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Nuclear mean field and double-folding model of the nucleus-nucleus optical potential
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Realistic density dependent CDM3Yn versions of the M3Y interaction have been used in an extended Hartree-
Fock (HF) calculation of nuclear matter (NM), with the nucleon single-particle potential determined from the total
NM energy based on the Hugenholtz–van Hove theorem that gives rise naturally to a rearrangement term (RT).
Using the RT of the single-nucleon potential obtained exactly at different NM densities, the density and energy
dependence of the CDM3Yn interactions was modified to account properly for both the RT and observed energy
dependence of the nucleon optical potential. Based on a local density approximation, the double-folding model
of the nucleus-nucleus optical potential has been extended to take into account consistently the rearrangement
effect and energy dependence of the nuclear mean-field potential, using the modified CDM3Yn interactions.
The extended double-folding model was applied to study the elastic 12C +12C and 16O +12C scattering at the
refractive energies, where the Airy structure of the nuclear rainbow has been well established. The RT was found
to affect significantly the real nucleus-nucleus optical potential at small internuclear distances, giving a potential
strength close to that implied by the realistic optical model description of the Airy oscillation.
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I. INTRODUCTION

During the last three decades, the double-folding model
(DFM) of the nucleus-nucleus optical potential (see, e.g.,
Refs. [1–5] and references therein) has been successfully used
to calculate the real heavy-ion (HI) optical potential (OP) for
use in different nuclear reaction studies. It is straightforward
to see from the basic folding formulas that the folding
model generates the first-order (Hartree-Fock type) term of
Feshbach’s microscopic OP [6]. The success of the folding
model description the observed elastic scattering of numerous
HI systems, in particular, the nuclear rainbow pattern observed
in the elastic scattering of the light HI systems [7], clearly
suggests that the first-order term of Feshbach’s microscopic
OP is indeed the dominant part of the real nucleus-nucleus OP.

The basic inputs for a folding model calculation are the
nuclear densities of the colliding nuclei and the effective
nucleon-nucleon (NN) interaction between the projectile
nucleons and those in the target. A popular choice in the past
for the effective NN interaction has been the M3Y interaction
[1], which was designed to reproduce the G-matrix elements of
the Reid [8] and Paris [9] NN potentials in an oscillator basis.
The original (density independent) M3Y interaction was used
with some success in the folding model calculation of the
real HI optical potential at low energies [1], where the elastic
scattering data are sensitive to the potential only at the surface,
near the strong absorption radius Rs.a.. The situation becomes
different in cases of the refractive nucleus-nucleus scattering
with the observation of the nuclear rainbow pattern [5], where
the elastic data measured at large angles were shown to be
sensitive to the real OP over a wider radial range, down to small
distances R < Rs.a.. Here, the original M3Y interaction failed
to give a good description of the data, and several realistic
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choices of the density dependence were included in the M3Y
interaction [2,3,5,10,11] to account for the reduction of the
attractive strength of the effective NN interaction at high
densities of the nuclear medium, as the two nuclei closely
approach and overlap with each other at small distances.

The explicit density dependence of the M3Y interaction
considered in the present work was parametrized [2,3,11]
to reproduce the saturation properties of symmetric nuclear
matter (NM) in the standard Hartree-Fock (HF) calculation.
To have a reliable density dependent interaction for use at
different energies, the nucleon OP in NM obtained in the HF
calculation [11,12] (or the high-momentum part of the HF
single-nucleon potential) was used to adjust the explicit energy
dependence of the density dependent M3Y interaction against
the observed energy dependence of the nucleon OP. However,
the HF single-nucleon potential [11,12] is roughly equivalent
to the single-particle potential of the Brueckner-Bethe theory
[13], which lacks the rearrangement term that arises naturally
in the Landau theory for infinite Fermi systems [14]. Such a
rearrangement term (RT) also appears when the single-nucleon
potential is evaluated from the total NM energy using the
Hugenholtz and van Hove (HvH) theorem [15], which is exact
for all systems of interacting fermions, independent of the type
of the interaction between fermions.

For infinite NM, it is straightforward to see that the HvH
theorem is satisfied on the HF level only when the in-medium
NN interaction is density independent, i.e., when the RT is
equal zero [16]. As a result, the single-nucleon (or nucleon
mean-field) potential in NM evaluated on the HF level using an
in-medium, density dependent NN interaction is not compliant
with the HvH theorem. It is of interest, therefore, to have
a method to take into account properly the RT of the single-
nucleon potential in NM on the HF level using the same density
dependent NN interaction that was determined to reproduce
the saturation properties of symmetric NM. Based on the exact
expression of the RT of the single-nucleon potential given by
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the HvH theorem at each NM density and the empirical energy
dependence of the nucleon OP observed over a wide range of
energies, a compact method has been suggested recently [17]
to account effectively for the RT in the standard HF scheme, by
supplementing the density dependent CDM3Yn interaction [3]
with the explicit contributions of the RT and of the momentum
dependence of the nucleon mean-field potential.

For finite nuclei, the RT appears naturally [18,19] when the
variational principle is applied to solve the eigenvalue problem
in the HF calculation, using an effective density dependent NN
interaction. Such a RT in the HF energy density of finite nuclei
is known to describe the rearrangement of the mean field due to
the removal or addition of a single particle [20]. In fact, it has
been observed experimentally in the nucleon removal reactions
at low energies that the interaction between the projectile
nucleon and a target nucleon can induce some rearrangement
of the single-particle configurations of other nucleons in
the target [21]. In terms of the nucleus-nucleus interaction,
such a rearrangement effect should also affect the shape and
strength of the microscopic nucleus-nucleus OP constructed
in the folding model using the single-particle wave functions
of the projectile- and target nucleons. Because the standard
double-folding calculations of the nucleus-nucleus potential
are being done mainly on the HF level [3–5], the impact of the
rearrangement effect to the folded nucleus-nucleus OP has not
been studied so far.

The present work is the first attempt to address this
important issue. For this purpose, an extended version of
the DFM is proposed to effectively include the RT into the
folded nucleus-nucleus OP in the same mean-field manner,
using consistently the same density and momentum dependent
CDM3Yn interaction determined from the extended HF study
of NM [17] to be compliant with the HvH theorem. The
extended DFM is applied to study in detail the impact of
the rearrangement effect of the nuclear mean field in the
optical model analysis of the elastic, refractive 12C +12C and
16O +12C scattering at different energies.

II. SINGLE-NUCLEON POTENTIAL IN THE
EXTENDED HF FORMALISM

We recall here the (nonrelativistic) Hartree-Fock descrip-
tion of homogeneous and symmetric NM at the given nucleon
density ρ. Given the direct (vD

c ) and exchange (vEX
c ) parts of the

(central) effective NN interaction vc, the ground-state energy
of NM is E = Ekin + Epot, where the kinetic and potential
energies are determined as

Ekin(ρ) =
∑
kστ

n(k)
�

2k2

2mτ

(1)

Epot(ρ) = 1

2

∑
kστ

∑
k′σ ′τ ′

n(k)n(k′)[〈kστ,k′σ ′τ ′|vD
c |kστ,k′σ ′τ ′〉

+ 〈kστ,k′σ ′τ ′|vEX
c |k′στ,kσ ′τ ′〉]

= 1

2

∑
kστ

∑
k′σ ′τ ′

n(k)n(k′)〈kστ,k′σ ′τ ′|vc|kστ,k′σ ′τ ′〉A.

