isospin diffusion and neutron to proton double ratios in collisions involving
124Sn and 112Sn nuclei at 50 and 120 MeV/nucleon. Calculations confirm the sensitivity of symmetry energy to
the isospin diffusion, but indicate the synchronous effects of symmetry energy and effective k-mass splitting on
the double ratios.
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I. INTRODUCTION

The residual strong interactions between nucleons are
of fundamental importance in understanding the nature of
asymmetric nuclear objects including supernovae, neutron
stars, as well as nuclei [1–4]. However, there still exist large
uncertainties in our current knowledge. Generally speaking,
the residual strong interactions can be described by the nuclear
potential energy U (ρ,p,δ) for a nucleon with momentum p in
asymmetric nuclear matter with density ρ and isospin asym-
metry δ = (ρn − ρp)/(ρn + ρp). In recent decades, heavy-ion
collisions (HICs) have been applied to study the density and
isospin dependence of the nuclear potential energy. Much
progress has been made especially at normal and subnormal
densities, but many interesting issues remain to be resolved
[5–7]. On the other hand, the significance of the momentum-
dependent potential, especially its difference between neutrons
and protons, has been emphasized to understand the dynamics
of HICs [8–10].

Decades ago the momentum dependent potential was
predicted from microscopic ab initio calculations, such as
the Dirac-Brueckner-Hartree-Fock (DBHF) model [11–15],
the Skyrme-Hartree-Fock model [16], and the relativistic
mean-field (RMF) model [17]. In the transport models, the
momentum-dependent potential is always parametrized from
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the proton-nucleus optical potential in the energy range
10 MeV < Ekin < 1 GeV [18–23]. In addition, the concept
of nonrelativistic effective mass m∗ is used to parametrize
the the nonlocality of the single-particle potential [24,25].
The so-called effective k mass and effective E mass are also
introduced in order to clearly separate the nonlocality of the
single-particle potential both in space and in time [11,12].
Generally speaking the nucleon effective mass in symmetric
nuclear medium is well determined as m∗/m = 0.7 ± 0.05,
at normal density and Fermi momentum [5–7]. However, the
splitting of the effective masses between neutrons and protons
in asymmetric nuclear medium has been a long-standing and
controversial issue [26–28].

The data from HICs have been applied to constrain
the symmetry energy and effective mass splitting [29–33].
However, most of the observables, known to be sensitive
to the effective mass splitting, are also sensitive to the
local symmetry energy. For example, the isospin diffusion
and neutron-to-proton double ratio at the Fermi-dominated
incident energies have been analyzed to constrain the density
dependence of the symmetry energy [34,35]. Nevertheless,
it has been found that the momentum-dependent potential
affects the sensitivity of the isospin diffusion to the density
dependence of the symmetry energy [36]. Besides, it has also
been shown that the effective mass splitting obviously affects
the neutron-to-proton double ratio from heavy-ion reactions
around 50–300 MeV/nucleon [32,33,37]. On the other hand,
the effect of the kinetic symmetry energy on the double ratios
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has also been found [38,39]. The challenge is that the nuclear
symmetry energy and the effective mass splitting are explicitly
related to each other [40–42].

In this article, in order to study the correlation between
symmetry energy and effective k-mass splitting, we improve
the isospin- and momentum-dependent nuclear potentials
according to the current constraints on the optical poten-
tials and the symmetry energy. The relative effects of the
symmetry energy and the effective k-mass splitting on the
isospin diffusion and the double ratio are investigated within
the framework of the isospin-dependent quantum molecular
dynamics (IQMD) model in combination with the statistical
decay code GEMINI.

II. IMPROVED ISOSPIN- AND MOMENTUM-DEPENDENT
INTERACTION

A. Parametrization of nuclear interaction

The nuclear interaction can be described by the potential
energy density of the asymmetric nuclear matter with density
ρ and asymmetry δ:
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where ρ0 is the normal density, p and p′ are the momenta of the
nucleon, and fτ (r,p) is the phase-space density, with τ = 1/2
for neutrons and τ = −1/2 for protons. For infinite nuclear
matter at zero temperature, the phase-space density can be
approximated as a step function, fτ (r,p) = 3

8πp3
Fτ


(pFτ − p).

