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The nonlocal dispersive optical model (NLDOM) nucleon potentials are used for the first time in the adiabatic
analysis of a (d,p) reaction to generate distorted waves both in the entrance and exit channels. These potentials
were designed and fitted by Mahzoon et al. [Phys. Rev. Lett. 112, 162503 (2014)] to constrain relevant single-
particle physics in a consistent way by imposing the fundamental properties, such as nonlocality, energy-
dependence and dispersive relations, that follow from the complex nature of nuclei. However, the NLDOM
prediction for the 40Ca(d,p)41Ca cross sections at low energy, typical for some modern radioactive beam ISOL
(isotope separation online) facilities, is about 70% higher than the experimental data despite being reduced by the
NLDOM spectroscopic factor of 0.73. This overestimation comes most likely either from insufficient absorption
or due to constructive interference between ingoing and outgoing waves. This indicates strongly that additional
physics arising from many-body effects is missing in the widely used current versions of (d,p) reaction theories.
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I. INTRODUCTION

One-nucleon transfer reactions have been a tool for nuclear
spectroscopic studies for half of a century. Today, they are
used in experiments with radioactive beams, and among them
the (d,p) reactions are perhaps the most popular choice.
Analysis of these reactions relies on (d,p) reaction theory,
which is traditionally either the distorted-wave Born approxi-
mation (DWBA) [1] or adiabatic distorted wave approximation
(ADWA) [2], the latter being a computationally inexpensive
way of taking into account deuteron breakup. The deuteron
breakup means that the (d,p) amplitude should contain the
A + n + p degrees of freedom explicitly, which requires
solving the A + n + p three-body Schrödinger equation.
Several methods exist to solve this equation exactly, the CDCC
[3,4] and the Faddeev approach [5] being the most used. The
usual assumption in these calculations is that the A + n + p

Hamiltonian contains the p-A and n-A potentials (often taken
at half the deuteron incident energy) that describe nucleon
elastic scattering. However, it has been shown in [6] that
the n-A and p-A potentials for the A + n + p problem are
very complicated objects which depend on the position and
the energy of the third nucleon and are not equal to optical
potentials taken at half the deuteron energy. It was also shown
in [6] that in the case of (d,p) reactions the averaging over the
first Weinberg component (which is the same as making the
adiabatic approximation) results in a simple prescription for
choosing the n-A and p-A potentials appropriate for analysis
of (d,p) reactions. This prescription is possible due to the
main contribution to the (d,p) amplitude coming from small
n-p separations.

The prescription in [6] says that, within the Feshbach
formalism, the n-A and p-A potentials should be nonlocal
energy-dependent potentials evaluated at half the deuteron
incident energy plus half of the n-p kinetic energy in the
deuteron averaged over the n-p potential, which is about
57 MeV. After evaluation of these potentials, they should be

treated as energy independent and nonlocal. A simple recipe to
include such potentials in the available (d,p) reaction scheme,
based on the local energy approximation, is given in [7].

At the time when [6] was written, only one energy-
dependent nonlocal potential had been known [8], derived
from Watson multiple scattering theory. It has an energy-
independent real part and an energy-dependent imaginary
potential. Soon after the publication of [6], a nonlocal
version of the dispersive optical model (NLDOM) became
available for 40Ca [9]. The nonlocal structure of NLDOM is
more complicated than that from previous nonlocal optical
potentials in that it is described by seven different nonlocality
parameters. Based on the nucleon self-energy from Green’s
function many-body theory, the NLDOM potential contains
both real and imaginary dynamic terms that are connected
through a dispersion relation, which enforces causality and
links the negative and positive energy regions. This dispersion
relation is important for constraining the NLDOM parameters
with both scattering and bound-state data while simultaneously
providing a good description of these data. The potential
from Ref. [8] was also constrained with both scattering and
bound-state data but without incorporating the dispersion
relation.

In this paper, we analyze the 40Ca(d,p)41Ca reaction at
11.8 MeV using NLDOM to generate the distorting potentials
in both the entrance and exit channels. The NLDOM potential
has already been used in [10] to calculate the 40Ca(p,d)39Ca
cross sections but only within the DWBA (which means
neglecting deuteron breakup) and no comparison to the
experimental data was made. Our choice of the reaction is due
to the availability of the p-40Ca and n-40Ca optical potentials
needed to construct the d-40Ca potential. The choice of the
deuteron energy is due to several radioactive beams facilities
existing in the world that use this low-energy range. Also, it is
this low-energy range where the dispersive relations cause the
most prominent effects in the energy behavior of the optical
potential. In addition, at these energies, spin-orbit effects and
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finite range effects can be neglected and the prescription from
[6] should be valid.

In Sec. II, we review the NLDOM and show that, similar
to the standard Perey-Buck case, a local-equivalent potential
exists for NLDOM and a generalization of the Perey factor can
be introduced. In a similar fashion, we show in Sec. III that the
d-40Ca distorting potential can be constructed by extending the
local scheme proposed in [7] to the case with several nonlocal-
ity parameters. We summarize the adiabatic approximation in
lowest order and introduce first-order corrections. In Sec. IV
we calculate the cross section of the 40Ca(d,p)41Ca reaction
at 11.8 MeV and show that, using the prescription from [6],
the NLDOM strongly overestimates the experimental data. In
Sec. V, we discuss the implications for the (d,p) reaction
theory following from our analysis.