(2)

Here the single-particle wave function |kστ 〉 is plane wave.
The nucleon momentum distribution n(k) in the spin-saturated,
symmetric NM is a step function determined with the Fermi
momentum kF = (1.5π2ρ)1/3 as

n(k) =
{

1 if k � kF ,
0 otherwise. (3)

According to the Landau theory for infinite Fermi systems
[13,14], the single-particle energy ε(ρ,k) at the given nucleon
density ρ is determined as

ε(ρ,k) = ∂E

∂n(k)
= t(k) + U (ρ,k) = �

2k2

2m
+ U (ρ,k), (4)

which is the change of the NM energy caused by the
removal or addition of a nucleon with the momentum k. The
single-particle potential U (ρ,k) consists of both the HF and
rearrangement terms,

U (ρ,k) = UHF(ρ,k) + URT(ρ,k), (5)

where UHF(ρ,k) =
∑
k′σ ′τ ′

n(k′)〈kστ,k′σ ′τ ′|vc|kστ,k′σ ′τ ′〉A

(6)

and URT(ρ,k) = 1

2

∑
k1σ1τ1

∑
k2σ2τ2

n(k1)n(k2)

×〈k1σ1τ1,k2σ2τ2| ∂vc

∂n(k)
|k1σ1τ1,k2σ2τ2〉A.

(7)

It is clear from Eqs. (4) and (7) that the RT accounts for the
rearrangement of the nuclear mean field due to the removal or
addition of a nucleon [20]. When the nucleon momentum ap-
proaches the Fermi momentum (k → kF ), ε(ρ,kF ) determined
from Eqs. (4)–(7) is exactly the Fermi energy given by the
Hugenholtz–van Hove theorem [15]. Using the transformation

∂

∂n(k)

∣∣∣∣
k→kF

= ∂ρ

∂n(kF )

∂kF

∂ρ

∂

∂kF

= 1

2�

π2

k2
F

∂

∂kF

, (8)

where � is the volume of symmetric NM, the RT of the single-
particle potential U at the Fermi momentum can be obtained as

URT(ρ,k = kF ) = 4π2

k2
F

�

(2π )6

∫∫
n(k1)n(k2)

×〈k1k2| ∂vc

∂kF

|k1k2〉Ad3k1d
3k2. (9)

In difference from the RT part, the HF part of the single-particle
potential is readily evaluated at any momentum

UHF(ρ,k) = 4�

(2π )3

∫
n(k′)〈kk|vc|kk′〉Ad3k′. (10)

For the spin-saturated symmetric NM, the spin and isospin
components of plane waves are averaged out in the HF
calculation of the single-particle potential, and only the spin
and isospin independent terms of the central NN interaction
are needed for the determination of the single-particle potential
(9)–(10). In the present work, we use two density dependent
versions (CDM3Y3 and CDM3Y6) [3] of the M3Y interaction
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based on the G-matrix elements of the Paris potential in an
oscillator basis [9]. Thus, the central CDM3Yn interaction is
determined explicitly as

vD(EX)
c (s) = F0(ρ)vD(EX)

00 (s), where s = |r1 − r2|. (11)

The radial part of the interaction v
D(EX)
00 (s) is kept unchanged

as determined from the spin and isospin independent part of
the M3Y-Paris interaction [9], in terms of three Yukawas:

vD
00(s) = 11061.625

exp(−4s)

4s
− 2537.5

exp(−2.5s)

2.5s

+ 0.0002
exp(−0.7072s)

0.7072s
,

vEX
00 (s) = −1524.25

exp(−4s)

4s
− 518.75

exp(−2.5s)

2.5s

− 7.8474
exp(−0.7072s)

0.7072s
.

The density dependence of the interaction (11) was assumed in
Ref. [3] as a hybrid of the exponential and power-law forms in
order to obtain different values of the nuclear incompressibility
K in relatively small (10 to 20 MeV) steps from the HF
calculation of NM. Given this empirical choice of F0(ρ), a
realistic range for the K value (the most vital input for the
equation of state of cold NM) has been deduced accurately
from the folding model analysis of the refractive α-nucleus and
nucleus-nucleus scattering (see details in the review [5]). Thus,
we have used in the present work the following functional form
for F (ρ) [3]:

F0(ρ) = C[1 + α exp(−βρ) + γρ]. (12)

Note that the interaction (11) is the isoscalar part of the central
interaction. A more comprehensive HF study of the nucleon
mean-field potential in asymmetric NM has been performed
recently [17], taking into account also the isospin dependent
part of the CDM3Yn interaction. In the DFM calculation of the
nucleus-nucleus optical potential, the isospin dependent part
of the effective NN interaction is needed only if both nuclei
have nonzero isospins in their ground states [22]. In the present
study we have focused, therefore, on the extension of the DFM
using the spin and isospin independent interaction (11) only.

The parameters of the density dependence F0(ρ) were
determined [3] to reproduce on the HF level the saturation
properties of symmetric NM and give the nuclear incom-
pressibility K ≈ 218 and 252 MeV with the CDM3Y3 and
CDM3Y6 versions, respectively. These interactions, especially
the CDM3Y6 version, have been widely tested in the folding
model analyses of the elastic nucleus-nucleus scattering [3–5].
The HF results for the ground-state energy of symmetric NM
are shown in Fig. 1. One can see that at high NM densities the
E/A curve obtained with the CDM3Y6 interaction is stiffer
than that obtained with the CDM3Y3 interaction, and this is
due to the higher value of the nuclear incompressibility K
given by the CDM3Y6 interaction.

Given the parametrization (11) of the central (isoscalar) NN
interaction, the HF part of the single-nucleon potential can be

FIG. 1. Ground-state energy (per nucleon) of symmetric NM at
different nucleon densities given by the HF calculation (1)–(2), using
the CDM3Y3 and CDM3Y6 interactions (11). The solid circle is the
saturation point (E/A ≈ −15.9 MeV at ρ0 ≈ 0.17 fm−3).

explicitly obtained as

UHF(ρ,k) = F0(ρ)UM3Y(ρ,k),

where UM3Y(ρ,k) = ρ

[
JD

0 +
∫

ĵ1(kF r)j0(kr)vEX
00 (r)d3r

]
.

(13)

Here

J D
0 =

∫
vD

00(r)d3r,

ĵ1(x) = 3j1(x)/x = 3(sin x − x cos x)/x3.

Applying the HvH theorem, the RT of the single-nucleon
potential in symmetric NM is obtained explicitly at the Fermi
momentum as

URT(ρ,kF ) = ρ2

2

∂F0(ρ)

∂ρ

{
J D

0 +
∫

[j1(kF r)]2vEX
00 (r)d3r

}
.

(14)

It is obvious from Eq. (14) that the RT becomes zero if the
original density independent M3Y interaction is used in the
HF calculation of the single-nucleon potential. In this case,
the HvH theorem is satisfied already on the HF level [16].

In general, as seen from Eq. (7), the RT of the nucleon mean-
field potential should be present at arbitrary nucleon momenta.
Microscopically, the momentum dependence of the RT was
shown, in the Brueckner-Hartree-Fock (BHF) calculations of
NM [23,24], to be due to the higher-order NN correlation,
like the second-order diagram in the perturbative expansion of
the mass operator or the contribution from three-body forces,
etc. In finite nuclei, the rearrangement effect in the nucleon
removal reactions was shown [21] to be strongly dependent
on the energy of the stripping reaction, a clear indication of
the momentum dependence of the RT of the single-nucleon
potential. Therefore, it is of interest to assess the momentum
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dependence of the RT of the single-nucleon potential on
the HF level. Given the factorized density dependence of
the CDM3Y3 and CDM3Y6 interactions, we have suggested
recently [17] a compact method to account for the momentum
dependence of the RT of the single-nucleon potential on the
HF level. An important constraint for this procedure is that the
momentum dependence of the total (HF+RT) single-nucleon
potential reproduces the observed energy dependence of the
nucleon OP. It was shown earlier [11,12] that the momentum
dependence of the HF potential (13) accounts fairly well for
the observed energy dependence of the nucleon OP after a
slight adjustment of the interaction strength at high energies.
Therefore, in our extended HF formalism [17] the momentum
dependent RT of the single-nucleon potential is assumed to
have a functional form similar to (13)

URT(ρ,k) = �F0(ρ)UM3Y(ρ,k), (15)

where the density dependent contribution of the rearrangement
effect is determined consistently from the exact expression (14)
of the RT at the Fermi momentum as

�F0(ρ) = URT(ρ,kF )

UM3Y(ρ,k → kF )
. (16)