The parameters α, β, γ , Csp, γi , x, Cm, and � are temperature
independent. In Eq. (1), the first and second terms refer to
the local two-body and three-body interactions, which are
widely used in the transport models [43]. The form of the
local symmetric potential, shown as the third term in Eq. (1),
was proposed by Tsang et al. [34]. The fourth and fifth terms
refer to the momentum dependent interactions. In this work,
we choose the form proposed by Welke et al. [44].

The energy per nucleon of the asymmetric nuclear matter
at zero temperature is the summation of kinetic energy and
potential energy:
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FIG. 1. Energy per nucleon as a function of density in symmetric
nuclear matter at zero temperature.

where pFn and pFp are the Fermi momenta of neutrons and
protons.

The corresponding single-particle potentials of neutron and
proton with momentum p in asymmetric nuclear matter with
density ρ and asymmetry δ can be calculated as

Uτ (ρ,δ,p) = ∂V (ρ,δ)
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B. EOS of symmetric nuclear matter

The parameters α, β, γ , Cm, and � can be fitted by
the equation of state (EOS) of symmetric nuclear matter at
zero temperature. Considering the empirical constraints of
the binding energy, the pressure P , the incompressibility
K , and the momentum dependence of the single-particle
potentials at normal density ρ0 = 0.16 fm−3, we obtain the
parameters α = −75.86 MeV, β = 166.43 MeV, γ = 1.226,
Cm = −88.21 MeV, and � = 664.86 MeV c. The correspond-
ing energy per nucleon as a function of density is shown in
Fig. 1. The soft EOS (K = 200 MeV) and hard EOS (K =
380 MeV), which have been widely used in QMD models
[43], are also shown in the figure. The parameters used in this
work provide the binding energy E(ρ0,0) = −16.3 MeV. The
incompressibility is 219 MeV, in the middle of the soft and
hard EOS’s.

The corresponding energy dependence of single-particle
potentials in symmetric nuclear matter at 0.5ρ0, ρ0, and
1.5ρ0 is show as dashed curves in Fig. 2. For comparison,
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FIG. 2. Energy dependence of single particle potentials in symmetric nuclear matter at (a) 0.5ρ0, (b) ρ0, and (c) 1.5ρ0. For comparison,
the figures also show the real parts of the optical potential calculated using the nonlinear derivative model by Gaitanos et al. (solid curves)
[45], calculated using the relativistic mean field model by Typel et al. (dash-dot-dotted curves) [46], phenomenologically fitted from the
proton-nucleus scattering data by Hama et al. (dash-dotted curve for one fitting and dotted curve for another fitting) [19,20], calculated with
the Dirac-Brueckner approach by ter Haar and Malfliet (open circles) [47], and phenomenologically fitted the proton-nucleus scattering data
by Arnold et al. (open stars) [18].

the figures also show the real parts of the optical potential
calculated using the nonlinear derivative (NLD) model by
Gaitanos et al. (solid curves) [45], the RMF model by Typel
et al. (dash-dot-dotted curves) [46], the Dirac-Brueckner (DB)
approach by ter Haar and Malfliet (open circles) [47], as
well the phenomenologically fitted proton-nucleus scattering
data by Hama et al. (dash-dotted curve for one fitting and
dotted curve for another fitting) [19,20] and the proton-nucleus
scattering data by Arnold et al. (open stars) [18].

Figure 2(a) shows the case at 0.5ρ0. It can be seen that
the potentials at energy Ek = 100 MeV proposed by different
models are similar. The divergence occurs at high energies. At
600 MeV, the divergence between calculations using the NLD
model and the RMF model is about 10 MeV. At low energies
(0 < Ek < 300 MeV), our parametrization reproduces the
energy dependence of the optical potential by the DB approach.
At energies between 300 and 600 MeV, it is close to that by
the NLD model.