II. NONLOCAL DOM POTENTIAL AND
NUCLEON SCATTERING

The NLDOM potential from Ref. [9] models the irreducible
nucleon self-energy �(r,r ′; E) with real and imaginary parts
that are both explicitly nonlocal. The potential contains eight
terms, which were constrained with both bound-state and
scattering data associated with 40Ca. It is written in the form

�(r,r ′; E) = U vol1
HF (r̃)H (x; βvol1 ) + U vol2

HF (r̃)H (x; βvol2 )

+Uwb
HF (r̃)H (x; βwb) + U sur+

dy (r̃; E)H (x; βsur+)

+U sur−
dy (r̃; E)H (x; βsur−)

+U vol+
dy (r̃; E)H (x; βvol+)

+U vol−
dy (r̃; E)H (x; βvol−) + Uso(r; E), (1)

where r̃ = |r + r ′|/2 and x = r ′ − r . Following Perey and
Buck [11], the nonlocality function H is assumed to be of the
form

H (x; β) = exp(−x2/β2)/(π3/2β3), (2)

where β is the nonlocality range.
In Eq. (1) the UHF terms represent the static part of the

self-energy and are purely real. For this reason, these terms
are referred to as parts of the Hartree-Fock (HF) potential, but
technically they do not form the true HF potential, because
in practice a subtracted dispersion relationship is used [9].
The Udy terms represent the dynamic part of the self-energy
and are complex. The real part of the dynamic self-energy
is determined completely from the dispersion integral of the
imaginary part. The dynamic self-energy consists of surface
and volume terms, and these have different nonlocalities for
energies above the Fermi energy EF (denoted with a “+”
sign) and energies below EF (denoted by a “−” sign). The
inclusion of several nonlocality parameters was based on the
microscopic calculation in Ref. [12], which indicated different
degrees of nonlocality in different energy regions. Table I
shows the value of each nonlocality parameter. Note that some
of these parameters are about twice as large as those known
from traditional Perey-Buck potentials. The Uso term is the
spin orbit potential, which was assumed to be local. It has a

TABLE I. NLDOM nonlocality parameters.

Parameter Nonlocality (fm)

βvol1 0.84
βvol2 1.55
βwb 1.04
βsur+ 0.94
βsur− 2.07
βvol+ 0.64
βvol− 0.81

weak energy dependence that only becomes important at high
energies.

Overlap functions can also be generated with the dispersive
optical model. For discrete states in the A + 1 and A − 1
systems, one can show that these overlap functions obey a
Schrödinger-like equation [13] with the nucleon self-energy
taking the role of an effective potential. In order to use the
NLDOM overlap function in the analysis of 40Ca(d,p)41Ca
reactions, the calculated binding energy of the 0f7/2 neutron
level in 40Ca must match the experimental one of 8.36 MeV.
However, in [9], such a constraint was not employed. For the
purposes of this study, some of the parameters were refit in
order to reproduce the experimental binding energy of the
0f7/2 neutron level. Only the parameters associated with the
UHF terms were refit, and they were constrained by elastic
scattering, charge density, and energy level data. All other
parameters were unchanged. The new parameters are shown
in Table II and compared with those from the analysis in [9].
The quality of the new fit is comparable to that obtained in [9].

The nonlocal terms in Eq. (1) can be written more succinctly
as

�N (r,r ′; E) =
∑

i

UNA,i(r̃)Hi(x), (3)

where the energy dependence of the dynamic terms is implied,
and N = p,n for proton and neutron potentials, respectively.

In this paper we will construct an effective local model
for the deuteron-target adiabatic potential using NLDOM.
Therefore, we first evaluate the effective local potential model
for nucleon scattering. Following the procedure in [11] for
transforming a nonlocal potential to a local equivalent, one

TABLE II. Adjusted HF parameters used in the present fit. For a
description of these parameters, refer to [9].

Parameter New value Old value

V 0
HF (MeV) 106.15 100.06

rHF (fm) 1.14 1.10
aHF (fm) 0.58 0.68
βvol1 (fm) 0.84 0.66
βvol2 (fm) 1.55 1.56
x1 0.48 0.48
V 0

wb (MeV) 12.5 15.0
ρwb (fm) 2.06 1.57
βwb (fm) 1.04 1.10
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FIG. 1. Differential cross sections normalized by the Rutherford cross section for proton scattering on 40Ca at (a) 9.86 MeV, (b) 17.57 MeV,
(c) 40 MeV, and (d) 65 MeV, calculated using the fully nonlocal DOM potential (solid), using the local potential Uloc from Eq. (4) with the
Coulomb and spin-orbit potentials included (dot-dashed), and using this equivalent local potential but with the correction �Up included as
well (dashed). These are compared with the experimental data (dots).

finds that for a nonlocal potential with multiple nonlocalities
of the Perey-Buck type the local-equivalent potential can be
found by solving the transcendental equation

Uloc(r) =
∑

i

UNA,i(r) exp

[
− μNβ2

i

2�2
[E − Uloc(r)]

]
,

(4)

where μN is the reduced mass of the N + A system. This
equation is obtained in the lowest order of the expansion of
�N (r,r ′; E) over x and corrections to any order can be built
systematically using developments from [14]. In particular, the
first-order correction is

�UN = �
2

μN

[(∇f

f

)2

− 1

2

∇2f

f

]
, (5)

where the function f (r) is the Perey factor explained below.
For proton scattering, Eq. (4) must be corrected by reducing
the center-of-mass energy E in the right-hand side of Eq. (4)
by the local Coulomb interaction Vcoul(r).

According to [14], the local spin-orbit term must also be
corrected when transforming to a local-equivalent potential.
For the present case of a potential with multiple nonlocality pa-
rameters, the new spin-orbit term, Ule

so, of the local-equivalent
potential is

Ule
so = Uso/(1 − U1) (6)

where

U1 =
(

1 −
∑

i

μNβ2
i

2�2
UNA,i(r)Gi(r,E)

)
(7)

and

Gi(r,E) = exp

[
−μNβ2

i

2�2
[E − Uloc(r)]

]
. (8)

Figure 1 compares proton scattering differential cross sec-
tions (normalized by the Rutherford cross section) determined
from solving the NLDOM scattering problem exactly using the
iterative procedure outlined in Ref. [15] and from solving the
local-equivalent problem. Both the Coulomb and spin-orbit
corrections are included. The experimental data are from
Refs. [16–19]. Aside from small deviations at large angles,
the results from using Eq. (4) are very similar to the exact
solutions. The results from including �Up are also shown.
Overall, this correction improves the correspondence between
the exact and approximate solutions of the nonlocal problem
for angles θ ≈ 40◦ and above.

For Perey-Buck potentials with one nonlocality parameter
the N -A wave function obtained from the phase-equivalent
local model defined by a potential U (r) = Uloc + �UN differs
in the nuclear interior from the exact N -A wave function by
the Perey factor [14]

f (r) = exp

[
μNβ2

4�2
Uloc(r)

]
. (9)
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Elastic scattering observables do not depend on the Perey
factor. Transfer cross sections may depend on it if they are
not peripheral. In the particular case of 40Ca(d,p)41Ca, the
internal part contributes up to 20% [20] for the energy being
considered, and this contribution is more important in the
DWBA than in the ADWA. One can show it is also possible
to derive the Perey factor for optical potentials with multiple
nonlocalities such as in NLDOM. In this case the Perey factor
is

f (r) = exp

[
μNβ2

eff(r)

4�2
Uloc

]
, (10)

where

β2
eff(r) = −U−1

loc (r)
∫ ∞

r

dr1

∑
i β

2
i U

′
NA,i(r1)Gi(r1,E)

1 − U1(r1,E)
.

