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Background: Synthesis of superheavy elements is performed by heavy-ion fusion-evaporation reactions.
However, fusion is known to be hindered with respect to what can be observed with lighter ions. Thus some
delicate ambiguities remain on the fusion mechanism that eventually lead to severe discrepancies in the calculated
formation probabilities coming from different fusion models.
Purpose: In the present work, we propose a general framework based upon uncertainty analysis in the hope of
constraining fusion models.
Method: To quantify uncertainty associated with the formation probability, we propose to propagate uncertainties
in data and parameters using the Monte Carlo method in combination with a cascade code called KEWPIE2, with
the aim of determining the associated uncertainty, namely the 95% confidence interval. We also investigate the
impact of different models or options, which cannot be modeled by continuous probability distributions, on the
final results. An illustrative example is presented in detail and then a systematic study is carried out for a selected
set of cold-fusion reactions.
Results: It is rigorously shown that, at the 95% confidence level, the total uncertainty of the empirical formation
probability appears comparable to the discrepancy between calculated values.
Conclusions: The results obtained from the present study provide direct evidence for predictive limitations of the
existing fusion-evaporation models. It is thus necessary to find other ways to assess such models for the purpose
of establishing a more reliable reaction theory, which is expected to guide future experiments on the production
of superheavy elements.
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I. INTRODUCTION

Experimentally the synthesis of superheavy elements
(SHEs) is realized by means of the so-called fusion-
evaporation reaction which, from a theoretical viewpoint based
upon the Bohr independence hypothesis [1], is divided into two
separate phases:

(1) the fusion phase, during which a nucleus-nucleus
collision may lead to the formation of an excited heavy
nucleus, and

(2) the deexcitation phase, where the newly formed heavy
nucleus has to be chilled by evaporation of light
particles, including γ -ray emission against nuclear
fission.

For the latter, it is often described using a cascade code. In
our case, we employ the KEWPIE2 code [2,3]. Regarding the
fusion process, it is decomposed into two successive steps [4]:

(a) the capture step, corresponding to passing over the
Coulomb (or Bass [5]) barrier, after which two colliding
nuclei stick together, and
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(b) the formation step, from the contact configuration to
the compound nucleus (CN). During this step, the
system has to overcome an inner potential barrier,
which results in the creation of a compound system
where the incident particle combines with the target
nucleus and the total energy is shared among all the
confined nucleons. Here, it should be mentioned that
the formation step was introduced to explain the so-
called fusion hindrance phenomenon that only occurs
in heavy reaction systems (with a charge product of
the projectile-target combination ZpZt � 1600–1800).
Regarding lighter systems, the inner barrier should no
longer exist and the colliding nuclei automatically fuse
after the capture step.

It should be noted that the main contribution to the fusion
hindrance in heavy-ion collisions is due to the formation
step, consisting of a diffusion process over an inner potential
barrier. Over the past two decades, qualitative features of the
formation dynamics have been well understood within the
framework of the Langevin equation [6–12]. This formalism
is not unique and some serious ambiguities remain on the
inner-barrier height and the dissipation strength. Moreover,
during an experiment, fusion-fission events that have reached
the compound state and quasifission ones that reseparate after
crossing the Coulomb barrier are usually very difficult to
distinguish from each other. As a consequence, this leads to a
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FIG. 1. Theoretical calculations of ER cross sections for the one-
neutron evaporation channel of cold-fusion reactions. The calculated
results can be found in Refs. [10,15–18]. The figure is taken from
Ref. [14].

lack of reliable data on the fusion cross sections or formation
probabilities that could be employed to assess the fusion
models. Another delicate issue is that, at the present time,
the two separate steps of the fusion process cannot be treated
within a unified framework. This remains a severe problem
that could eventually affect the final results.

Precise theoretical predictions of evaporation-residue (ER)
cross sections are crucially important for conducting exper-
iments on the synthesis of SHEs, because in most cases
production cross sections are extremely low (of the order of
one picobarn). For a recent experimental review, see Ref. [13].
A small change of the cross section could mean months of
experiments. To this extent, the first crucial question one might
ask is, how exactly can we predict ER cross sections with
current models?

Actually, there have been a number of theoretical calcula-
tions on ER cross sections, which appear to agree remarkably
well with the measured ER cross-sections. This, of course,
can be regarded as a significant theoretical achievement
considering that the measured cross sections usually span at
least six orders of magnitude. In the present study, we only
focus on the so-called cold-fusion reaction, where only one
neutron can be evaporated from the compound nucleus. In this
case, typical calculations on the ER cross sections for a selected
set of cold-fusion reactions are displayed in Fig. 1, taken from
Ref. [14]. The experimental measurements are nicely fitted by
almost all models within less than one order of magnitude.
This is also the case for other models not included in this
comparison such as the one based on a previous version of
the code used in this study [19]. Nevertheless, if we take a
closer look at the theoretical formation probabilities, as shown
in Fig. 2, the calculated values can differ by two or three
orders of magnitude, even though all the fusion-evaporation
models seem able to reasonably fit the measured data. The
large uncertainty in the calculated formation probability is not