Consequently, the total single-nucleon potential is determined
in the extended HF approach as

U (ρ,k) = [F0(ρ) + �F0(ρ)]UM3Y(ρ,k). (17)

Thus, the momentum dependence of the total single-nucleon
potential is determined by that of the exchange term of
UM3Y(ρ,k). One can see from the expressions (15)–(17) that
the rearrangement effect gives rise to a modified density
dependence of the central interaction (11), F0(ρ) → F0(ρ) +
�F0(ρ), and the total (HF+RT) single-nucleon potential (17)
is readily obtained on the HF level. The density dependence of
�F0(ρ) obtained from the exact expression of the RT given by
the HvH theorem at each NM density using Eq. (16) is shown
as squares and circles in Fig. 2. One can see that the behavior
of �F0(ρ) at high NM densities is quite different for the two
density dependent CDM3Yn interactions and this is associated
with different NM incompressibilities K given by these two
interactions in the HF calculation of NM. Because �F0(ρ) < 0
over the whole range of NM densities, the contribution of the
RT to the total single-nucleon potential is always repulsive.
To facilitate the numerical calculation in the DFM, we have
parametrized �F0(ρ) using the a density dependent functional
similar to (12):

�F0(ρ) = C[α exp(−βρ) − 1]. (18)

For convenience of the readers who are interested in using
the modified CDM3Yn interaction (with the rearrangement
contribution �F0(ρ) added) in their folding model calculation,
the parameters of F0(ρ) and �F0(ρ) are given explicitly in
Table I.

In the NM limit, the nucleon OP is determined as the mean-
field interaction between the nucleon incident on NM at a given
energy E and bound nucleons in the filled Fermi sea [12].
Applying a continuous choice for the single-nucleon potential
[28] at positive energies E, we obtain in the HF scheme the

FIG. 2. Density dependence �F0(ρ) of the RT (15) obtained
from the exact expression of the RT given by the HvH theorem (14)
using Eq. (16). Results obtained with the CDM3Y3 and CDM3Y6
interactions are shown as squares and circles, respectively. The solid
curves are given by the density dependent functional (18) using the
parameters in Table I.

nucleon OP in symmetric NM [11,12] as

U0(ρ,E) = UHF(ρ,E)

= F0(ρ)ρ

[
JD

0 +
∫

ĵ1(kF r)j0(k(E,ρ)r)vEX
00 (r)d3r

]
.

(19)

Here k(E,ρ) is the (energy dependent) momentum of the
incident nucleon propagating in the mean field of bound
nucleons, and is determined as

k(E,ρ) =
√

2m

�2
[E − U0(ρ,E)], with E > 0. (20)

It is easy to see that k(E,ρ) > kF and UHF is just the high
momentum part of the HF potential (13). Based on the above
discussion, the total nucleon OP in the NM should also have a
contribution from the RT added:

U0(ρ,E) = UHF(ρ,E) + URT(ρ,E)

= [F0(ρ) + �F0(ρ)]UM3Y(ρ,k(E,ρ)), (21)

TABLE I. Parameters of the density dependence F0(ρ) of the
CDM3Yn interaction (12) and the correction �F0(ρ) by the RT of
the single-nucleon potential (18). The nuclear incompressibility K is
obtained in HF calculation of symmetric NM at the saturation density
ρ0 ≈ 0.17 fm−3.

Interaction C α β γ K

(fm3) (fm3) (MeV)

CDM3Y3 F0(ρ) 0.2985 3.4528 2.6388 −1.5 218
�F0(ρ) 0.38 1.0 4.484

CDM3Y6 F0(ρ) 0.2658 3.8033 1.4099 −4.0 252
�F0(ρ) 1.50 1.0 0.833
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FIG. 3. Nucleon OP in symmetric NM, evaluated using the
CDM3Y3 interaction at the saturation density ρ0 with and without
the RT, in comparison with the empirical data taken from Refs. [25]
(circles), [26] (squares), and [27] (triangles). The momentum depen-
dent factor g(k) was iteratively adjusted to the best agreement of the
total nucleon OP (22) with the empirical data (solid line).

where the density dependence �F0(ρ) of the RT is determined
by the relation (16) and parametrized in Table I.

The total nucleon OP (21) evaluated at the NM saturation
density ρ0 using the CDM3Y3 interaction is compared with
the empirical data [25–27] in Fig. 3. Although the inclusion of
the RT significantly improves the agreement of the calculated
U0 with the data at lowest energies, it remains somewhat
more attractive at high energies in comparison with the
empirical data. This effect is easily understood in light of
the microscopic BHF results for the nucleon OP [28], where
the energy dependence of the nucleon OP in NM was shown
to originate from both the (energy dependent) direct and
exchange parts of the Brueckner G matrix. That is the reason
why a slight linear energy dependence has been introduced
into the CDM3Y6 interaction [3], in terms of the g(E)
factor. To be consistent with the momentum dependence of
the single-nucleon potential under study, instead of the g(E)
factor, we have introduced recently [17] a momentum (or
energy) dependent scaling factor g(k(E,ρ)) to the CDM3Yn
interaction (11), and iteratively adjusted its strength to the best
agreement of the (HF+RT) nucleon OP with the empirical
data at the NM saturation density ρ0 (see Fig. 3). Thus,

U0(ρ,E) = g(k(E,ρ))[F0(ρ) + �F0(ρ)]UM3Y(ρ,k(E,ρ)),

(22)

where k(E,ρ) is determined self-consistently from U0(E,ρ)
via Eq. (20). At variance with the g(E) factor fixed by the
incident energy [3], the g(k(E,ρ)) scaling factor is a function
of the (energy dependent) momentum of the incident nucleon
(see Fig. 4), directly linked to the momentum dependence of
the nucleon mean-field potential. Numerically, the obtained
g(k(E,ρ)) function is almost identical for both the CDM3Y3
and CDM3Y6 interactions and can be considered as the

FIG. 4. Momentum dependent scaling factor g(k) obtained with
the CDM3Yn interaction from the best fit of the total nucleon OP
(22) to the empirical data [27] shown in Fig. 3. The points are the
numerical results that are well reproduced by a cubic polynomial,
g(k) = 1.015 − 0.109k + 0.17k2 − 0.07k3 (the solid line).

explicit momentum (or energy) dependence of the CDM3Yn
interaction that allows the incident nucleon to feel the nucleon
mean field during its interaction with nucleons bound in NM.
Such a momentum dependence is of a similar nature as the
momentum dependence of the G matrix in the microscopic
BHF study of NM, which is determined self-consistently
through the momentum dependence of the single-particle
energies embedded in the denominator of the Bethe-Goldstone
equation [24]. The technical difference here is that the k
dependence of g(k) is determined empirically from the best
fit of the calculated nucleon OP (22) to the observed energy
dependence of the nucleon OP. Because g(k) becomes smaller
unity at k � 1.6 fm−1 (see Fig. 4), it has been used in our
recent HF calculation [17] to adjust the high-momentum tail
of the single-nucleon potential in NM.

III. DOUBLE-FOLDING MODEL OF THE
NUCLEUS-NUCLEUS OPTICAL POTENTIAL

Given quite a strong rearrangement effect to the nucleon
OP discussed above, it is of high importance to incorporate
these effects in the many-body calculation of the nucleon-
nucleus and nucleus-nucleus optical potentials. Based on the
realistic treatment of the rearrangement effect and momentum
dependence of the nucleon OP in the extended HF calculation
of NM, a consistent inclusion of the RT into the single-folding
calculation of the nucleon-nucleus OP for finite nuclei has been
done [17] in the same mean-field manner, and the contribution
of the RT was shown to be essential in obtaining the realistic
shape and strength of the real nucleon OP. Because the double-
folding model evaluates the nucleus-nucleus OP on the same
HF-type level as the single-folding calculation of the nucleon-
nucleus OP, the contribution of the RT to the total nucleus-
nucleus potential is expected to be also significant. In the
present work, we develop an extended version of the DFM to
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effectively include the RT in the double-folding calculation of
the nucleus-nucleus OP in a similar manner, using consistently
the same density and energy dependent CDM3Yn interaction
that was fine tuned to be compliant with the HvH theorem
in the HF study of NM discussed in Sec. II.