(11)

This Perey factor has some effective r-dependent range βeff ,
which can be complex. The real and imaginary parts are
shown in Fig. 2 for the case of p-40Ca elastic scattering
at several proton energies. The imaginary part is small and
has a negligible effect on the (d,p) cross sections. We note
that βeff decreases with energy. This decrease reflects the fact
that βsur+ is larger than βvol+. Since the volume imaginary
potential dominates at higher energies, the term in Eq. (4) with
βi = βvol+ becomes more important with increasing energy.
This term also seems to dominate at large r , as Re βeff

converges to βvol+ = 0.64 fm for all energies.
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FIG. 2. (a) Real and (b) imaginary parts of βeff for E = 9.86 MeV
(solid), 17.57 MeV (long dashed), 40 MeV (long dot-dashed), 65 MeV
(short dashed), 100 MeV (short dot-dashed), and 200 MeV (dot-dot-
dashed).
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FIG. 3. Absolute value of the Perey factor evaluated at Ecm =
17.37 MeV for NLDOM (solid), LDOM (dashed), and CH89 (dot-
dashed).

The Perey factor for NLDOM is shown in Fig. 3, evaluated
at the energy Ep = 17.37 MeV, which is the center of mass
energy for the outgoing proton in the 40Ca(d,p)41Ca reaction
with Ed = 11.8 MeV (in the laboratory frame). It is compared
to the Perey factor of an earlier version of the DOM [21] that
is purely local (LDOM). This Perey factor will be used in
Sec. IV. It is given by [22,23]

f (r,E) =
√

m̃(r,E)/m, (12)

where m̃(r,E)/m is the so-called momentum-dependent effec-
tive mass and is related to the LDOM Hartree-Fock potential
as

m̃(r,E)

m
= 1 − dVHF (r,E)

dE
. (13)

Figure 3 also shows the Perey factor calculated with the widely
used CH89 potential using Eq. (9) and assuming β = 0.85 fm.
The Perey factors from LDOM and CH89 both have less effect
in the surface region than the one calculated with NLDOM.

To calculate the 40Ca(d,p)41Ca cross sections a choice
needs to be made for the optical potential Up in the exit chan-
nel. In principle, this potential is auxiliary, and it is believed
that choosing Up that describes proton elastic scattering in
the exit channel makes the remnant term

∑
i Vpi − Up in the

transfer amplitude to disappear [1]. Since NLDOM was not
fit to p + 41Ca scattering data, one choice for the auxiliary
p + 41Ca potential Up is to use NLDOM but evaluated with
A = 41 instead of A = 40. An alternative, originally proposed
in [24] and then further explored in [25], stems from the
argument that the remnant term can be removed from the
transition operator exactly, leading to a different model for
the exit state wave function. In this model, the three-body
Hamiltonian associated with the exit channel contains the
p-40Ca optical potential, the n-40Ca bound-state potential, and
no n-p interaction. In the limit of infinitely large core and in
the zero-range approximation, the corresponding three-body
wave function contains the p-41Ca distorted wave function
calculated with the p-40Ca optical potential. Corrections due to
recoil excitation and breakup are considered in [25]. For light
nuclei the validity of the transfer amplitude with no remnant
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has also been confirmed by [3]. We analyzed the (d,p) reaction
with both choices for Up, and the resulting cross sections were
found to differ at the peak by about 1%. For the purposes of
this study, both choices give practically the same result. Below,
we choose to use NLDOM evaluated with A = 41 for Up.

III. THE DEUTERON-TARGET POTENTIAL FOR (d, p)
REACTIONS IN THE ADIABATIC APPROXIMATION

Following Johnson and Tandy [2] we retain only the first
Weinberg component of the A + n + p system in the (d,p)
transfer amplitude since this amplitude is sensitive only to
those parts of this wave function in which the neutron n is close
to the proton p. Recently, exact continuum-discretized coupled
channel calculations confirmed that this component indeed
dominates [26]. The first Weinberg component is a product of
the deuteron wave function φ0(r) times the d-A relative motion
wave function χ (R) which is the solution of the two-body
Schrödinger equation with an adiabatic potential constructed
from p-A and n-A optical potentials. The generalization of
the deuteron adiabatic potential for the case of nonlocal,
energy-independent N -A optical potentials of the Perey-Buck
type is given in [7]. If nonlocal potentials (such as NLDOM)
explicitly depend on energy then they should be evaluated
at the energy E = Ed/2 + 〈Tnp〉Vnp

/2 and then treated as
nonlocal and energy-independent [6]. The 〈Tnp〉Vnp

/2 term
is half the n-p kinetic energy in deuteron averaged over the
short-ranged potential Vnp. The value of this term is about
57 MeV [6], so, for Ed = 11.8 MeV, the NLDOM potential
should be evaluated at about 63 MeV. This at first sight
seems counterintuitive. However, keeping in mind that neutron
transfer takes place when proton and neutron in deuteron are at
very short separations where the Heisenberg principle dictates
high relative n-p momentum, it becomes clear that there is
an additional kinetic energy in the N -A system which should
be taken into account when choosing the energy at which the
N -A potential should be evaluated.