FIG. 2. Calculated formation probabilities for the selected set
of cold-fusion reactions. The theoretical results can be found in
Refs. [10,15–18,20]. The figure is adapted from Ref. [14].

a surprise because of some serious ambiguities in the reaction
mechanism of fusion dynamics, as mentioned before. How-
ever, the capture and deexcitation steps are both considered
to be better known from a theoretical viewpoint and can be
relatively well described on the basis of knowledge about
lighter reaction systems. How come the better-known parts
can accommodate large discrepancies between the calculated
formation probabilities and thus reproduce the measured data?
What if the experimental data are not available? To this extent,
the predictive capability of the fusion model appears to be
quite limited.

To establish a reliable theory for guiding future experiments
on the synthesis of SHEs, it is necessary to find new methods
to constrain existing fusion models with a special focus
on the formation step. Thus, we perform an uncertainty
analysis of what are considered the better-known parts of
the reaction, namely the capture and deexcitation steps, to
constrain the lesser-known part. In this work we include
both experimental uncertainties and uncertainties due to the
remaining ambiguities in modeling. For the latter, this includes
input parameters and models or approximations. The main
aim of the present paper is to employ some state-of-the-art
statistical methods to quantify different uncertainty sources
and look more closely at their impact on the formation
probability.

Over the past few decades, the importance of uncertainty
analysis in modeling has been increasingly recognized [21],
especially with the enormous development of computer
simulation. It is mainly concerned with the characterization
and quantification of uncertainty in numerical applications by
running a great number of trials to investigate the impact of
minor differences in the input on final outcomes. This kind of
study is essential when one has very poor information about
the input. For instance, both the free parameters and the various
theoretical models used for capture and evaporation phases are
usually not unambiguously determined [2,3].
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Before entering into details about uncertainty analysis, let
us first briefly present the theoretical models used in this study.

II. THEORETICAL FRAMEWORK

It is commonly known that, based upon the Bohr inde-
pendence hypothesis [1], the ER cross section for a fusion-
evaporation reaction can be explicitly expressed as

σER(Ec.m.) =
Jmax∑
JC�0

σfus(Ec.m.,JC)Psur(E
∗
C,JC), (1)

recalling that the relationship between incident energy in the
center-of-mass frame Ec.m. and total excitation energy of the
CN E∗

C is simply given by E∗
C = Ec.m. + Q with Q being the Q

value evaluated from ground-state masses. It should be noted
that Eq. (1) takes into account all partial-wave contributions to
the total cross section, ending up with an upper limit, say Jmax,
which can be approximately determined once the partial-wave
cross section vanishes.

A. A simplified model

In the case of SHEs, the maximum spin Jmax is essentially
related to the survival probability Psur(E∗

C,JC), which does
not vanish only in the vicinity of JC � 0. Hence, one has
Psur(E∗

C,JC) � Psur(E∗
C), where Psur(E∗

C) can be estimated by
means of the Weisskopf-Ewing model, and the total ER cross
section can thus be approximated as

σER(Ec.m.) � σfus(Ec.m.)Psur(E
∗
C). (2)

Moreover, for heavy fusing systems leading to the formation of
SHEs, the fusion probability needs to be rewritten as a product
of the capture and formation probabilities. Accordingly, the
above approximate formula can be further transformed into

σER(Ec.m.) � σcap(Ec.m.)Pform(Ec.m.)Psur(E
∗
C), (3)

where Pform(Ec.m.) stands for the formation probability due to
the fusion hindrance. We should be aware that this simplified
version of Eq. (1) has been widely employed to estimate ER
cross sections in many recent studies [10,14,18,20] due to its
simplicity.

As mentioned in the introduction, we only focus on the
one-neutron evaporation channel. In this case, the ER cross
section is simply given by

σ 1n
ER � σcapPformP 1n

sur. (4)

It should be recalled that there is a huge discrepancy
between different theoretical results on Pform. On the one
hand, it is difficult to reliably measure this quantity as
the identification of quasifission events remains a delicate
issue. On the other hand, as previously mentioned, serious
ambiguities on the fusion mechanism still persist. Thus, the
formation probability, which is very specific to heavy systems,
is considered to be the most poorly known quantity in Eq. (4).

In the following we attempt to constrain the formation
probability by deducing it from experimental data:

Pform � σ 1n
ER

σcapP 1n
sur

. (5)

In this study, we estimate the uncertainty of Pform and compare
it to the theoretical values calculated with various models
as displayed in Fig. 2. Note that in the right-hand side
of the above equation, the numerator directly comes from
experiments and the denominator from models. For the latter,
we use the KEWPIE2 code specially dedicated to the synthesis
of superheavy elements [3].