We recall that in the DFM, the central nucleus-nucleus OP
is evaluated as an HF-type potential [3,5] using an effective
(energy and density dependent) NN interaction vc(ρ,E):

UF(E,R) =
∑

i∈a,j∈A

[〈ij |vD
c (ρ,E)|ij 〉 + 〈ij |vEX

c (ρ,E)|ji〉],

(23)

where |i〉 and |j 〉 are the single-particle wave functions of
the projectile (a) and target (A) nucleons, respectively. The
direct part of the double-folded potential (23) is local, and is
expressed in terms of the ground-state (g.s.) densities of the
two colliding nuclei as

UD
F (E,R) =

∫
ρa(ra)ρA(rA)vD

c (ρ,E,s)d3rad
3rA,

s = rA − ra + R. (24)

The antisymmetrization of the a + A system is done by taking
into account explicitly the knock-on exchange effects. As a
result, the exchange term of UF becomes nonlocal in the
coordinate space [5]. An accurate local approximation is
usually made by treating the relative motion locally as a plane
wave [5], and the exchange part of the double-folded potential
(23) can be obtained in the following localized form

UEX
F (E,R) =

∫
ρa(ra,ra + s)ρA(rA,rA − s)

×vEX
c (ρ,E,s) exp

(
i K (E,R).s

M

)
d3rad

3rA,

(25)

where ρa(A)(r,r ′) are the nonlocal g.s. density matrices, M =
aA/(a + A) is the recoil factor (or reduced mass number),
with a and A being the mass numbers of the projectile and
target, respectively. The local momentum K(E,R) of the
relative motion is determined self-consistently from the real
nucleus-nucleus OP as

K2(E,R) = 2μ

�2
[E − UF(E,R) − VC(R)], (26)

where μ is the reduced mass of the two nuclei and VC(R) is
the Coulomb potential.

At low energies, the pair-wise interaction between the
projectile nucleons and those in target can induce certain rear-
rangement of the single-particle configurations in both nuclei.
Such impact by the rearrangement effect has been observed
experimentally in the nucleon removal reactions [21]. In terms
of the nucleus-nucleus interaction, the rearrangement effect
should affect also the shape and strength of the nucleus-nucleus
OP (23), constructed in the DFM using the single-particle
wave functions of the projectile and target nucleons. Given
the rearrangement contribution to the density dependence of
the CDM3Yn interaction determined above in the HF study of
the nucleon OP in NM, we have included the RT into the

double-folding calculation of the nucleus-nucleus OP (23)
in the same manner as done earlier for the single-folding
calculation of the nucleon OP [17]. Namely, the RT given
by the correction �F0(ρ) of the density dependence of the
CDM3Yn interaction is added to the double-folded potential
(23), so that the total folded nucleus-nucleus OP is obtained in
the present DFM calculation as

UF(E,R)

= UD
F (E,R) + UEX

F (E,R) + URT(E,R)

= g(k(E,R))
∫

[F0(ρ) + �F0(ρ)]
{
ρa(ra)ρA(rA)vD

00(s)

+ ρa(ra,ra + s)ρA(rA,rA − s)vEX
00 (s)

× exp(ik(E,R) · s)
}
d3rad

3rA, (27)

where the average local nucleon momentum in the nuclear
mean field of the two interacting nuclei is given by k(E,R) =
K(E,R)/M . One can see in Eq. (27) that the contribution of
the RT is present in both the direct and exchange terms of the
nucleus-nucleus OP. Because the correction �F0(ρ) by the
RT is parametrized in the density dependent form (18) similar
to that of the CDM3Yn interaction (12), the double-folding
integral (27) can be readily evaluated using the DFM developed
earlier in Refs. [3–5,29], where the sum of the two g.s. densities
of the colliding nuclei is adopted for the overlap density ρ
appearing in F0(ρ) + �F0(ρ). Such a frozen density approx-
imation (FDA) for the overlap density of the nucleus-nucleus
system was discussed repeatedly in the past [1,3,5,29,30],
and FDA was proven to be a reliable approximation at the
(refractive) energies considered in the present study (see, e.g.,
results of the quantum molecular dynamics simulation of the
16O +16O collision at 22 MeV/nucleon [29] where the overlap
density in the compression stage is very close to that given by
the FDA, or the comparison of the FDA and adiabatic density
approximation in Ref. [30]). At low energies, especially, those
of nuclear astrophysics interest, FDA is no longer accurate,
and an appropriate adiabatic approximation for the overlap
density should be used instead.

It can be seen from Eqs. (26) and (27) that the energy
dependence of the nucleus-nucleus OP folded with the
CDM3Yn interaction is entirely determined by the local
nucleon momentum k(E,R) that appears explicitly in the
exchange term as well as in the local g(k(E,R)) factor. Given
the g(k) function determined above in the HF calculation of
NM based on the observed energy dependence of the nucleon
OP, the local g(k(E,R)) factor of the folded nucleus-nucleus
potential (27) is interpolated from the g(k) values in the
NM limit (see Fig. 4) for each local nucleon momentum
k = k(E,R) determined self-consistently from Eq. (26) using
an iterative procedure. Thus, g(k(E,R)) can be considered
as the explicit energy dependence of the density dependent
CDM3Yn interaction (11), locally consistent with the nuclear
mean field based on the real folded nucleus-nucleus potential
(27). This is an important new feature of the extended DFM
compared to the earlier versions of the DFM [3,4] where a
linear energy dependence g(E) fixed by the incident energy
was used to scale the CDM3Yn interaction.
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IV. FOLDING MODEL ANALYSIS OF THE ELASTIC
12C +12C AND 16O +12C SCATTERING AT THE

REFRACTIVE ENERGIES

In general, the elastic HI scattering is associated with the
strong absorption [1] that suppresses the refractive (rainbow-
like) structure of the elastic cross section. Therefore, most of
the elastic HI scattering occurs at the surface and the measured
elastic data carry little information about the nucleus-nucleus
interaction potential at small distances (R < Rs.a.). However,
the situation becomes different in cases of the refractive
α-nucleus or light HI scattering, where the absorption is weak
and the refractive structure of the nuclear rainbow appears
at medium and large scattering angles, which enables the
determination of the real nucleus-nucleus OP with a much
less ambiguity, down to subsurface distances [5]. The nuclear
rainbow pattern has been shown to be of the far-side scattering,
and is usually preceded in angles by the Airy minima [5,7]. The
observation of these minima, especially the first Airy minimum
A1 that is immediately followed by a broad (shoulder-like)
nuclear rainbow pattern, greatly facilitates the determination
of the real OP [5,31,32]. It should be noted that the large-angle
nuclear rainbow pattern observed in the (weak-absorbing)
elastic α-nucleus or light HI scattering can be shown, using
the semiclassical formalism of the elastic nucleus-nucleus
scattering developed by Brink and Takigawa 40 years ago
[33], to be associated with the internal wave that penetrates
through the Coulomb + centrifugal barrier into the interior of
the real nucleus-nucleus OP, while the forward (diffractive)
part of the elastic cross section is associated with the barrier
wave reflected from the barrier. As a result, the refractive
(large-angle) elastic data are certainly sensitive to the real OP at
small radii. In a further optical model (OM) study of the elastic
12C +12C scattering at low energies, the broad (Airy-like)
oscillation of the elastic cross section at medium and large
angles was shown by Rowley et al. [34] to be due to the
interference of the far-side components of both the barrier and
internal waves. Such an interference scenario is very similar
(in the physics interpretation) to the Airy interference pattern
of the nuclear rainbow discussed later in Refs. [5,7,31,32].