Figure 2(b) shows the case at normal density ρ0. Near
energy 100 MeV different models propose similar values of
potential, while at high energy the divergence is considerable.
At energy 1000 MeV, the minimum (23 MeV) is proposed by
the empirical constraints from the proton-nucleus scattering
data, and the maximum (60 MeV) is proposed by the NLD
model. Their divergence is about 37 MeV. In fact, from the
real part of optical potentials predicted by Arnold et al., the
“ln-type” parametrization of momentum-dependent potentials
has been fitted and applied in the QMD model [22]. This
parametrization, −54 + 1.57 ln2(0.0005p2 + 1), is shown as
the densely dotted curve. Hama et al. developed the empirical
constraints of the optical potentials by a more extensive
analysis and more abundant data [19,20]. Two fits in the
phenomenological parametrization were obtained, which are
shown as the dash-dotted curve and dotted curve in Fig. 2(b).
One can see that the “ln-type” momentum dependent potentials

deviate obviously from the optical potentials proposed by
Hama et al. In this work, the energy dependence of single-
particle potentials in symmetric nuclear matter is parametrized
by fitting the empirical constraints by Hama et al. It can be seen
that our parametrization (dashed curve) agrees well with the
empirical constraints by Hama et al. except at Fermi energies
and near 1000 MeV. It is noted there are small deviations
at Fermi energies and near 1000 MeV, because some other
properties of the EOS have been taken into account.

In Fig. 2 (c), the single-particle potentials in symmetric
nuclear matter at 1.5ρ0 are compared to the real part of the
optical potential calculated by RMF and DB models. We also
find similar values near 100 MeV. However, with increasing
energies, the value in this work increases more rapidly than
those by RMF and DB models.

Besides the magnitude of the single-particle potential,
its gradient of momentum, i.e., dU/dp, is an important
characteristic. It is usually described by a common concept
of nonrelativistic effective mass m∗. The effective mass of a
nucleon in the nuclear medium is defined as [12]

m∗
τ = p

(
dEτ

dp

)−1

. (4)

The approximation Eτ = p2/2mτ + Uτ is considered, yield-
ing the following expression for the effective mass:

m∗
τ =

[
1

mτ

+ ∂Uτ

p∂p

]−1

. (5)

Actually, the origins of the effective mass include the nonlo-
cality in space (resulting in k mass) and nonlocality in time
(resulting in E mass) [11,12]. The effective mass defined by
Eq. (5) contains both, but Eqs. (3) and (5) yield the effective k
mass. Only the nonlocality in space is considered in Eq. (3). We
calculate the effective k masses at normal density as a function
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FIG. 3. Effective masses as a function of momentum in sym-
metric nuclear matter at normal density. The solid line shows our
calculations. The dotted line displays the calculation by DBHF model
considering both nonlocality in space and nonlocality in time [12].
The dashed line displays the calculation by DBHF model without
considering nonlocality in time [11].

of momentum with the parameters Cm = −88.21 MeV and
� = 664.86 MeV c. In Fig. 3 our calculations for the symmet-
ric nuclear matter are compared with those by the DBHF model
[11,12]. The dotted line displays the calculation by the DBHF
model considering nonlocalities both in space and in time. One
can see a pronounced peak and valley apparently above the
Fermi momentum. The dashed line displays the calculation by
the DBHF model without considering the nonlocality in time.
The dashed line shows a smooth increase of effective k masses
with increasing momenta. Our calculations, shown as the solid
line, are similar to those for the dashed line displayed in the
middle section of the dotted line.

It has been indicated that the nonlocality in space of the
single-particle potential is mainly generated by exchanging
Fock terms and the resulting k mass is a smooth function
of the momentum, while the nonlocality in time is generated
by short-range correlations which lead to the peak and valley
of the E mass apparently above the Fermi momentum [3].
Obviously, the potential shown as Eq. (3) does not include the
short-range correlations of the nuclear interaction. However,
in transport model simulations of nuclear reactions, the
short-range correlations are represented by means of Pauli-
suppressed two-nucleon collisions [48].