B. Capture cross section

The capture cross section corresponds to the Coulomb
barrier crossing or to the sum of quasifission, fusion-fission,
and ER cross sections. There are several models that can be
tested against some measurements. According to a review by
Loveland [22] these models are able to describe the magnitudes
of the capture cross sections within 50%. However, the ratio
of calculated to measured cross sections for various systems
and models spans from 0.55 to 2.24.

In this work we did not perform an extended analysis of
the capture cross section but picked up two typical models
that are widely used and implemented as default options in
the KEWPIE2 code, namely the empirical barrier-distribution
(EBD) method [10,23] and the Wentzel-Kramers-Brillouin
(WKB) approximation with a proximity potential [24,25]. In
the former model, the barrier distribution is supposed to be a
Gaussian with a mean value and width adjusted to reproduce
a systematics of 48 reactions, whereas in the latter proximity
potential parameters were adjusted to reproduce experimental
data without any coupling to other channels.

C. Survival probability

The survival probability of an excited heavy nucleus results
from the competition between neutron evaporation and fission
that is governed by the neutron-evaporation width �n and
fission-decay width �f , respectively.

On the one hand, the neutron-evaporation width is estimated
using the Weisskopf-Ewing theory [26–28]:

�n(E∗
C) = (2sn + 1)μn

π2�2

∫ E∗
C−Sn

0

σn
inv(εn)ρB(E∗

B)

ρC(E∗
C)

εndεn, (6)

where C denotes a compound nucleus at excitation energy
E∗

C and B the daughter nucleus at excitation energy E∗
B =

E∗
C − Sn − εn, where Sn is the binding energy of neutrons in

the compound nucleus and εn the kinetic energy of evaporated
neutrons in the center-of-mass frame. μn is the reduced mass
of the reaction system. For neutrons, the cross section for the
time-reversed reaction σn

inv is given by

σn
inv(εn) = g0

(
1 + g1

εn

)
πR̃2, (7)

where g0 = 0.76 + 1.93A
−1/3
B , g0g1 = 1.66A

−2/3
B − 0.05, and

R̃ = 1.7A
1/3
B fm [29].

On the other hand, the fission-decay width is usually
calculated within the Bohr-Wheeler (BW) transition-state
method [30]:

�BW
f (E∗

C) = 1

2πρ
gs
C (E∗

C)

∫ E∗
C−Bf

0
ρsd

C (E∗
sd)dεf , (8)
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where the excitation energy at the saddle point E∗
sd is equal

to E∗
C − Bf − εf with εf being the kinetic energy of the

collective motion. Here, Bf represents the fission barrier that is
known to have a great influence on the stability of superheavy
elements. A recent review [31] shows that this quantity is
difficult to estimate and large discrepancies that can reach up
to several MeV still remain in the predicted values.

In this work, we first use a common approximation: Bf �
BLDM − �Esh with BLDM and �Esh being respectively the
liquid-drop fission barrier and the shell-correction energy in
the ground state. We also considered a table based upon a
so-called microscopic-macroscopic theory [32]. Note that the
shell-correction energy is the same in both cases.

From a dynamical point of view, the fission-decay width
evaluated by Eq. (8) can actually be refined by introducing the
Kramers factor [33],

K =
√

1 +
(

β

2ωsd

)2

− β

2ωsd
, (9)

and the Strutinsky factor [34],

S = �ωg.s.

Tg.s.
. (10)

In the above factors, β stands for the reduced friction
coefficient that takes into account the effect of viscosity on
the fission process. Its value is not well known. �ωg.s. and �ωsd

denote the potential curvature in the ground state and at the
saddle point, respectively. They are both fixed at 1.0 MeV.
Finally, the total fission-decay width is given by

�f = KS�BW
f . (11)

In the following study, the product KS is referred to as the
Kramers-Strutinsky factor. Some models take it into account;
some others do not.

The state density ρ enters both decay widths in Eqs. (6)
and (8). In our model, the intrinsic state-density formula for
a nucleus comprising two kinds of particles, namely protons
and neutrons, is explicitly given by [35]

ρint(E
∗) =

√
π

12

exp(β0E
∗ + a/β0)√

β0E∗3

(
g2

0

4gngp

)1/2

× 1 − exp(−a/β0)[
1 − 1

2E∗β0 exp(−a/β0)
]1/2 ,

(12)

where gn and gp are respectively the neutron and proton
single-particle state densities at the Fermi energy. Here, g0 =
gn + gp and, typically, one has the following approximation:
gn � gp. In this study, we consider various formulas for the
level density parameter. In addition to the Tōke-Świątecki
model [36] chosen as default value, we also selected Reisdorf’s
model [24] and Pomorska et al.’s model [37].

Ignatyuk’s prescription was also taken into consideration
for the energy dependence of the level-density parameter a in
the ground state [38]:

ag.s.(E
∗) = ag.s.