We recall here that there is a window in the energy or a
range of the refractive energies, where the prominent nuclear
rainbow pattern associated with the first Airy minimum can be
observed. If the energy is too low, the broad rainbow pattern
following A1 occurs at very backward angles and might well
be hindered by other interferences (like the Mott interference in
the symmetric 12C +12C and 16O +16O systems or the elastic
α transfer in the 16O +12C system). On the other hand, if
the energy is too high, both A1 and the rainbow maximum
move forward to small scattering angles and the rainbow
structure is destroyed by the interference of the near-side and
far-side scatterings, leading to the Fraunhofer oscillation. For
the incident 12C and 16O ions, this energy window is about 10
to 40 MeV/nucleon, i.e., around the Fermi energy. It should be
noted that the Airy interference pattern was also confirmed in
the OM analyses [34,35] of the elastic 12C +12C scattering
data at lower energies (E < 10 MeV/nucleon) [36,37]. In
the present work, we concentrate mainly on the evolution
of the broad nuclear rainbow pattern associated with A1, and

the extended DFM is used to calculate the real OP for the OM
analysis of the elastic 12C +12C and 16O +12C scattering data
at the refractive energies.

Like the earlier folding model studies of these data
[3,29,38–40], the (energy dependent) folded potential (27)
enters the OM calculation as the real OP and the imaginary
part of the OP is assumed to be in the standard Woods-Saxon
(WS) form. Thus, the total OP at the internuclear distance R
is determined as

U (R) = NRUF(E,R) − iWV

1 + exp[(R − RV )/aV ]
+ VC(R).

(28)

The Coulomb part of the optical potential VC(R) is obtained by
directly folding two uniform charge distributions [41], chosen
to have RMS charge radii RC = 3.17 and 3.54 fm for 12C and
16O ions, respectively. Such a choice of the Coulomb potential
was shown to be accurate up to small internuclear radii where
the nuclear interaction becomes dominant [7]. The g.s. nuclear
densities of 16O and 12C used in the present DFM calculation
were taken as Fermi distributions with parameters [30] chosen
to reproduce the empirical matter radii of these nuclei. All
the OM analyses were made using the code ECIS97 written
by Raynal [42], with relativistically corrected kinematics. The
renormalization factor NR of the real folded potential and WS
parameters were adjusted in each case to the best agreement of
the calculated elastic cross section with the measured elastic
data, while keeping the shape of the complex OP within a
consistent mean-field description.

A. 12C +12C system

Among numerous experiments on elastic HI scattering,
12C +12C is perhaps the most studied system, with the elastic
scattering measured at energies ranging from the Coulomb
barrier up to 200 MeV/nucleon. This is a strongly refractive
system, with the energy dependent Airy structure of the nuclear
rainbow well established. The elastic 12C +12C scattering data
measured at different energies, over a wide angular range,
enabled the determination of the real OP with much less
ambiguity. The deep family of the real OP for this system
(which is quite close to that predicted by the folding model
[7]) gives a realistic evolution of the Airy minima shaping the
famous “Airy elephants” in the 90◦ excitation function at low
energies, where the prominent minimum at 102 MeV in the
90◦ excitation function is due to the second Airy minimum
A2 passing through θc.m. ≈ 90◦ at that energy [35]. The elastic
12C +12C scattering was shown to be dominated by the far-side
scattering at energies ranging from a few MeV/nucleon
[34,38] up to 200 MeV/nucleon [43]. In the present work
we consider selectively six data sets of the elastic 12C +12C
scattering measured at the incident energies of 139.5, 158.8,
240, 288.6, 360, and 1016 MeV [44–48], which were shown
in the earlier OM and folding model analyses [3,7,29,38,39]
as sensitive to the strength and shape of the real OP at both the
surface and subsurface distances. In particular, the experiments
on the 12C +12C scattering at Elab = 139.5, 158.8 [44], and
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FIG. 5. Unrenormalized total (HF+RT) folded potential (27)
obtained with the CDM3Y3 interaction for the elastic 12C +12C
scattering at Elab = 240 MeV (dashed line) in comparison with that
obtained on the HF level only (dotted line), and the folded potential
renormalized by the NR factor (solid line) determined from the best
OM fit to the data (see Table II).

240 MeV [45,46] were aimed at revealing as clearly as possible
the nuclear rainbow pattern.

In the present work we focus on the impact of the rear-
rangement effect and momentum dependence of the nucleon
mean-field potential in the folding model description of the
refractive 12C +12C scattering. As shown earlier for the folded
nucleon OP, the rearrangement effect of the nucleon mean
field gives rise to a strong repulsive contribution of the RT to
the real folded potential at small radii [17]. It is clear from
Fig. 2 that the higher the nuclear density the stronger the effect

caused by the RT. In case of the double-folded nucleus-nucleus
potential, the overlap nuclear density is well above ρ0 at small
internuclear distances and the repulsive contribution by the RT
is quite strong there. The (unrenormalized) total (HF+RT) real
folded potential (27) obtained with the CDM3Y3 interaction
for the 12C +12C system at Elab = 240 MeV is compared with
the HF folded potential in Fig. 5, and one can see that the
repulsive contribution of the RT is up to about 30–40% of the
potential strength at the smallest radii. In the same direction,
the best OM fit to the elastic 12C +12C data at different
energies requires also a shallower real OP compared to the
deep HF folded potential, which needs to be renormalized
by a factor NR ≈ 0.7–0.8 for the best OM description of the
data (see Table II). For the 12C +12C system at the considered
energies, the impact of the RT is slightly too repulsive and
the total (HF+RT) folded potential needs to be renormalized
by a factor NR ≈ 1.1–1.2 for the best OM description of
the data. We emphasize that the best-fit parameters of the
OP presented in Table II allow one to properly describe the
Airy structure of the nuclear rainbow pattern observed for the
12C +12C system, using the CDM3Y3 folded potential. Using
the real folded potential based on the CDM3Y6 interaction, we
obtained NR values about 5% larger than those obtained with
the CDM3Y3 interaction and nearly the same WS parameters
for the imaginary WS potential. Such a subtle effect is
associated with a higher nuclear incompressibility K given
by the CDM3Y6 interaction in the HF calculation of NM,
which results in a slightly more repulsive contribution of the
RT to the total folded potential.

The elastic 12C +12C scattering at 240 MeV is quite an
interesting case (see Fig. 6). The first measurement of the
elastic cross section at this energy [45] was done for angles up
to θc.m. ≈ 55◦ only, and the folding model analysis [29,38]
suggested that the first Airy minimum (A1) is located at
θc.m. ≈ 41◦ and followed by a broad (shoulder-like) rainbow
pattern. However, an alternative scenario for the Airy structure
in the 16O +12C and 12C +12C systems has been proposed
[49] where the minimum observed in the elastic 12C +12C
cross section at around 41◦ is the second Airy minimum (A2),

TABLE II. The best-fit parameters of the OP (28) for the elastic 12C +12C scattering at Elab = 139.5–1016 MeV. NR is the best-fit
renormalization factor of the real CDM3Y3 folded potential, JR and JW are the volume integrals (per interacting nucleon pair) of the real and
imaginary parts of the OP, respectively. σR is the total reaction cross section.