A. Lowest order equivalent local model

The nonlocal Schrödinger equation for χ (R) from [7] can
easily be generalized for the case of nonlocal optical potentials
with multiple nonlocalities:

(TR + UC(R) − Ed )χ (R)

= −
∑

N=n,p

∑
i

∫
ds dxφ1(x + α1s)UNA,i

(
x
2

− R
)

×Hi(s)φ0(x)χ

(
α2s
2

+ R
)

, (14)

where R is the radiusvector between d and A, TR is the
kinetic energy operator associated with R, α1 = A/(A + 1),
α2 = (A + 2)/(A + 1), φ0 is the deuteron ground state wave
function, and

φ1(r) = Vnp(r)φ0(r)

〈φ0|Vnp|φ0〉 . (15)

Solving the nonlocal problem (14) directly is certainly
possible, and was done recently in Ref. [27]. However, in this

paper, we construct the local-equivalent model, as simplified
local-equivalent models can provide useful insight into the
physics of a problem and make available transfer reaction
codes applicable to nonlocal problems. The local-equivalent
approximation of (14) can be obtained by expanding both
UNA,i( x

2 − R) and χ ( α2s
2 + R) into Taylor series. In the lowest

order approximation, using UNA,i( x
2 − R) ≈ UNA,i(R) we get

(TR + UC(R) − Ed )χ (R) = −
∑

i

UdA,i(R)H̃ (0)
i (TR)χ (R),

(16)
where UdA,i(R) = UnA,i(R) + UpA,i(R),

H̃
(0)
i (TR) = M

(0)
0,i

∞∑
n=0

(−)n

n!

(
μdα

2
2

2�2

(
β

(0)
n,i

)2
TR

)n

,

(17)

the coefficients β
(0)
n,i are defined by

β
(0)
n,i = 1√

2

[
M

(0)
2n,i

(2n + 1)!!M (0)
0,i

] 1
2n

, (18)

and the moments M
(0)
2n,i are defined by

M
(0)
2n,i =

∫
dsdx s2nHi(s)φ1(x − α1s)φ0(x). (19)

Equation (16) is further simplified by introducing the local-
energy approximation [1],

TR ≈ T0(R) = Ed − U 0
loc(R) − UC(R), (20)

where the local potential U 0
loc(R) is defined as

U 0
loc(R) =

∑
i

UdA,i(R)H̃ (0)
i (T0(R)). (21)

This approximation works very well for nucleon optical po-
tentials with one nonlocality parameter [7]. We will show that
it remains good for NLDOM with its multiple nonlocalities,
but we first present the results of calculations of U 0

loc(R) for
Ed = 11.8 MeV using the deuteron wave function from the
Hultèn model, the same as in [7]. It is pointed out in [7] that a
realistic deuteron wave function gives the moment M

(0)
0 which

is very similar to that obtained with the Hultén wave function.
In Table III we show the calculated β

(0)
n,i and M

(0)
0,i terms. For

very small nonlocalities, β
(0)
n,i should be approximately equal

to βi/2 [7,28]. For typical nonlocalities of ∼0.8 − 1.0 fm
they are ∼10% smaller than the βi/2 value but are essentially
independent of n, allowing one to replace the β

(0)
n,i coefficients

with a constant. We define this constant to be

βd,i = β
(0)
1,i . (22)

The summation in (17) then gives H̃
(0)
i (TR) an exponential

form

H̃
(0)
i (TR) ≈ H(0)

i (γiTR) = M
(0)
0,i exp(−γiTR), (23)

where

γi = μdα
2
2β

2
d,i

2�2
. (24)
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TABLE III. Coefficients β (λ)
n (in fm) and moments M

(λ)
0 (in fm2λ) for λ = 0,1 and for six different values of the nucleon nonlocality β that

are used in the NLDOM.

n β = 0.64 fm β = 0.84 fm β = 0.94 fm β = 1.04 fm β = 1.55 fm β = 2.07 fm

β
(0)
1 0.3075 0.3932 0.4393 0.4802 0.6821 0.8679

β
(0)
2 0.3082 0.3947 0.4414 0.4829 0.6895 0.8824

β
(0)
3 0.3088 0.3960 0.4431 0.4851 0.6955 0.8938

β
(0)
4 0.3093 0.3970 0.4445 0.4869 0.7004 0.9031

β
(0)
5 0.3097 0.3979 0.4457 0.4885 0.7045 0.9108

β
(0)
6 0.3101 0.3986 0.4468 0.4898 0.7080 0.9174

β
(0)
7 0.3104 0.3993 0.4477 0.4910 0.7111 0.9231

β
(0)
8 0.3107 0.3999 0.4486 0.4921 0.7139 0.9281

M
(0)
0 0.855 0.791 0.756 0.726 0.580 0.464

β
(1)
1 0.3100 0.3981 0.4459 0.4885 0.7030 0.9062

β
(1)
2 0.3104 0.3991 0.4473 0.4903 0.7077 0.9151

β
(1)
3 0.3108 0.3999 0.4484 0.4917 0.7115 0.9224

β
(1)
4 0.3111 0.4006 0.4494 0.4930 0.7148 0.9286

β
(1)
5 0.3115 0.4013 0.4502 0.4941 0.7177 0.9339

β
(1)
6 0.3118 0.4018 0.4510 0.4951 0.7202 0.9384

β
(1)
7 0.3120 0.4023 0.4517 0.4959 0.7224 0.9424

β
(1)
8 0.3122 0.4028 0.4523 0.4967 0.7243 0.9459

M
(1)
0 0.098 0.149 0.179 0.206 0.341 0.451

As βi increases beyond 1.0 fm, the approximation in
Eq. (22) becomes less valid and the coefficients β

(0)
n,i deviate

from βi/2 even more. This trend can be seen in Table III
and is especially apparent for β = 2.07 fm, which is the
largest nonlocality parameter used in NLDOM. Thus, we solve
Eqs. (17), (20), and (21) by restricting the sum over n in (17)
by some nmax. We found that nmax = 6 is sufficient to obtain
a converged solution for Uloc. However, we also found that
using Eq. (22) leads to practically the same result because the
real and imaginary parts of the NLDOM terms associated with
β = 2.07 fm are small at the energies being considered. The
Uloc potentials obtained from solution of (21) with (17) and
(23) are shown in Fig. 4. Using Eq. (22) for all nonlocality
parameters, one obtains Uloc from the transcendental equation

U 0
loc =

∑
i

M
(0)
0,i UdA,i

× exp

[
−μdα

2
2β

2
d,i

2�2

(
Ed − U 0

loc − UC

)]
. (25)

The Coulomb potential UC is approximated by a constant,
given by

UC = −1.08 + 1.35Z

A1/3
, (26)

which was used in Refs. [8,29]. The difference between using
this approximation and a more realistic potential is only about
1%, in terms of the peak cross section of the proton angular
distribution for the 40Ca(d,p)41Ca reaction at Ed = 11.8 MeV.