[
1 + (1 − e−E∗/Ed )

�Esh

E∗

]
, (13)

where Ed represents the shell-damping factor that character-
izes how fast the shell effect is disappearing with excitation
energy. Its value is not well established.

Moreover, the intrinsic state density should be enhanced by
a certain factor as a function of excitation energy E∗, namely,

ρ(E∗) = ρint(E
∗)κcoll(E

∗). (14)

For more details on the collective enhancement factor κcoll

used in KEWPIE2, the reader is referred to Ref. [3]. This factor
is not always implemented in models used to study the survival
probability of superheavy elements.

D. Average values due to the loss of beam energy

Here, we only concentrate on the survival probability with
respect to the 1n channel, P 1n

sur, which can be written in the
following form:

P 1n
sur = P 1n

sur(E
∗,β,Ed ). (15)

In practice, the measured production cross sections are
usually obtained by averaging over a certain range of excitation
energy, due to the resolution of the detection setup and the
loss of beam energy in the target. When the calculation
is confronted with experimental data, this dispersion effect
would be crucially important in the case of SHEs formed
via cold-fusion reactions, because the survival probability is
rather peaked, as illustrated in Fig. 3. Therefore, to be close
to experimental observables, it is common to take an average
over a fixed energy width δE∗, as proposed in Ref. [10]. Thus,
the average survival probability can be defined as

P
1n

sur = 1

δE∗

∫ E∗
C+δE∗/2

E∗
C−δE∗/2

P 1n
sur(E

∗,β,Ed )dE∗, (16)

which is also dependent on the energy loss δE∗ in addition to
the model parameters. To carry out the integral, we employ
the Gauss-Legendre quadrature method, with a number of
abscissas chosen to be 12 to get a numerical precision of less
than 1.0%.

FIG. 3. Average of the survival probability for the 1n channel
over different energy intervals to take into account the loss of beam
energy in the target. The solid red curve indicates the calculated
survival probability without taking an average.
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III. UNCERTAINTY ANALYSIS

In this section, we concretely formulate the problem we are
dealing with and specify remaining ambiguities in the input
and options of the model.

A. Modeling the physical system

The main purpose of a numerical simulation is to establish
an abstract mathematical model for describing some basic
features of the physical system under study. In a general way,
a physical system can be abstracted as a set of multivariate real
functions, namely,

M : RN → RM

x → y = M(x), (17)

together with some constraints or restrictions so that the
subsequent derivations would make sense. Here, the input pa-
rameters of the model can be represented by an N -dimensional
vector x ∈ D ⊂ RN , where D denotes the domain of a model
function. The vector of M output quantities (or response
variables) is thus an M-dimensional vector function. In rare
cases, the model might be a simple closed-form function. But
more generally, it could correspond to a black-box function,
such as a computer program, which requires N input values
and then yields some numerical results. It should be mentioned
that the model itself can also be changed so that sometimes
one has different model functions for the same issue.

In our case, KEWPIE2 is employed to model the better-
known parts, namely, the capture cross section and survival
probability. The main input parameters for the decay part
are nothing else but the reduced friction parameter β and the
shell-damping energy Ed . It should be noted that the fission
barrier has been considered to be model dependent, instead of
a free parameter. In addition to the input parameters, we also
incorporated several submodels into the code [3].

The main objective here is to extract the empirical formation
probability which is simply a scalar-valued model function.
Based upon Eq. (5), the model function y = M(x) can be
constructed. Accordingly, the empirical formation probability
is given as follows:

P form = σ 1n
exp

σcapP
1n

sur

= P form
(
δE∗,β,Ed,σ

1n
exp

)
, (18)

where the measured data are assumed to be normally dis-
tributed. It should be noted that, sometimes, uncertainty inter-
vals associated with the experimental data can be asymmetric.
In this case, the method presented here is still valid, provided
that the corresponding distribution function is available.

B. Identifying and quantifying uncertainty sources

The common uncertainty sources can be roughly summa-
rized as follows [39]:

(i) Parameter uncertainty comes from the input param-
eters of the model whose values cannot be exactly
inferred, either theoretically or experimentally. In our
case, for example, the reduced friction coefficient and

the shell-damping energy cannot be determined with
certainty [38,40–42]. Hence, one needs to construct
some input probability distributions for them.

(ii) Model uncertainty results from the lack of knowl-
edge about the underlying true physics. Thus, it is
dependent upon how accurately a model describes
the true system in a realistic situation, knowing that
models are only rough approximations of reality.
In the present study, for example, to estimate the
capture cross section, two approximate methods are
employed. Here, to assess model uncertainty, we
simply investigate the effects of changing models on
the final outcomes.

(iii) Experimental uncertainty is directly related to the
precision and accuracy of measurements. In simple
cases, experimental data can be described by a
Gaussian distribution.

(iv) Numerical uncertainty arises because of errors cor-
responding to the implementation of computational
methods. We should be aware that most models are
too complicated to be solved analytically, so that
doing a certain approximation is often necessary. This
contribution should be negligible whenever possible.