Elab Real OP NR JR WV RV aV JW σR

(MeV) (MeV fm3) (MeV) (fm) (fm) (MeV fm3) (mb)

139.5 HF 0.810 325.5 26.60 5.170 0.600 121.2 1393
HF+RT 1.100 343.8 27.00 5.270 0.600 129.7 1443

158.8 HF 0.805 320.3 22.51 5.248 0.707 116.6 1514
HF+RT 1.101 337.7 23.25 5.290 0.740 119.5 1596

240 HF 0.815 311.9 24.02 5.425 0.645 127.1 1485
HF+RT 1.135 334.1 23.74 5.548 0.678 135.8 1596

288.6 HF 0.805 300.7 26.73 5.122 0.715 124.6 1469
HF+RT 1.100 315.7 26.71 5.249 0.717 133.1 1519

360 HF 0.693 250.3 22.91 5.180 0.672 108.0 1356
HF+RT 0.980 271.0 23.54 5.240 0.718 117.4 1455

1016 HF 0.670 183.8 17.09 5.171 0.802 85.03 1192
HF+RT 1.090 205.5 17.19 5.344 0.709 89.57 1187

034612-8



NUCLEAR MEAN FIELD AND DOUBLE-FOLDING MODEL . . . PHYSICAL REVIEW C 94, 034612 (2016)

FIG. 6. Upper part: OM description of the elastic 12C +12C
scattering data at Elab = 240 MeV [45,46] given by three choices
of the real folded potential (27) shown in Fig. 5, using the best-fit
imaginary OP taken from Table II. Lower part: Total unsymmetrized
elastic 12C +12C scattering cross section at 240 MeV (solid lines)
and contribution of the far-side scattering (dotted lines) given by the
best-fit real folded potential with different absorptive strengths of the
WS imaginary potential taken from Table II. A1 denotes the first
Airy minimum that is followed by the broad (shoulder-like) rainbow
pattern.

and the first Airy minimum A1 should occur at larger angles
(θc.m. ≈ 60◦). To clarify the situation, a further experiment on
the elastic 12C +12C scattering at 240 MeV has been done using
the kinematical coincidence method [46]. The elastic 12C +12C
scattering cross section measured up θc.m. ≈ 90◦ (see upper
part of Fig. 6) shows clearly no refractive minimum in the
angular region θc.m. ≈ 60◦–70◦. Therefore, A1 is now firmly
established at θc.m. ≈ 41◦ for the elastic 12C +12C scattering
at 240 MeV. As shown repeatedly in the earlier OM studies
of elastic 12C +12C scattering [29,35,38], locations of the Airy
minima are mainly determined by the strength of the real OP at
small radii. One can see in Fig. 5 that the (deeper) HF folded
potential gives A1 located at θc.m. ≈ 54◦ for the 12C +12C
system at 240 MeV, while A1 given by the (shallower)
HF+RT folded potential is shifted forward to around 38◦.
The best OM fit to these data given by the renormalized real

folded potential and the WS imaginary potential (see Table II)
reproduces the first Airy minimum around that observed in
experiment at θc.m. ≈ 41◦. Note that the best-fit elastic cross
sections given by both the renormalized HF and HF+RT folded
potentials are graphically the same as shown in upper part of
Fig. 6. Although the Airy structure of the nuclear rainbow
is shaped by the real OP, its oscillating pattern is frequently
obscured by the absorptive imaginary OP (or by the absorption
of the incident flux into different nonelastic channels). To
illustrate the refractive (far-side scattering) structure of the
elastic 12C +12C scattering at this interesting energy, we have
performed the unsymmetrized OM calculation of the elastic
cross section (neglecting the Mott symmetrization required for
the identical 12C +12C system, to avoid the Mott oscillation of
the elastic cross section at angles around 90◦) using the best-fit
HF+RT folded potential with different absorptive strengths of
the WS imaginary OP taken from Table II. The elastic cross
section was further decomposed in terms of the near-side and
far-side scattering cross sections using Fuller’s method [50],
and one can see in the lower part of Fig. 6 that the location
of the first Airy minimum and the broad rainbow pattern that
follows A1 are determined entirely by the far-side scattering
amplitude, which in turn is determined mainly by the radial
shape of the real OP. That is the reason why the accurate data
of the nuclear rainbow scattering are indispensable in probing
the strength and shape of the real nucleus-nucleus OP [5,7].

At the lower incident energies of 139.5 and 158.8 MeV,
because of the Mott interference at the scattering angles from
θc.m. ≈ 70◦ to beyond 90◦, one cannot clearly allocate the Airy
minima from the extensive data measured by Kubono et al.
[44]. Only the unsymmetrized OM calculation with different
absorptive strengths could help to resolve that (see Fig. 7),
and the first Airy minimum A1 was found at θc.m. ≈ 78◦ and
66◦ at the energies of 139.5 and 158.8 MeV, respectively.
With the incident energies increasing to 288.6 and 360 MeV,
A1 is shifted to the forward angles (see Fig. 8). A near-far
decomposition of the scattering amplitude with a weaker
absorption reveals the A1 location at θc.m. ≈ 31◦ and 20◦ at
Elab = 288.6 and 360 MeV, respectively. One can see that the
rainbow pattern associated with the first Airy minimum begins
to be obscured by the near-far interference at 360 MeV. At the
higher energy of Elab = 1016 MeV, the far-side scattering is
still dominant at large angles, but becomes much weaker at
the most forward angles where the scattering cross section
shows a typical oscillation resulting from the interference
of the near-side and far-side scattering amplitudes. Given
a realistic (mean-field based) energy dependence of the
CDM3Yn interaction via g(k(E,R)) factor [see Eqs. (26) and
(27)], the best-fit NR values obtained for the real HF+RT
folded potential turned out to be around unity at the high
energies of Elab = 360 and 1016 MeV, while those obtained
for the real HF folded potential are below 0.7 (see Table II).

Thus, we have shown that the evolution of the Airy structure
in the elastic 12C +12C scattering at the energies of 12 to
85 MeV/nucleon is well described by the real folded potential
based on the modified density and energy dependent CDM3Yn
interaction that properly takes into account the rearrangement
effect. With a strong impact of the RT to the nucleon mean-field
potential at low energies [17], the extended DFM should be
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FIG. 7. OM description of the elastic 12C +12C scattering data
at Elab = 139.5 and 158.8 MeV [44] given by the best-fit (HF+RT)
real folded potential and WS imaginary potential taken from Table II
(solid lines). The far-side scattering cross sections are given by the
unsymmetrized OM calculation using the same real folded OP but
with different absorptive strengths WV of the WS imaginary potential
(dashed and dotted lines). Ak is the kth order Airy minimum

further used in the OM study of the elastic 12C +12C scattering
at low energies, to pin down the potential ambiguity in the
low-energy regime and improve the consistent mean-field
description of the elastic scattering and shape resonances in
the 12C +12C system [51].

B. 16O +12C system

Although the 12C +12C system was shown above as strongly
refractive, the Mott interference caused by the boson symmetry
between the two identical 12C nuclei leads to rapidly oscillating
elastic cross section at angles around θc.m. = 90◦, which
obscures the Airy structure in this angular region. As shown
above in Figs. 6–8, the whole Airy pattern can be clearly
seen only in the unsymmetrized OM calculation that removes
the Mott interference artificially. The 16O +12C system does
not have the boson symmetry, and was suggested 25 years
ago by Brandan and Satchler [52] as a good candidate for
the study of the nuclear rainbow. Since the late 1990s,
continuing efforts have been made by the Kurchatov-institute
group to accurately measure the elastic 16O +12C scattering at
the refractive energies (Elab = 132 to 330 MeV) using the
heavy-ion accelerators of both the Kurchatov institute and
Jyväskylä University [40,49,53,54]. In the present work we
consider the elastic 16O +12C scattering data measured at

FIG. 8. The same as Fig. 7 but for the elastic 12C +12C scattering
data measured at Elab = 288.6, 360, and 1016 MeV [47,48].

the incident energies of 132, 170, 200, 230, 260, 281, and
330 MeV by the Kurchatov group [40,54] which exhibit a
quite prominent Airy structure of the nuclear rainbow, and
the elastic 16O +12C scattering data measured at Elab = 300
and 608 MeV by Brandan et al. [55,56]. To study the energy
dependence of the OP of the 16O +12C system, the elastic data
measured at Elab = 1503 MeV [57] were also analyzed in the
present work.