B. Correction to the local-energy approximation
in the lowest order

It was shown in [7] that corrections to the lowest order
local model beyond the local-energy approximation are small
because they are the fourth-order effect of the nucleon
nonlocality β, as the second-order terms cancel each other
for Perey-Buck potentials with one nonlocality parameter.
The NLDOM from [9] contains several nonlocalities, and
second-order contributions may not cancel. Moreover, some of
these nonlocalities are large so that the contributions beyond
the local-energy approximation are expected to be larger than

0 2 4 6 8 10
R (fm)

-80

-60

-40

-20

0

U
lo

c(R
) (

M
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)

Ed = 11.8 MeV

FIG. 4. Real and imaginary parts of the local-equivalent NLDOM
potential calculated using the exponential form (solid and dotted
lines, respectively) and using the series form (thick short-dashed and
long-dashed lines, respectively) with nmax = 6.
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those in [7]. In this section we study these corrections using
results from Secs. IV.C and A.4 of [7]. Including leading
correction term, linear in the kinetic energy operator TR , and
using the exponential form (23) for H̃

(0)
i (TR), the right-hand

side of Eq. (16) becomes∑
i

UdA,iH(0)
i (γiTR)χ (R)

≈
∑

i

UdA,iH(0)
i (γiT0)

[
1 − γi(TR − T0 + �i)

− �
2γ 2

i

2μd

∇T0 · ∇R

]
χ (R), (27)

where the energy correction �i , arising because TR and T0 do
not commute, is given by

�i = �
2γi

2μd

(
T ′′

0

2
+ T ′

0

R
− γi

3
T ′2

0

)
. (28)

The solution of Eq. (16) in this approximation is the product

χ (R) = f0(R)ϕ(R), (29)

where ϕ is the scattering wave of the local model

(TR + UC − Ed )ϕ = −(
U 0

loc + �U0
)
ϕ. (30)

The U 0
loc term is discussed in the previous section, and the

correction term �U0 is

�U0 = TRf0

f0
+ �

2

4μd

(
U2T

′
0

1 − U1

)2

− U�

1 − U1
(31)

with

Un(R) =
∑

i

UdA,iH(0)
i (γiT0)γ n

i , (32)

U�(R) =
∑

i

UdA,iH(0)
i (γiT0)γi�i. (33)

The function f0 is the analog of the Perey factor discussed
in Sec. II. It modifies the scattering wave function ϕ(R) in
the nuclear interior and satisfies the first-order differential
equation

∇f0

f0
= −1

2

U2(R)

1 − U1(R)
∇T0, (34)

with the boundary condition f (R) → 1 at R → ∞. The
solution of this equation is

f0(R) = exp

(
1

2

∫ ∞

R

dR1
U2(R1)

1 − U1(R1)
T ′

0(R1)

)
. (35)

Because of multiple nonlocalities, the analytical integration in
(35) cannot be done. So, it is difficult to see if the contributions
to f0 from second-order terms on βd,i cancel. Most likely, they
do not.

The Perey factor f0 and the correction �U0 to the equivalent
local potential U 0

loc are shown in Figs. 5 and 6, respectively, for
d + 40Ca at deuteron incident energy of 11.8 MeV. The Perey
factor increases the scattering wave in the nuclear interior by
about 6%, which is a couple of percent higher than the result in

0 2 4 6 8 10
R (fm)

0.6

0.7

0.8

0.9

1

1.1

|f|

FIG. 5. Perey factors f0 (solid), f1 (dot-dashed), and f (dashed)
calculated with NLDOM for Ed = 11.8 MeV.

[7]. The correction to U 0
loc, however, remains small. Its real part

is very close to the one obtained in [7] in the maximum, being
about 150 keV, while the imaginary part is much smaller. Thus,
for NLDOM the second-order corrections most likely remain
small and the local-energy approximation remains good.

C. First-order corrections

The first order correction to the local-equivalent lowest-
order model of Sec. III A is obtained by retaining two
terms in the Taylor series expansion of the central potential

0 2 4 6 8 10

-0.4
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0

0.2

0.4

R
e

ΔU
0

(M
eV

)

0 2 4 6 8 10
R (fm)

-0.2

-0.1

0

0.1

0.2

Im
ΔU

0 (M
eV

)

(a)

(b)

FIG. 6. (a) The real parts and (b) the imaginary parts of �U0

(solid) and the first (dashed), second (dotted), and third (dot-dashed)
terms in Eq. (31).
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UNA(± x
2 − R):

U

(
± x

2
− R

)
≈ U (R) ∓ 1

2
x · ∇U (R). (36)

In this case, using techniques of [7], we obtain the following:

(TR + UC(R) − Ed )χ (R)

= −
∑

i

UdA,i(R)H(0)
i (γiTR)χ (R)

−
∑

i

∇[UdA,i(R)]H(1)
i (γ̃iTR)∇χ (R), (37)

where

H(1)
i (γ̃iTR) = M

(1)
0,i

3M
(0)
0,i

H(0)
i (γ̃iTR) (38)

and the moments M
(1)
2n,i are defined as

M
(1)
2n,i =

∫
ds dx s2nHi(s)φ1(x − α1s)φ0(x)

α2s · x
4

. (39)

The new factor γ̃i arises from the fact that the moments
M

(1)
2n,i lead to new coefficients β

(1)
n,i that are also practically

independent of n (see Table III). Introducing a new constant

β̃d,i = β
(1)
1,i , (40)

the factor γ̃i can be written as

γ̃i = μdα2β̃
2
d,i

2�2
. (41)

The coefficients β
(1)
n,i are defined as

β
(1)
n,i = 1√

2

[
3M

(1)
2n,i

(2n + 3)!!M (1)
0,i

] 1
2n

. (42)

At this point we make the local-energy approximation (20)
but we also include the correction to this approximation similar
to that considered above. We expand H(0)

i (γiTR) in the first
term of right-hand side of Eq. (37) as in Eq. (27), but we use
a simpler expansion for H(1)

i (γ̃iTR) in the second term,

H(1)
i (γ̃iTR) = H(1)

i (γ̃iT0)[1 − γ̃i(TR − T0)], (43)

because H(1)
i (γ̃iTR) is an order of magnitude smaller than

H(0)
i (γiTR) so that the higher order terms on β̃d,i in terms

with �i and ∇ · ∇R will be small. For a similar reason we
keep only the leading correction to (TR − T0)∇χ (R):