It should be noted that the first two uncertainty sources are
essentially related to theoretical modeling and the distinction
between them is sometimes blurred, since a model can also
comprise a set of parameters.

The next step consists in identifying different uncertainty
sources that might come up in various contexts with the aim
of quantifying them using probabilistic methods.

Regarding parameters, a sensitivity analysis introduced in
our previous studies [2,3] allowed us to extract the most
relevant ones, namely, the friction coefficient β and the
shell-damping energy Ed . Their typical ranges of values can
be determined by doing an exhaustive literature search. Since
the choice of ranges is somewhat subjective, we would like
to introduce two kinds of cases, namely, the pessimistic and
optimistic hypotheses. In the former one, the ranges of values
are summarized as follows:

The reduced friction coefficient β ∼ 1.0–9.0 zs−1.

The shell-damping energy Ed ∼ 13.0–25.0 MeV.

As its name indicates, such ranges are able to cover most
of values that can be found in the literature [38,40–46], but
the associated uncertainties appear quite large. To justify this
choice, Fig. 4 illustrates typical values of β according to
previous studies. Here, the points or bars indicate the values
extracted from experimental data. It can be seen that the chosen
range of β can accommodate most of the extracted values. As
regards the shell-damping energy Ed , typical values can be
found in some recent papers [42,47], which demonstrate the
chosen range of values. Accordingly, the default values of the
above two parameters are taken to be 5.0 zs−1 and 19.0 MeV,
namely, their mean values. By contrast, in the optimistic case,
the above ranges are expected to be better constrained so that
they could become much narrower. In view of this, some
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FIG. 4. Typical values of the reduced friction parameter that can
be found in the literature. The figure is adapted from Ref. [41].

smaller ranges of values are worth taking into account, say,
reduced by 50%:

The reduced friction coefficient β ∼ 3.0–7.0 zs−1.

The shell-damping energy Ed ∼ 16.0–22.0 MeV.

This optimistic hypothesis is also inspected in the following
study.

Regarding the energy loss in the target, δE∗, it is assumed
to lie in the range 2–4 MeV [48]. Unlike the excitation energy,
uncertainty in the beam energy can be safely neglected because
the typical relative uncertainty is only a few percent at most.

To specify the probability density function (PDF) asso-
ciated with each parameter, one needs to take into account
all available information. Here, it should be noted that, in
addition to the normalization condition, only the lower and
upper limits are available (not that exactly). The maximum
entropy principle [49,50] would give a complicated probability
distribution as detailed in Ref. [51]. However, for the sake of
simplicity, we stick here to the uniform probability distribution
denoted as U (lmin,lmax) in the following study.

In addition to the parameters, it should be recalled that using
different models can also have an impact on the final results.
This influence needs to be taken into account during analysis.

The experimental data employed in this study are mainly
taken from Refs. [52–54] and are assumed to be normally
distributed, namely, N (μ,σ 2) with the mean value μ and
the variance σ 2. Therefore, we are only interested in the
ones with symmetric uncertainty bars, even though there are
more measured data in the literature. Accordingly, the selected
reaction systems and the corresponding maximum production
cross sections are summarized in Table I.

As a whole, it is clearly demonstrated that the maximal
production cross section drops considerably with increasing
atomic number from Z = 104 to Z = 108, whereas the

TABLE I. Experimental data for the 1n channel with the optimum
energy and the corresponding maximal ER cross section. The data
are taken from Refs. [52–54].

Reaction ZC AC Ec.m. (MeV) max σ 1n
exp (pb)

208Pb(50Ti ,1n)257Rf 104 258 185.02 10 419+1 284
−1 284

209Bi(50Ti ,1n)258Db 105 259 187.50 2 200+240
−240

208Pb(54Cr ,1n)261Sg 106 262 202.01 2 520+253
−253

209Bi(54Cr ,1n)262Bh 107 263 205.81 163+34
−34

208Pb(58Fe ,1n)265Hs 108 266 219.27 69+12
−12

experimental uncertainty gradually rises due to increasing
difficulty in performing such measurements.

C. Uncertainty propagation

To propagate input uncertainties through the model so as
to quantify the output uncertainty, we use a Monte Carlo
simulation, as recommended in Ref. [51], for calculating the
mean value μY and the standard deviation u(Y ) associated
with the model response. More concretely, supposing that one
has a set of samples for the input random vector, namely,
{x1,x2, . . . ,xS}, the random model function is then evaluated
for each of them as follows:

yr = M(xr ), r = 1, . . . ,S. (19)

Thus, the usual statistical estimators of these quantities are
simply given by

μY = 1

S

S∑
r

M(xr ), (20)

u2(Y ) = 1

S − 1

S∑
r

[M(xr ) − μY ]2. (21)

As regards the sample size, it can be approximately determined
by checking the stability and convergence of the calculated
result. At a 95% confidence level, the value of S is determined
to be 40 000, which would give a relative numerical uncertainty
of less than 1%. In the following study, the confidence level is
kept fixed at 95% as usual.