Among different elastic data measured at the refractive
energies, the elastic 16O +12C scattering data at Elab =
200 MeV [40] are perhaps the most prominent example of
the nuclear rainbow observed in the light HI scattering. The
(unrenormalized) HF and HF+RT real folded potential (27)
obtained with the CDM3Y3 interaction for the 16O +12C
system at 200 MeV are shown in Fig. 9. As observed above
for the 12C +12C system, the repulsive contribution of the
RT to the real folded 16O +12C potential is up to about
40% of the potential strength at the smallest radii. The best
OM fit to the elastic 16O +12C data at this energy also
implies a real OP significantly shallower than the HF folded
potential. It is remarkable that in the 16O +12C case, the
best-fit renormalization coefficient NR for the HF+RT folded
potential is very close to unity, while that obtained for the
HF potential is NR ≈ 0.72–0.75 (see Table III). This shows
that the real folded potential obtained in the extended DFM
with the RT properly taken into account has a much improved
predicting power for the real nucleus-nucleus OP, and the
Airy structure of the elastic angular distribution observed
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FIG. 9. Unrenormalized total real HF+RT folded potential (27)
obtained with the CDM3Y3 interaction for the elastic 16O +12C
scattering at Elab = 200 MeV (dashed line) in comparison with that
obtained on the HF level only (dotted line), and the real HF+RT
folded potential renormalized by the best-fit NR factor taken from
Table III (solid line).

for the 16O +12C system at the considered energies can be
reproduced rather well, using the unrenormalized real HF+RT
folded potential. The results of our folding model analysis
of the elastic 16O +12C scattering at Elab = 200 MeV shown
in Fig. 10 illustrate very well the reliability of the HF+RT
folded potential. Without the contribution of the RT, the HF
folded potential is rather deep and wrongly predicts the first
Airy minimum at θc.m. ≈ 101◦ for the 16O +12C system at
200 MeV. The shallower HF+RT folded potential shifts A1
forward to θc.m. ≈ 69◦ as observed in the experiment. The
best OM fit to these data resulted in the renormalization
factors NR ≈ 0.72 and 0.99 for the HF and HF+RT folded
potentials, respectively. Not distorted by the Mott interference
as in the 12C +12C case, the measured elastic 16O +12C cross
section at 200 MeV exhibits a broad shoulder-like rainbow
pattern that spreads well over the angles beyond 100◦. As a
result, the elastic 16O +12C data measured at this energy can
serve as a very good probe of the real OP for the 16O +12C
system. Given much less ambiguity of the real OP in this
case, the strength and shape of the HF+RT folded potential
(with the best-fit NR factor close to unity) turn out to be quite
close to those implied by the realistic OM description of the
Airy structure observed in the elastic 16O +12C scattering data
at 200 MeV [40]. The strength of the HF folded potential
needs to be scaled down by about 30% to give a proper
description of the first Airy minimum and the shoulder-like
rainbow pattern that follows A1. Such a difference in the
strength of the folded potential seems to be well accounted
for by the repulsive contribution of the rearrangement term.

TABLE III. The best-fit parameters of the OP (28) for the elastic 16O +12C scattering at Elab = 132–1503 MeV. NR is the best-fit
renormalization factor of the real CDM3Y3 folded potential, JR and JW are the volume integrals (per interacting nucleon pair) of the real and
imaginary parts of the OP, respectively. σR is the total reaction cross section.

Elab Real OP NR JR WV RV aV JW σR

(MeV) (MeV fm3) (MeV) (fm) (fm) (MeV fm3) (mb)

132 HF 0.757 316.5 13.31 5.937 0.642 67.81 1547
HF+RT 1.017 331.7 14.67 5.772 0.751 71.80 1661

170 HF 0.741 305.3 17.69 5.913 0.579 87.80 1559
HF+RT 1.006 323.4 17.30 6.057 0.600 91.96 1624

181 HF 0.731 299.9 20.99 5.618 0.650 91.94 1561
HF+RT 0.987 315.9 20.91 5.733 0.650 96.87 1614

200 HF 0.723 294.5 18.26 5.959 0.550 91.41 1527
HF+RT 0.994 315.9 17.33 6.160 0.530 94.82 1579

230 HF 0.726 292.4 21.02 5.776 0.597 97.71 1547
HF+RT 0.985 309.5 20.44 5.923 0.589 101.7 1597

260 HF 0.716 285.2 21.99 5.740 0.555 99.11 1485
HF+RT 0.965 299.7 21.46 5.867 0.576 103.5 1563

281 HF 0.707 279.4 22.58 5.685 0.552 98.93 1462
HF+RT 0.959 295.5 22.01 5.821 0.572 103.7 1542

300 HF 0.715 280.6 26.82 5.535 0.634 112.1 1550
HF+RT 0.960 293.6 26.37 5.630 0.680 117.4 1655

330 HF 0.700 271.7 26.28 5.490 0.602 106.2 1476
HF+RT 0.945 285.7 24.99 5.653 0.600 109.4 1532

608 HF 0.663 233.4 22.53 5.532 0.579 92.23 1359
HF+RT 0.915 247.7 21.48 5.745 0.586 97.96 1444

1503 HF 0.671 179.5 19.01 5.511 0.758 82.38 1318
HF+RT 1.022 213.0 15.90 5.823 0.627 76.32 1262
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FIG. 10. Upper part: OM description of the elastic 16O +12C
scattering data at Elab = 200 MeV [40] given by three choices of the
real folded potential (27) shown in Fig. 9, using the best-fit imaginary
OP taken from Table III. Lower part: Total elastic 16O +12C scattering
cross section at 200 MeV (solid lines) and contribution of the far-side
scattering (dotted lines) given by the best-fit real HF+RT folded
potential with different absorptive strengths of the WS imaginary
potential taken from Table III. A1 denotes the first Airy minimum
that is followed by the broad (shoulder-like) rainbow pattern.

The OM description of the elastic 16O +12C scattering data at
the lower energies of Elab = 132, 170, and 181 MeV is shown
in Fig. 11. The best fit to these data has been achieved with
the CDM3Y3 folded HF and HF+RT potentials renormalized
by factors NR ≈ 0.73–0.76 and NR ≈ 0.99–1.02, respectively.
This confirms again the important (repulsive) contribution of
the RT to the 16O +12C folded potential that helps to improve
the prediction of the real OP by the extended DFM. The best-fit
real folded potential also reproduces nicely the Airy oscillation
established earlier in the detailed OM analysis of these data
[40]. At 132 MeV, the most prominent are the second (A2)
and third (A3) Airy minima observed at θc.m. ≈ 83◦ and 56◦,
respectively. At this low energy, the first Airy minimum A1
is located beyond θc.m. = 120◦, and is totally obscured by the
oscillating cross section at large angles that is likely due to the
elastic α and nucleon transfer processes [58–60]. The folded
HF+RT potential could be used as the bare 16O +12C potential

FIG. 11. OM description of the elastic 16O +12C scattering data
at Elab = 132, 170, and 181 MeV [40,49,54] given by the best-fit
(HF+RT) real folded potential and WS imaginary potential taken
from Table III (solid lines). The far-side scattering cross sections
are given by the same real folded OP but with different absorptive
strengths WV of the WS imaginary potential (dashed and dotted lines).
Ak is the kth order Airy minimum.

in a future coupled reaction channel analysis of the elastic
16O +12C scattering at low energies, to study the contribution
of the elastic α-transfer process.

At 170 MeV, A1 and A2 are moved to θc.m. ≈ 87◦ and
58◦, respectively. At 181 MeV, the locations of A1 and A2
are shifted to θc.m. ≈ 79◦ and 52◦, respectively. However, the
primary rainbow pattern associated with A1 is still somewhat
obscured and not clearly seen in the elastic data measured
at 170 and 181 MeV. Thus, the most optimal energy for the
observation of the primary rainbow pattern in the 16O +12C
system is Elab = 200 MeV as shown in Fig. 10, and the
measured data are a very valuable probe of the strength and
shape of the real OP for this system as discussed in Fig. 9.

With the incident energy increasing to above 200 MeV,
the location of the Airy minima moves to the forward angles,
as can be seen in the OM results for the elastic 16O +12C
scattering at Elab = 230 to 608 MeV shown in Figs. 12 and 13.
At 230 and 260 MeV, the first and second Airy minima
are still visible in the measured data. The inspection of the
far-side scattering cross section, especially that with a weaker
absorptive strength of the imaginary OP, has shown that A1
is moved from θc.m. ≈ 58◦ at 230 MeV to the c.m. angles of
48◦ and 44◦ at 260 and 281 MeV, respectively. Note that at
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FIG. 12. The same as Fig. 11, but for the elastic 16O +12C
scattering data at Elab = 230, 260, and 281 MeV [40,49,54].