(TR − T0)∇χ (R) ≈ ∇T0 χ (R). (44)

With these approximations we can solve Eq. (37) by in-
troducing the same representation χ (R) = f (R)ϕ(R) used
both for proton scattering in Sec. II and for correction to
local-energy-approximation above. The scattering wave ϕ is
found from the local equation

(TR + UC − Ed )ϕ = −(
U 0

loc + �U
)
ϕ, (45)

with the same Uloc as before but corrected by

�U = �U0 + �U1, (46)
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FIG. 7. (a) The real parts and (b) the imaginary parts of �U1

(solid) and the first (short-dashed), second (long-dashed), third
(dot-dashed), and fourth (dotted) terms in Eq. (47).

in which the first term is the same as in Eq. (31), and the second
term is given by

�U1 = TRf1

f1
+ μd

�2

U2
0

(1 − U1)2
− U1T

′
0

1 − U1
− 1

2

U0U2T
′

0

(1 − U1)2
,

(47)

where

Un(R) =
∑

i

∇[UdA,i(R)]H(1)
i (γ̃iT0)γ̃ n

i . (48)

The Perey factor f is the solution of the first-order differential
equation

∇f

f
= μd

�2

U0

1 − U1
− 1

2

U2T
′

0

1 − U1
(49)

with the boundary condition f (R) → 1 at R → ∞. The
solution to this equation can be written as

f (R) = f0(R)f1(R) (50)

where f0 is given by Eq. (35) and f1 is given by

f1(R) = exp

(
−μd

�2

∫ ∞

R

dR′ U0(R′)
1 − U1(R′)

)
. (51)

The correction �U1 and the four terms on the right-hand
side of Eq. (47) are shown in Fig. 7. The Perey factors f1 and f
are plotted in Fig. 5. The correction �U1 and the Perey factor f
are comparable to the corresponding quantities obtained in [7]
for a Perey-Buck potential with a single nonlocality. We can
rewrite this factor in the form of Eq. (10). The corresponding
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FIG. 8. Real part (solid) and imaginary part (dashed) of effective
deuteron nonlocality as a function of r for Ed = 11.8 MeV.

effective deuteron nonlocality, βd,eff is plotted in Fig. 8 as a
function of r for Ed = 11.8 MeV. Note that βd,eff is complex,
but, as in the case for protons, the imaginary part is small and
changes the cross section of the proton angular distribution by
less than 0.5%. The real part lies between 0.50 and 0.60 fm,
and these values are very similar to 0.56 fm, which is the value
used for deuteron elastic scattering.

IV. TRANSFER REACTION 40Ca(d, p)41Ca AT 11.8 MeV

We calculated the proton angular distributions for the
40Ca(d,p)41Ca reaction at Ed = 11.8 MeV in the adiabatic
zero-range approximation. The finite range effects at these
energies are expected to be small [30]. The standard value
for D0, given by D2

0 = 15615 MeV2fm3, was used. The
distorted potentials both in the deuteron and proton channels,
generated with NLDOM, were read into the TWOFNR code
[31]. There is no option in TWOFNR for incorporating complex
r-dependent effective nonlocalities βeff(r). Therefore, in order
to reduce the corresponding distorted waves in the nuclear
interior, we multiplied the NLDOM 〈40Ca |41Ca〉 overlap
function (also read into the TWOFNR code) by the Perey factors
of the proton and deuteron channels, given by Eqs. (10)
and (50), respectively. This is legitimate in the zero-range
approximation, where the integrand of the (d,p) reaction
amplitude is a function of only one vector variable. In this case,
the Perey factor for the proton channel had to be calculated on
a different grid.

The overlap function INL
DOM(r), generated by NLDOM and

read into TWOFNR, is compared in Fig. 9 to (i) the overlap
function IWS(r) obtained from a Woods-Saxon potential
with standard geometry (r0 = 1.25 fm, a = 0.65 fm); (ii)
the overlap function IL

DOM(r) generated with LDOM; and
(iii) the overlap function INL

WS (r), calculated in a standard
Woods-Saxon model employing a nonlocality correction via
the Perey factor with β = 0.85 fm. All these overlap functions
are normalized to 0.73, which is the spectroscopic factor
calculated from NLDOM.

We have found that INL
DOM(r) can be described very well

(with about 1% accuracy) by a local two-body Woods-Saxon
potential model that has the radius r0 = 1.252 fm, diffuseness
a = 0.718 fm and the spin-orbit strength Vs.o. = 6.25 MeV.
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FIG. 9. Overlap functions calculated using NLDOM (solid),
LDOM (dashed), a Woods-Saxon potential with standard geometry
(dot-dashed), and a Woods-Saxon potential but corrected with a Perey
factor with β = 0.85 fm (dot-dot-dashed).

These parameters are very close to the standard values of
r0 = 1.25 fm and a = 0.65 fm used to generate IWS(r).
However, relative to IWS(r), using INL

DOM(r) as the overlap
function increases the transfer cross section at the peak, σ

peak
d,p ,

by about 15% (for the reaction at Ed = 11.8 MeV).
The NLDOM and LDOM overlap functions have similar

shapes, but their r.m.s. radii and asymptotic normalization
coefficients (ANCs) somewhat differ. The INL

DOM(r) radius of
4.030 fm is slightly larger than that of IL

DOM(r), which is
3.965 fm. Also, the single-particle ANC b�j for INL

DOM(r) is
2.48 fm−1/2, which is about 10% larger than that of IL

DOM(r).
The spectroscopic factors for these two overlaps are practically
the same. As a result, INL

DOM(r) produces a larger many-body
ANC squared, C2

�j = S�jb
2
�j , equal to 4.5 fm−1, whereas

IL
DOM(r) has C2

�j = 3.8 fm−1. Interestingly, the NLDOM value

of C2
�j is very close to the prediction of C2

�j = 4.4 fm−1

of the source term approach [32], which is based on the
independent-particle-model for 40Ca and 41Ca. This approach
accounts for correlations between nucleons via an effective
interaction potential of the removed nucleon with nucleons in
the core [33].