To obtain the corresponding confidence interval, first one
has to estimate the cumulative distribution function (CDF)
related to the output quantity, namely,

FY (y) =
∫ y

−∞
fY (t) dt. (22)

The estimated CDF, denoted by F̂Y (y), can be obtained as
follows [51]:

(a) Sort the values {yr} of the output quantity provided by
the Monte Carlo simulation into increasing order. The
sorted values are denoted by {y(r)}.

(b) Assign uniform cumulative probabilities pr = (r −
1/2)/S to the ordered values.

Finally, once the estimated CDF has been constructed,
it is possible to determine the end points that define the
required confidence interval. In the case of symmetric output
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distributions, the 95% confidence interval is determined by
the 0.025 and 0.975 quantiles. If the output distribution is
asymmetric the shortest confidence interval should be adopted.
It generally does not match with the 0.025 and 0.975 quantiles
anymore and can be obtained numerically from the estimated
CDF. For details on this approximation and the practical
algorithm, the reader is referred to Ref. [51].

D. Summary

In the following, we calculate the empirical formation
probability, P form(δE∗,β,Ed,σ

1n
exp) defined in Eq. (18), and

perform an uncertainty analysis that is essentially based upon
the recommendations given in Ref. [51] which serves as the
international standard for expression of uncertainty.

Regarding the PDFs for input parameters, they are summa-
rized as follows:

(i) σ 1n
exp is assumed to be normally distributed.

(ii) δE∗ ∼ U (2,4) in MeV. Note that, over each value of
δE∗, the survival probability is averaged [cf. Eq. (16)].

(iii) β ∼ U (1.0,9.0) in zs−1.
(iv) Ed ∼ U (13.0,25.0) in MeV.

As previously discussed, the above ranges of values of
the last two parameters are considered under the pessimistic
hypothesis, which simply means that they seem somewhat
large but can cover most of the parameter values that can be
found in the literature. Moreover, it would be instructive to
take a look into the effects of using some narrower ranges of
values on the final results. This is the optimistic case, where
the values of β and Ed are supposed to lie within the following
ranges:

β ∼ U (3.0,7.0) in zs−1.

Ed ∼ U (16.0,22.0) in MeV.

In addition to the input parameters, the effects of changing
model functions on the calculated results should also be
examined. Here, we mainly focus on some theoretical correc-
tions, namely, the collective enhancement and the Kramers-
Strutinsky factors, as well as the fission-barrier models,
the level-density parameters, and two simple methods for
estimating capture cross sections, which are considered to be
the main physical ingredients included in the model.

It should be recalled that the default parameter values and
models were concretely presented in a recent paper on the de-
scription of KEWPIE2 [3]. To briefly summarize, in the present
study, the empirical barrier-distribution method [10,55] for
estimating the capture cross section, the Tōke-Świątecki
model [36] for the level-density parameter, the Thomas-Fermi
model [56] for calculating fission barriers, and the collective
enhancement and Kramers-Strutinsky factors [33,34,57,58]
have been considered by default.

The Monte Carlo approach is employed to propagate input
distributions through the model, as the uncertainty associated
with each of the input parameters is considerably large. In
the present work, the GNU Scientific Library (GSL) [59] was

FIG. 5. Estimated distribution of the empirical formation proba-
bility for the reaction 208Pb(58Fe ,1n)265Hs. The solid line represents
the mean value and the dotted lines refer to the lower and upper
bounds of the 95% confidence interval, respectively. The cumulative
distribution function (CDF) of the empirical formation probability
used to define the confidence interval is indicated.

employed to generate uniform and normal random numbers
for input distributions.

IV. RESULTS AND DISCUSSION

In this section, we start by showing an illustrative example
for the cold-fusion reaction leading to the formation of element
Hs, namely 208Pb(58Fe ,1n)265Hs, at its optimum energy. Then,
a systematic study is carried out and discussed.

A. Influence of input distributions

Figure 5 illustrates the estimated distribution related to
the empirical formation probability obtained by means of
the KEWPIE2 code together with available production cross
sections [cf. Eq. (18)]. It should be mentioned that all the input
parameters were considered under the pessimistic hypothesis.
In this case, the shape of the distribution appears to be highly
skewed to the left; that is, it has a long tail on the right-hand
side of the distribution and thus results in a quite asymmetric
confidence interval. The mean value is hence located on the
right-hand side of the peak value. Figure 5 also displays the
corresponding CDF used to determine both lower and upper
bounds of the 95% confidence interval.