C. Symmetry energies and effective k-mass splittings

The parameter x in Eq. (3) is introduced to provide neutron-
proton effective k-mass splitting. Since not only the magnitude
but also the sign of the effective k-mass splitting have been
a controversial issue, the parameter x is set as −0.4 and 0.4,
instead of being fitted by the empirical constraints. As shown
in Figs. 4(a) and 4(b), x = −0.4 provides m∗

n > m∗
p in neutron-

rich nuclear matter, while x = 0.4 provides m∗
n < m∗

p. It will

FIG. 4. Effective k masses of neutron and proton as a function of
momentum in asymmetric nuclear matter at normal density for (a)
x = −0.4 and (b) x = 0.4.

be shown in the following that the parameter x affects not only
the effective k-mass splitting but also the symmetry energy.

The parabolic approximation to the symmetry energy Esym

has been widely used [6,7]:

E(ρ,δ) − E(ρ,0) = Esym(ρ)δ2 + O(δ4). (6)

Considering Eqs. (1) and (2), the symmetry energy is com-
posed of three components, i.e., the kinetic energy, the local
part, and the momentum dependent part, shown as

Esym = Ekin
sym + Eloc

sym + Emdi
sym,

Ekin
sym = 1

δ2

[
3

5

p2
Fn

2m

ρn

ρ
+ 3

5

p2
Fp

2m

ρp

ρ
− 3

5

p2
F

2m

]

≈ 12.57

(
ρ

ρ0

)2/3

,

Eloc
sym = Csp

2

(
ρ

ρ0

)γi

,

Emdi
sym = 1

δ2

∑
τ

(1 + x)
1

ρ

∫∫
v(p,p′)fτ (r,p)fτ (r,p′)dpdp′

+ 1

δ2

∑
τ

(1−x)
1

ρ

∫∫
v(p,p′)fτ (r,p)f−τ (r,p′)dpdp′

− 1

δ2

1

ρ

∫∫
v(p,p′)f (r,p)f (r,p′)dpdp′. (7)

The corresponding slope of the symmetry energy is then

L = 3ρ
∂Esym

∂ρ
= 25.14 + 3Cspγi

2
+ 3ρ

∂Emdi
sym

∂ρ
. (8)

In order to emphasize the role of the momentum-dependent
interaction in the symmetry energy, the momentum-dependent
parts of symmetry energies are shown as a function of density
in Fig. 5. It can be seen that even though the effective k-mass
splitting is not taken into account, i.e., x = 0, the momentum-
dependent interaction contributes to the symmetry energy. The
value of Emdi

sym for x = 0 increases with increasing density.
At normal density ρ0, it reaches 5.3 MeV. Actually in the
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FIG. 5. Momentum-dependent part of symmetry energies as a
function of density.

framework of the Brueckner theory or the Hugenholtz–Van
Hove (HVH) theorem, the symmetry energy is expressed by
two terms (see Eq. (3) in Ref. [40]). One of them depends
on the effective k mass and Fermi momentum, and the other
depends on the density and Fermi momentum. It is noted that
the symmetry energy shown as Eqs. (7) and (8) satisfies the
HVH theorem, because the effective k mass, which is related
to v(p,p′), has been taken into account.

When the effective k-mass splitting is considered, the con-
tribution of momentum-dependent interaction in the symmetry
energy is more obvious. In the case of x = −0.4, i.e., m∗

n > m∗
p

in neutron-rich nuclear, the value of Emdi
sym increases with

increasing density and reaches 32.6 MeV. For x = 0.4, i.e.,
m∗

n < m∗
p, the value of Emdi

sym decreases with increasing density
and reaches −21.9 MeV. It is thus explicit that the symmetry
energy and the effective k-mass splitting correlate to each
other.