The standard overlap IWS(r) is very close to IL
DOM(r) (see

Fig. 9). The overlap INL
WS (r), which is sometimes used in

(d,p) calculations, has a distinctly larger radius and is not
consistent with NLDOM. Below, in all our (d,p) calculations
we use only the NLDOM overlap with its own normalization of
0.73, which allows for making conclusions from comparison
between theoretical and experimental cross sections without
any further renormalization.

Proton angular distributions calculated using the NLDOM
potentials are presented in Fig. 10. The solid curve corresponds
to the lowest-order result. The long-dashed curve shows that
incorporating the first-order corrections for the proton channel,
via Eqs. (5) and (10), reduces the lowest-order (d,p) peak cross
sections σ

peak
d,p by 3%. Further first-order corrections, coming

from Eqs. (46) and (50) for the deuteron channel and shown
by the short-dashed curve, reduces σ

peak
d,p by another 5%.
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FIG. 10. The differential 40Ca(d,p)41Ca(7/2−) cross sections
with Ed = 11.8 MeV generated using NLDOM without the cor-
rections from Eqs. (5), (10) and Eqs. (46), (50) (solid), with the
corrections for the proton channel (long-dashed), with the corrections
for both the proton and deuteron channels (short-dashed), and with the
spin-orbit potential in addition to the other corrections (dot-dashed).
The experimental data are also shown (dots).

Finally, including the spin-orbit potential raises σ
peak
d,p and

makes it comparable to the cross sections obtained with no
corrections in the deuteron channel (the dot-dashed curve).
The experimental data are from [34]. The spread between
all these calculations does not exceed 12% and all of them
considerably overestimate the experimental data, shown in
Fig. 10 as well. This overestimation (by about 70% after
normalizing overlap function to 0.73) cannot come from the
local approximations we have made to solve the nonlocal
problem. The first-order corrections of about 12% mean that
the second-order corrections would most likely be around 1%
or less. Thus, other reasons for this overestimation should be
investigated.

It was already noted in [7,28] that the adiabatic model with
nonlocal energy-independent potentials gives higher cross
sections, as compared to the standard adiabatic model, due
to a weaker attraction in the deuteron channel. The higher
cross sections are confirmed in other (d,p) studies with such
potentials [27]. Here, the overestimation of the (d,p) cross
sections using the NLDOM is stronger than in the case of
energy-independent potentials. This can be seen in Fig. 11,
which compares the NLDOM angular distribution with the
angular distributions from two nonlocal, energy-independent
potentials, referred to as GR [29] and TPM [35]. Figure 11
also shows the angular distribution from another nonlocal,
energy-dependent potential, referred to as GRZ [8] and
used previously in [6]. This potential generates an angular
distribution very similar to the one generated with NLDOM.
The structure of the GRZ potential is not as complicated as the
NLDOM potential, but it has a typical low-energy behavior
of the imaginary part, vanishing at E → 0 (for N = Z). For
all distributions, the corresponding nucleon optical model
parametrizations were consistently used to calculate the exit
and entrance channel potentials, taking into account the first-
order corrections and the Perey effect.
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FIG. 11. The differential 40Ca(d,p)41Ca(7/2−) cross sections
with Ed = 11.8 MeV generated using the NLDOM (solid),
GRZ (dashed), GR (dot-dashed), and TPM (dotted) nonlocal
parametrizations.

To understand the ∼20% difference in σ
peak
d,p shown in

Fig. 11, we compare the entrance and exit channel potentials
generated from the four nonlocal parametrizations and present
them in Fig. 12. The NLDOM, GRZ, and GR generate real
parts of similar depths and sizes both in entrance and exit chan-
nels while the TPM produces a real part of a moderately larger
radial extent. The imaginary parts, however, show a marked
difference, in both the entrance and exit channels. The energy-
independent parametrizations GR and TPM produce a much
larger imaginary part in the surface region than the energy-
dependent parametrizations NLDOM and GRZ. The smaller
imaginary parts produce less absorption thus increasing σ

peak
d,p .

This is even better seen in Fig. 13, which shows the (d,p) angu-
lar distributions calculated with four different parametrizations
for the exit proton channel and using NLDOM for the deuteron
channel. In this figure, we have also added the calculations
with LDOM [21] and the widely used local CH89 [36]
parametrizations in the proton channel while keeping the
NLDOM in the deuteron channel. The LDOM and CH89
proton potentials are shown in panels (c) and (d) of Fig. 12.

Figure 13 shows that predictions with NLDOM, LDOM and
GRZ form a different class from those obtained with GR, TPM,
and CH89. All the potentials from the first class have smaller
imaginary parts and/or volume integrals than the potentials
from the second class. Thus, overestimation of the cross section
calculated with NLDOM seems to be at least partly due to a
weaker absorption in the exit channel potential.

The weaker absorption may not be the only reason for
large cross sections obtained with NLDOM. It was discussed
in detail in [37] that a particular relation between optical
potentials in entrance and exit channels results in destructive
interference between the ingoing and outgoing partial waves
leading to l localization of radial (d,p) amplitudes in the
adiabatic model. A similar situation may occur here. Indeed,
the standard adiabatic Johnson-Soper (JS) [38] calculations
using both the local-equivalent NLDOM and LDOM poten-
tials, taken at E = Ed/2, predict much lower cross sections
(see Fig. 14) while the imaginary parts of the Johnson-Soper
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FIG. 12. Panels (a) and (b) show the real and imaginary parts of the entrance channel potentials for the NLDOM (solid), GRZ (dashed), GR
(dot-dashed), and TPM (dotted) nonlocal parametrizations used in Fig. 11, while panels (c) and (d) show these quantities for the exit channel.
Panels (c) and (d) also show the potentials calculated using LDOM (dot-dot-dashed) and CH89 (dash-dash-dotted).

potentials, shown in Fig. 15, are much smaller than those
of local-equivalent deuteron potentials obtained in this work
(TJ). This could be an indication of constructive interference
between the ingoing and outgoing partial waves generated
with NLDOM potentials. A new procedure was proposed
in Sec. VI B of Ref. [6], explaining how phenomenological
local energy-dependent optical potentials can be used in (d,p)
calculations if they represent local equivalents of nonlocal
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FIG. 13. The differential 40Ca(d,p)41Ca(7/2−) cross sections
with Ed = 11.8 MeV generated using NLDOM for the entrance
channel and the overlap function and using NLDOM (solid), GRZ
(dot-dashed), GR (long-dashed), TPM (dotted), LDOM (dash-dash-
dotted), and CH89 (short-dashed) for the exit channel.