Separate uncertainty contributions coming from each of the
input distributions are displayed in Fig. 6. Each point stands for
the mean value of the empirical formation probability, together
with its 95% confidence interval. First, the contribution of
the experimental uncertainty is represented by the first point
on the left. The upper bound of the confidence interval
is higher than the lower one by a factor of about 2. The
following three points are connected with the energy loss in the
target, the reduced friction parameter β, and the shell-damping
energy Ed , respectively. Overall, it can be clearly noticed that
the theoretical contributions are dominant compared to the
experimental ones. This is simply due to the fact that β and
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FIG. 6. Impact of input distributions on uncertainty associated
with the empirical formation probability. The pessimistic case is
considered in the upper panel and the optimistic input distributions
for β and Ed in the lower one. See text for details.

Ed are closely related to the fission process that is known
to be the dominating decay channel for SHEs. It should also
be mentioned that the relative uncertainty of β is about 46%,
which appears to be much larger than that of Ed estimated to be
about 18%. Put differently, this means that uncertainty related
to the empirical formation probability would be more sensitive
to the shell-damping energy. Finally, when including all input
distributions, the total confidence interval spans slightly more
than one order of magnitude.

When reducing the intervals of the two dominant parameter
values by 50%, that is, under the optimistic hypothesis, Fig. 6
clearly demonstrates that the total uncertainty is also decreased
by almost the same factor. This result also indicates that further
constraints on these two critical model parameters would
be able to reduce the total uncertainty connected with the
empirical formation probability.

B. Influence of models

We then look into the impact of changing models on the
empirical formation probability. Figure 7 illustrates how cor-
rection factors, namely, the Kramers-Strutinsky and collective
enhancement ones, affect the mean value of the empirical for-

10−8

10−7

10−6

10−5

10−4

P−
fo

rm

Impact of correction factors

With all factors
Without Kramers−Strutinsky

Without Coll. Enh.
Without both

FIG. 7. Impact of correction factors on the empirical formation
probability. Note that the uncertainty interval is due to all parameters
under the pessimistic hypothesis.

mation probability. Removing the Kramers-Strutinsky factor, it
is readily seen that the mean value slightly increases by a factor
of about 2, whereas it becomes a bit lower after removing the
collective enhancement factor. It should also be noted that the
uncertainty amplitudes do not remain the same due to the fact
that β is jointly removed along with the Kramers-Strutinsky
factor so that the output distribution becomes narrower.

Figure 8 shows the effects of changing level-density
parameter formulas on the mean value of the empirical
formation probability and the associated confidence interval.
As already mentioned, in addition to the default model of
Tōke and Świątecki [36], we also selected the Reisdorf [24]
and Pomorska et al. models [37]. Here, one can notice that the
mean value of the empirical probability decreases at most by a
factor of around 2, which appears to be negligible compared to
the total uncertainty interval. As a whole, the lengths of their
confidence intervals seem to remain the same.

Figure 9 tells us how capture models affect the mean
value and confidence interval of the empirical formation

10−8

10−7

10−6

10−5

10−4

P−
fo

rm

Impact of level−density parameters

Due to TOKE−SWIATECKI
Due to REISDORF

Due to POMORSKA et al.

FIG. 8. Impact of level-density parameters on the empirical
formation probability. Uncertainty interval is due to all parameters
under the pessimistic hypothesis.
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FIG. 9. Impact of capture models on the empirical formation
probability. Uncertainty interval is due to all parameters under the
pessimistic hypothesis.

probability. Here, the EBD method [10,23] and the WKB
approximation [24,25] were considered. As can be seen in
Fig. 9, the results based upon these two simple capture models
seem to differ by a factor of about 7, that is, less than one
order of magnitude. However, special attention should always
be drawn to the capture step because calculated cross sections
could differ by one order of magnitude, especially in the case
of deformed colliding nuclei due to nuclear structure effects.

Figure 10 demonstrates how the mean value and the
confidence interval associated with the empirical formation
probability evolve with various fission-barrier models. Here,
three different models were considered. Two of them are based
on a commonly used approximation with a macroscopic part
calculated with the Thomas-Fermi (TF) model [56] or the
Lublin-Strasbourg drop (LSD) [60] to which a shell-correction
table [61] is added. The third model is Möller et al.’s
microscopic-macroscopic model [32]. It is thus observed that
the mean values can differ by almost one order of magnitude
that is comparable to the total uncertainty interval. This is
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P−
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Impact of fission barriers

Due to TF
Due to LSD

Due to MOLLER

FIG. 10. Impact of fission barriers on the empirical formation
probability. Uncertainty interval is due to all parameters under the
pessimistic hypothesis.
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Systematics of empirical formation probabilities

KEWPIE2+TF+EBD
KEWPIE2+TF+WKB
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FIG. 11. Systematic comparison of the calculated mean values
of the empirical formation probability for the cold-fusion reactions
leading to the synthesis of the elements from Z = 104 to Z = 108
(cf. Table I). The deduced formation probabilities are based upon
two simple capture models (see text). Lines correspond to theoretical
predictions from Refs. [10,15–18,20,62] as in Fig. 2.

mainly due to the fact that nuclear fission is known to be
the dominant decay channel for superheavy nuclei. A small
change in fission barrier can give rise to a significant variation
in the calculated survival probability. It is worth noticing that,
if we had taken into account all fission barriers available in the
scientific literature, the impact would have been larger.