In this work, the total symmetry energy depends not only
on the parameter x but also on the parameters Csp and γi . The
parameters Csp and γi for a given x are adjusted based on the
current constraints on the symmetry energy and its density
slope at normal density. So far many analyses have been
undertaken attempting to constrain the density dependence
of symmetry energy, but divergences still remain. Li and
Han [40] have summarized the global averages and standard
deviations of Esym(ρ0) and L(ρ0) using 28 recent analyses
of various terrestrial nuclear laboratory experiments and
astrophysical observations. Here, we consider two standard
deviations and fit the parameters Csp and γi . Table I shows the
four obtained groups of parameters, which provide different
density dependences of symmetry energy and effective k-mass
splittings. Figure 6 shows the corresponding symmetry energy
for zero temperature. Both Pos-S and Pos-H parameters
provide m∗

n > m∗
p in neutron-rich nuclear matter, but they

give soft and hard symmetry energies respectively, as shown

TABLE I. Parameters of symmetry energies and effective k-mass
splittings.

x Cs,p γi Esym(ρ0) L(ρ0) m∗

(MeV) (MeV) (MeV)

Pos-S − 0.4 − 30.87 2.002 29.76 25.9 m∗
n > m∗

p

Pos-S − 0.4 − 23.51 0.757 33.44 91.9 m∗
n > m∗

p

Neg-S 0.4 78.21 0.408 29.76 25.9 m∗
n < m∗

p

Neg-H 0.4 85.57 0.888 33.44 91.9 m∗
n < m∗

p

in Fig. 6(a). In Fig. 6(b), different density dependences of
symmetry energy can also be seen for Neg-S and Neg-H
parameters, which provide m∗

n < m∗
p in neutron-rich nuclear

matter.
In order to test our parametrization in the transport model,

the four groups of parameters of isospin- and momentum-
dependent interaction are applied in the IQMD+GEMINI
model to calculate the isospin transport ratios obtained from
the yield ratios of A = 7 isotopes in collisions involving 124Sn
and 112Sn nuclei at impact parameters of b = 6 fm and at
50 MeV/nucleon [34], and the double ratios of the co-
alescence invariant neutron and proton spectra in central
124Sn +124Sn and 112Sn +112Sn collisions at 50 and 120 MeV/
nucleon [33]. In this theoretical framework, the IQMD model
is applied to describe the formation of the prefragments, while
the GEMINI model [49] is applied to simulate the prefragment
decays. The evolution time of IQMD is 500 fm/c, since the
excited energies of the heavy prefragments are less than 5
MeV/nucleon. Then the GEMINI model is applied. A detailed
description of the IQMD+GEMINI model can be found in
Ref. [50].

III. RESULTS

Figure 7 shows the isospin transport ratios as a function
of the rapidity. Data shown as solid circles are taken from

FIG. 6. Symmetry energies as a function of density within (a)
Pos-S and Pos-H parameters which provide m∗

n > m∗
p in neutron-

rich nuclear matter, (b) Neg-S and Neg-H parameters which provide
m∗

n < m∗
p in neutron-rich nuclear matter.
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FIG. 7. Isospin transport ratios obtained from the yield ratios
of A = 7 isotopes in collisions involving 124Sn and 112Sn nuclei at
impact parameters of b = 6 fm and at 50 MeV/nucleon. Data shown
as solid circles are taken from Ref. [34]. The inside panel shows
the total square X2 computed from the difference between data and
calculations.

Ref. [34]. The calculations are obtain from 10 000 000
simulated events. The computation uncertainties are statistical.
Despite the large uncertainties, it is shown that the calculations
for Neg-H are the closest to the data. The inset shows the total
square X2 computed from the difference between data and
calculations for four groups of interactions. One can see that
the total squares X2 for Neg-H and Pos-H are smaller than in
the other two cases. That is, whether m∗

n < m∗
p or m∗

n > m∗
p,

the hard symmetry energies with Esym(ρ0) = 33.44 MeV and
L(ρ0) = 91.9 reproduce the data better than the soft symmetry
energies with Esym(ρ0) = 29.76 MeV and L(ρ0) = 25.9. This
phenomenon supports the deduction in Ref. [42] that the
isospin diffusion observable is sensitive to the symmetry
energy rather than the effective k-mass splitting.