Elab = 281 MeV the second Airy minimum A2 is moves into
the diffractive part of the elastic cross section and is no longer
visible in the measured data. A distinct feature of the elastic
16O +12C scattering data at Elab = 281, 300, and 330 MeV is
the rise of the elastic cross section at large angles which is not
caused by the Airy interference of the far-side trajectories [5,7].
Because the shallow minimum associated with such a rise in
the elastic cross section at large angles seems also to be moving
slowly to smaller scattering angles with the increasing energy,
an alternative order of the Airy oscillation was suggested by
Ogloblin et al. [49] to accommodate one more shallow Airy
minimum in the 16O +12C system at large angles. However,
such an Airy oscillation pattern could not consistently fit in
the Airy structure established for this same 16O +12C system
at lower energies or other refractive systems like 12C +12C as
discussed above in Fig. 6 or 16O +16O [5,39]. An interesting
scenario for the backward rise of the elastic 16O +12C cross
section at these energies has been suggested recently by
Ohkubo et al. [61,62] as being due to a strong coupling of the
elastic scattering to the inelastic 2+ and 3− excitations of the
12C target. This important effect should be further checked by
using other realistic choices of the OP and inelastic scattering
potential for the 16O +12C system. In particular, the elastic
and inelastic folded potentials obtained in the present extended
DFM that properly takes the RT into account should be a good
choice for such a study. At the higher energies of Elab = 608
and 1503 MeV the first Airy minimum A1 is well hidden in the
forward angles, where only the Fraunhofer oscillation of the
elastic cross section caused by the near-far interference [5,50]

FIG. 13. The same as Fig. 11, but for the elastic 16O +12C
scattering data at Elab = 300, 330, and 608 MeV [54–56].

is visible in the measured data. Nevertheless, the large-angle
exponential fall-off of the elastic cross section measured at
these high energies is still dominated by the far-side scattering,
and that has allowed us to determine the strength of the real
folded (via NR renormalization factor) quite accurately.

From the results of our detailed OM analysis of the
elastic 16O +12C scattering at energies up to 94 MeV/nucleon
presented in Table III one can see that the extended DFM
accounts quite well for the energy dependence of the real OP.
At energies up to 21 MeV/nucleon, the best fit to the elastic
16O +12C data has been achieved with the CDM3Y3 folded
HF potential renormalized by the factor NR ≈ 0.70–0.75,
while the best-fit renormalization factor of the folded HF+RT
potential is NR ≈ 0.95–1.02. However, at the higher energies
of 38 and 94 MeV/nucleon, the best-fit renormalization
factor of the folded HF potential becomes NR ≈ 0.66–0.67.
Given a realistic (mean-field based) energy dependence of
the CDM3Yn interaction in terms of the g(k(E,R)) factor
used in the extended DFM calculation (26)–(27), the best-fit
renormalization factor of the real folded HF+RT potential
remains close to unity at high energies (NR ≈ 0.92 and 1.02
at the energies of 38 and 94 MeV/nucleon, respectively).
About the same trend was found with the best-fit NR factors
given by the real CDM3Y6 folded potential, which are about
3–5% larger than those obtained with the real CDM3Y3 folded
potential. As discussed above in Sec. IV A, this effect is
associated with a higher nuclear incompressibility given by
the CDM3Y6 interaction that leads to a more repulsion in
the real folded potential at small radii. To illustrate the local
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FIG. 14. Upper part: Local (average) nucleon momentum in the
mean field based on the real folded 16O +12C potential k(E,R) =
K(E,R)/M , where K(E,R) is the relative-motion momentum
(26). Lower part: Energy and radial dependence g(k(E,R)) of
the CDM3Y3 interaction used in the folding calculation (27) of
the 16O +12C potential, consistently interpolated from the explicit
momentum dependence g(k) of the nucleon OP shown in Fig. 4.

energy dependence g(k(E,R)) of the CDM3Y3 interaction
used in the extended DFM calculation (27) of the 16O +12C
potential, we have plotted the local (energy dependent) nucleon
momentum k(E,R) and the corresponding g(k(E,R)) factor in
the upper and lower parts of Fig. 14, respectively. One can see
that at low energies the real folded potential is deep at small
distances R, so that the corresponding local relative-motion
momentum K(E,R) [see Eq. (26)] or the average nucleon
momentum k(E,R) = K(E,R)/M is significantly higher at
small R compared to its asymptotic value at large R. The larger
K(E,R) value implies a quicker oscillation of the relative-
motion wave function, and the deep real folded potential at
low energies, as shown by Kondo et al. [51], usually generates
the partial-wave radial functions having the numbers of nodes
precisely as required by the Pauli principle when the dinuclear
system is antisymmetrized. The local g(k(E,R)) factor (see
lower part of Fig. 14) was consistently interpolated from the
explicit momentum dependence g(k) of the nucleon OP in NM
shown in Fig. 4, and it represents, therefore, the mean-field
based energy dependence of the CDM3Yn interaction used
in the extended DFM calculation of the 16O +12C potential.
At low energies (E � 20 MeV/nucleon) when k(E,R) �

1.6 fm−1, the g(k(E,R)) factors remain close to unity. At the
high energy of 94 MeV/nucleon, the k(E,R) value is increased
to above 2 fm−1 over the whole radial range (see upper part of
Fig. 14) so that the corresponding g(k(E,R)) factor is reduced
significantly (see lower part of Fig. 14). Thus, the consistent
treatment of the mean-field based energy dependence of the
CDM3Yn interaction via g(k(E,R)) factor helps to improve
the predicting power of the real folded potential.

V. SUMMARY

The CDM3Y3 and CDM3Y6 density dependent versions of
the M3Y-Paris interaction have been used in an extended HF
study of symmetric NM, focusing on the rearrangement term
of the single-nucleon potential that appears naturally when
the Hugenholtz–van Hove theorem is taken into account in
the calculation of the single-nucleon energy. Based on the
exact expression of the RT of the density dependent single-
nucleon potential given by the HvH theorem and the empirical
energy dependence of the nucleon OP, a compact method has
been proposed to account properly for the density and energy
dependence of the RT of the nucleon OP in NM on the HF level.

Given an explicit contribution of the RT added to the
density dependence of the CDM3Yn interaction and proper
treatment of the momentum dependence of the nucleon mean-
field potential in NM on the HF level, the double-folding
model has been extended to take into account consistently the
rearrangement effect in the DFM calculation of the nucleus-
nucleus OP in the same mean-field manner. The contribution
of the RT to the total nucleus-nucleus folded potential has
been shown to be repulsive and particularly strong at small
internuclear distances. This result is complimentary to the
recent DFM calculation of the nucleus-nucleus OP using a
G-matrix interaction that includes effectively the three-body
force [63]. In fact, the microscopic origin of the RT was shown
in the BHF study of NM [23,24] to be due to the higher-order
diagram in the perturbative expansion of the mass operator and
the contribution of the three-body force.

The present extension of the DFM is an important milestone
that allows us to obtain the realistic shape and strength of the
real folded OP at small internuclear distances, which match
closely those implied by the detailed OM analysis of the
elastic 12C +12C and 16O +12C scattering data measured at the
refractive energies. The realistic treatment of the (mean-field
based) energy dependence of the CDM3Yn interaction in the
extended DFM calculation significantly improves the predict-
ing power of the real folded potential, especially in the proper
description of the Airy structure of the nuclear rainbow pattern
observed in the elastic 12C +12C and 16O +12C scattering.
All parameters of the modified density dependence of the
CDM3Yn interaction that takes into account the correction
by the RT and the mean-field based energy dependence are
given in such details that the interested readers could easily
include these parameters into their folding model calculation.
The present development of the DFM for the nucleus-nucleus
OP can be generalized and applied further in the folding model
study of the inelastic nucleus-nucleus scattering [4], to reveal,
in particular, the impact of the rearrangement effect caused by
the nuclear excitation. This is the object of our further research.
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