C. An extended comparison

So far, we have illustrated an uncertainty analysis for a
special cold-fusion reaction. In this section, an extended study
is presented for the whole set of cold-fusion reactions listed in
Table I.

Two different cases related to the empirical formation
probabilities and the associated 95% confidence intervals for
the selected cold-fusion reactions leading to the synthesis
of SHEs ranging from Z = 104 to Z = 108 are shown in
Figs. 11 and 12. The former displays calculated results with
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Siwek−Wilczynska
Veselsky

Zhu

FIG. 12. Same as Fig. 11 but the deduced formation probabilities
are based upon two different fission-barrier models (see text).
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FIG. 13. Same as Fig. 11 but the extreme case is presented for
both capture and fission-barrier models so as to have the largest
discrepancy between the empirical formation probabilities.

two simple capture models and the latter shows those based
upon two extreme fission-barrier models. It should be kept in
mind that the uncertainty interval is always related to all input
distributions within the pessimistic hypothesis.

First, one can immediately notice that the discrepancy due
to the capture step can even reach two orders of magnitude
for the lightest reaction system, but it gradually declines as the
atomic number of the compound system goes up. This is due to
the fact that, as the system becomes heavier, the incident energy
for the one-neutron channel is approaching the Coulomb
barrier so that uncertainty associated with the capture model
because of sub-barrier coupled-channels effects should be
gradually reduced. To this extent, the uncertainty remaining in
the estimated capture cross section could also have a significant
impact on the final results, but fortunately it can be directly
measured and thus be constrained. Here, it should be kept in
mind that we only considered two simple capture models in
our calculations, whereas many other more sophisticated and
accurate ones are currently available. Accordingly, one would
expect that uncertainty associated with the capture model can
be reduced either theoretically or experimentally.

Regarding the impact of fission barriers, as displayed in
Fig. 12, the discrepancy practically seems to remain the same.
Overall, the mean values based upon two extreme fission-
barrier models with the same shell correction energy can
differ by about one order of magnitude, which is comparable
to the lengths of their corresponding uncertainty intervals.
Unlike in the case of capture models, since the fission-
barrier height cannot be directly measured, it is unlikely that
uncertainty would be reasonably reduced. To this extent, other
methods should to be invented so as to constrain fission-
barrier models. For instance, we recently started to consider
Bayesian inference together with its possible application
[63,64].

Finally, it is also interesting to take a look into the extreme
cases, that is, with two capture models and two extreme
fission-barrier models. This is displayed in Fig. 13. As for some
lighter systems, the maximal discrepancy can reach more than
three orders of magnitude, whereas it gradually diminishes to

around two orders of magnitude as the atomic number goes
up. Considering the total uncertainty interval, the discrep-
ancy between the calculated formation probabilities can be
completely accommodated and, hence, it appears unlikely to
discriminate the various formation models. Put differently, as
mentioned at the beginning of this paper, all fusion-evaporation
models would be capable of reproducing the measured data,
even though there are still serious ambiguities on the reaction
mechanism for heavy-ion fusions.

V. CONCLUSION AND PERSPECTIVES

Although various models converge to experimental data
when estimating excitation function of ER cross sections of
superheavy nuclei, a closer look at intermediate steps shows
large discrepancies between them. It is especially the case for
the formation step that is the lesser-known part of the reaction.
Consequently, when experimental data are not available,
predictions diverge. The results obtained from the uncertainty
analysis presented in this paper are helpful for comprehending
the contradiction between theoretical formation probabilities
and ER cross sections. It was demonstrated that, although
the formation probability is not yet quantitatively known, by
somehow tuning the better-known factors, namely, the capture
cross section and survival probability, one can still be able to
obtain a reasonable fit to experimental data.

In this sense, the predictive power of fusion-evaporation
models remains quite limited in the case of superheavy element
synthesis. To assess them, it would be necessary to refine both
the capture and fission-barrier models. In the former case,
as previously mentioned, this can be done with the help of
more accurate data as the capture cross section can be directly
measured, or using some more sophisticated capture models.
In the latter case, however, there are still severe discrepan-
cies between various types of calculations [31] and, more-
over, the fission-barrier height cannot be directly measured.
Its extraction from experimental data is model dependent
[63,64].

How does one constrain both formation models and
fission barriers simultaneously? There is a crucial need for
experiments dedicated to a better understanding of the fusion
hindrance. The synthesis of the same nucleus by hindered
and nonhindered reactions would be helpful as the decay part
would be the same. From a theoretical point of view, there
is a real need to decrease the number of free parameters.
Thus, fission barriers and inner fusion barriers responsible
for the fusion hindrance should be calculated within the same
model. This generally requires microscopic or microscopic-
macroscopic approaches [31].
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