Figure 8 shows the double ratios in the upper panel for
50 MeV/nucleon and bottom panel for 120 MeV/nucleon.
Comparing the dashed line and dash-dotted line, one can see
that the calculations with Neg-S (m∗

n < m∗
p) are larger than

those with Pos-S (m∗
n > m∗

p). Note that both Neg-S and Pos-S
parameters provide soft symmetry energies with Esym(ρ0) =
29.76 MeV and L(ρ0) = 25.9. When the hard symmetry
energies with Esym(ρ0) = 33.44 MeV and L(ρ0) = 91.9 are
considered, it also indicates that m∗

n < m∗
p leads to a larger

value of double ratios than m∗
n > m∗

p. This deduction has
been obtained in Refs. [32,33]. Significantly the calculations
within Neg-S parameters are obviously larger than those within
Neg-H parameters, even though the effective k-mass splittings
for both parameters are the same. In other words, the effects
of local symmetry energy and effective k-mass splitting on the
double ratios are synchronous.

It has been proposed that there are two competing effects
of symmetry energy on the double ratios [34]. Specifically,
higher symmetry energy at subnormal density enhances the
emission of neutrons, resulting in larger double ratios, but
too high symmetry energy will result in the system completely

FIG. 8. Double ratios of the coalescence invariant neutron and
proton spectra in central 124Sn +124Sn and 112Sn +112Sn collisions
at (a) 50 and (b) 120 MeV/nucleon. Calculations within different
parameters are shown as lines. Data shown as solid circles are taken
from Ref. [33].

disintegrating, reducing the double ratios to the limit N/Z(124Sn)
N/Z(112Sn) .

The physical condition may be more complex, because
the total symmetry energy includes three components: i.e.,
the kinetic symmetry energy, the local potential symmetry
energy, and the momentum-dependent symmetry energy. Here,
the momentum-dependent symmetry energy depends on the
effective k-masses splitting. Not only the total symmetry
energy but also each component affects the double ratios. It has
been found that lower kinetic symmetry energies yield larger
values of the double ratios [38,39]. Our calculations, together
with those in Refs. [32,33], certify the fact that the negative
value of m∗

n − m∗
p leads to larger value of double ratios than

positive m∗
n − m∗

p. In addition, our calculations indicate the
strong effects of local symmetry energy on the double ratios.

IV. CONCLUSION

In conclusion, the isospin- and momentum-dependent
interaction used in IQMD model is extracted. The momentum
dependence of the interaction is fitted to the optical potentials
extracted with proton-nucleus scattering data, while the isospin
dependence is adjusted based on the current constraints on the
symmetry energy and their density slope at normal density.
The nucleon effective mass as a function of momentum
is calculated and compared with results from the DBHF
model. The calculations using the DBHF model show that the
nonlocality in space results in a smooth increase of effective
masses with increasing momenta, while the nonlocality in
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time results in a peak and valley above the Fermi momentum
[11]. Our parametrization can reproduce the calculations of
the DBHF model without considering the nonlocality in time.
After considering the effective k-mass splitting, the total
symmetry energy is composed of the kinetic symmetry energy,
the local potential symmetry energy, and the momentum-
dependent symmetry energy. It is shown that the contribution
of the momentum-dependent interaction in the symmetry
energy is obvious. The current constraints on the total
symmetry energy can accommodate a wide-range adjustment
of the local symmetry energy and effective k-mass splitting.

Four groups of parameters, which provide different density
dependences of symmetry energies and effective k-mass split-
tings, are applied in the IQMD+GEMINI model to calculate
the isospin diffusion and neutron-to-proton double ratios in
collisions involving 124Sn and 112Sn nuclei at 50 and 120
MeV/nucleon. It is found that the isospin diffusion observable
is sensitive to the symmetry energy rather than the effective
k-mass splitting. The negative value of m∗

n − m∗
p leads to

larger value of double ratios than positive m∗
n − m∗

p. However,
the effect of the local symmetry energy on the double ratios
exists synchronously. It is proposed that the uncertainty of the
symmetry energy is necessary to be considered if one wishes
to constrain the effective k-mass splitting by double ratio data.
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