potentials. Using the LDOM potential within this procedure
and assuming a hidden nonlocality of 0.85 fm gives very
similar results to NLDOM both for the real part of deuteron
distorting potential (Fig. 15) and the (d,p) cross sections
(Fig. 14) despite stronger imaginary part in the deuteron
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FIG. 14. The differential 40Ca(d,p)41Ca(7/2−) cross sections
with Ed = 11.8 MeV calculated with NLDOM (solid) and LDOM
(dot-dot-dashed) using the TJ prescription, which evaluates the
optical potentials at the shifted energy E = Ed/2 + 57 MeV. Also
shown are the results from using the JS prescription, which evaluates
the optical potentials at the usual energy E = Ed/2, with both
NLDOM (dashed) and LDOM (dot-dashed).
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FIG. 15. (a) Real and (b) imaginary parts of the deuteron potential
for the 40Ca(d,p)41Ca(7/2−) reaction at Ed = 11.8 MeV calculated
with NLDOM (solid) and LDOM (dot-dot-dashed) using the TJ
prescription, which evaluates the optical potentials at the shifted
energy E = Ed/2 + 57 MeV. Also shown are the results from using
the JS prescription, which evaluates the optical potentials at the
usual energy E = Ed/2, with both NLDOM (dashed) and LDOM
(dot-dashed).

channel. Although the Johnson-Soper cross sections are close
to experimental data, in light of recent findings [6,7,27,28],
constructing the adiabatic potentials from nucleon optical
potentials taken at half the deuteron incident energy does not
seem to be justified anymore.

V. CONCLUSION

We presented the first adiabatic (d,p) calculations with
the NLDOM potential, which has been designed with the
aim of forging the link between nuclear structure and nuclear
reactions in a consistent way. It has its roots in the underlying
self-consistent Green’s functions theory and possesses the
fundamental properties—nonlocality, energy-dependence, and
dispersion relations—that arise from the complex structure of
the target. The NLDOM explicitly takes into account a number
of components of nuclear many-body theory that many other
optical models do not.

One could expect that using an advanced optical potential
parametrization such as NLDOM would result in properly
fixed single-nucleon properties both below and above the
Fermi surface crucial for agreement between predictions of
(d,p) reaction theory and experimental data. However, we
have shown that using the NLDOM to generate the distorting
potentials entering the (d,p) amplitude strongly overestimates

the (d,p) cross sections despite the reduced strength of
the NLDOM one-neutron overlap function employed in the
calculations. Moreover, the NLDOM predictions are very
similar to those made with a much simpler nonlocal potential
GRZ derived within Watson multiple scattering theory and
Wolfenstein’s parametrization of the nucleon-nucleon scatter-
ing amplitude [8,29]. The energy dependence is presented in
GRZ only in the imaginary part.

Since we do not have strong reason to doubt the quality
of the NLDOM parametrization the main assumptions of
the (d,p) theory used in the present calculations should be
reviewed. We list them below:

(1) The (d,p) amplitude contains a projection of the total
many-body wave function into the three-body channel
A + n + p only. Projections onto all excited states of
A are neglected.

(2) Only n-A and p-A potentials are used to calculate the
A + n + p projection. According to [6] there are also
multiple scattering terms playing the role of a three-
body A + n + p force. These are neglected.

(3) Averaged n-A and p-A potentials were obtained using
the procedure from Ref. [6], which uses the adiabatic
approximation. Corrections to this approximation may
change the energy value at which these potentials
should be evaluated.

(4) It was assumed that the (d,p) transition operator
contains the Vnp term only. Any other terms present
in this amplitude [1] are neglected.

(5) It was shown in [25] that keeping Vnp only in the (d,p)
transition operator modifies the proton channel wave
function. In our particular case, this would result in
using the p-40Ca optical potential in the p + 41Ca
channel. We have not seen any difference in (d,p)
cross sections when replacing 41Ca by 40Ca and this
could mean that the averaging procedure, introduced
in [6], when applied to the special A + n + p three-
body model, that does not have Vnp and has different
asymptotic conditions [25], may result in completely
different requirements to the proton distorting potential
in the exit channel. Using proton optical potentials may
not be justified anymore.

(6) We used the adiabatic approximation to solve the three-
body Schrödinger equation.

The deviation from the adiabatic approximation for solving
the Schrödinger equation has been studied both within the
continuum-discretized coupled channel method [3] and using
Faddeev equations [39]. Although these corrections can be
non-negligible, they cannot be responsible for 70% overes-
timation of (d,p) cross sections obtained in this work. At
Ed/2 ∼ 12 MeV these deviations were no more than 4%, while
at a larger energy range, 5 � E � 56 MeV they could be up to
23%. The unknown non-adiabatic corrections to optical n-A
and p-A potentials entering the Schrödinger equation for the
A + n + p model [6] can change both real and imaginary parts
of these effective potentials, which could affect the (d,p) cross
sections. But given that the adiabatic approximation is a good
first choice for the (d,p) reactions, most likely, they will not
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explain the 70% difference between the NLDOM predictions
and experiment.

The contributions from the remnant term in the (d,p)
amplitude (all other terms that are not Vnp) have been studied
in an inert core model, where they were found to be small
[40]. We estimated the effect of the remnant term for the
40Ca(d,p)41Ca reaction at Ed = 11.8 MeV using FRESCO [41],
which employs the inert core approximation and requires the
use of local-equivalent potentials. We also found the effect of
the remnant term to be small, decreasing the cross section by
about 3%. A more recent study [42] showed that the remnant
term contributions remain small even when incorporating core-
excitation effects, although they can become more important
for nuclei in which the core has a low excitation energy.
Whether these contributions remain small for a nonlocal Up is
not known.

The strong overestimation of the 40Ca(d,p)41Ca cross
sections at 11.8 MeV implies that neglected parts of the (d,p)
amplitude and/or its constituents are much more important
than was thought before. Given that the deuteron energy,
chosen for this work, is often used in modern experiments with
radioactive beams for spectroscopic and astrophysical reasons,
and that the dispersive effects are strong at this energy, further
development of direct reaction theories is crucial to understand
transfer experiments performed either recently or in the past
and planned for the future.
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