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Background: For the study of exotic nuclei it is important to have an optical model potential that is reliable
not only for stable nuclei but can also be extrapolated to nuclear systems with exotic numbers of protons and
neutrons. An efficient way to obtain such a potential is to develop a microscopic optical potential (MOP) based
on a fundamental theory with a minimal number of free parameters, which are adjusted to describe stable nuclei
all over the nuclide chart.
Purpose: The choice adopted in the present work is to develop the MOP within a relativistic scheme which
provides a natural and consistent relation between the spin-orbit part and the central part of the potential. The
Dirac-Brueckner-Hartree-Fock (DBHF) approach provides such a microscopic relativistic scheme, which is based
on a realistic nucleon-nucleon interaction and reproduces the saturation properties of symmetric nuclear matter
without any adjustable parameter. Its solution using the projection technique within the subtracted T -matrix
representation provides a reliable extension to asymmetric nuclear matter, which is important to describe the
features of isospin asymmetric nuclei. The present work performs a global analysis of the isospin dependent
nucleon-nucleus MOP based on the DBHF calculation in symmetric and asymmetric nuclear matter.
Methods: The DBHF approach is used to evaluate the relativistic structure of the nucleon self-energies in nuclear
matter at various densities and asymmetries. The Schrödinger equivalent potentials of finite nuclei are derived
from these Dirac components by a local density approximation (LDA). The density distributions of finite nuclei
are taken from the Hartree-Fock-Bogoliubov approach with Gogny D1S force. An improved LDA approach
(ILDA) is employed to get a better prediction of the scattering observables. A χ2 assessment system based on
the global simulated annealing algorithm is developed to optimize the very few free components in this study.
Results: The nucleon-nucleus scattering calculations are carried out for a broad spectrum of n and p scattering
experiments below 200 MeV with targets ranging from 12C to 208Pb. The scattering observables including the
neutron total cross section, proton reaction cross section, elastic scattering angular distribution, analyzing power,
and spin rotation are evaluated and compared with the experimental data, as well as with results derived from the
widely used phenomenological Koning-Delaroche global potential.
Conclusions: Results with the present relativistic MOP reproduce the n,p + A scattering observables with good
accuracy over a broad range of targets and a large region of energies fitting only the free-range factor t in ILDA
and minor adjustments of the scalar and vector potentials in the low-density region.
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I. INTRODUCTION

Nuclear reactions of unstable nuclei comprise a field of
high interest of modern fundamental physics as well as
applied nuclear physics. Experimental data about important
parts of nuclear reaction chains, e.g., in nuclear reactors or
astrophysical objects, are often sparse or lacking completely.
Therefore, during the past few decades, considerable effort
has been made to explore such nuclear reactions based on
fundamental microscopic nuclear theories to obtain reliable
predictions.

The optical model is a crucial component in such nuclear
reaction studies, mainly because it determines the cross section
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for nuclear scattering and the formation of compound nuclei
in the initial stage of a reaction and supplies the transmission
coefficients for branching into the various final states [1].
Many observables such as the elastic scattering angular
distribution, analyzing power, spin rotation function, and so on
can be derived through the optical model. Therefore, the most
important criteria to assess a microscopic optical potential
(MOP) is that it can reproduce the existing experimental
data of these observables as accurately as possible and
make a reliable prediction without experimental guidance.
Furthermore, the MOP is more appealing when it is established
on better theoretical grounds with a small number of free
parameters.

In the direct evaluation for MOP of finite nuclei attempts
have been made to evaluate the scattering and absorption
processes using a many-body theory for the target nuclei which
goes beyond mean-field theory and incorporates, e.g., the
effects of particle-vibration couplings. These studies typically
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employ an effective nucleon-nucleon (NN ) interaction (e.g.,
Skyrme interaction or Gogny interaction). Recently, several
investigations for finite nuclei have been reported [2,3]; how-
ever, it seems still infeasible to derive the MOP for all nuclei,
which are of interest, e.g., in the field of applications of nuclear
physics mentioned above. In addition, the investigation of the
structure of target nuclei, especially for exotic nuclei, remains
to be progressed. Using phenomenological NN interactions,
such calculations are designed to derive the nuclear structure
and the MOP from the same interaction model. A drawback
of this scheme is that it is based on a phenomenological
interaction fitted to describe structure data.

However, various attempts have been made to derive the
MOP from a realistic model of the NN interaction, which
means an interaction designed and fitted to describe the NN
scattering data. Such studies often use the system of nuclear
matter to determine the effects of correlations and evaluate
the medium dependence of the resulting effective interaction
for nuclear matter. The nuclear-matter results are then used
in various kinds of local density approximation (LDA) to be
applicable for finite nuclei. The review article of Ray et al.
discusses various approximation schemes along this line [4].

Pioneering work along this line has been presented by
Mahaux and co-workers [5], who evaluated the nucleon
self-energy in nuclear matter as a function of density and
energy in a Brueckner-Hartree-Fock (BHF) approximation and
identified the resulting complex single-particle potential with
the MOP for finite nuclei using LDA adopting nucleon density
distributions from the empirical formula or microscopic
nuclear structure calculations. One drawback of this scheme
is that typically one has to use an interaction model for the
evaluation of the density profile of the nuclei which is different
from the realistic interaction used to calculate the self-energy
in nuclear matter as BHF calculations fail to reproduce the
empirical saturation properties for nuclear matter and finite
nuclei. In a simplified way, some MOPs have been developed
by adopting the effective NN interactions (e.g., Skyrme force)
in the Hartree-Fock approach in nuclear matter and LDA for
finite nuclei [6].
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FIG. 1. The proton and neutron radial densities for 208Pb. The
solid and dashed lines indicate the calculated results from HFB and
the Negele’s empirical formula, respectively.
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FIG. 2. Comparisons of angular distributions for n + 40Ca and
208Pb at incident neutron energy around 7.0, 13.0, 30.0, and 65.0 MeV.
The dashed line indicates the results based on a linear assumption
of (f1,f2) and the solid line denotes the results with the values of
(0.86,1.14), and the experimental data are listed in Table I.

Another handicap of this approach is the fact that this ap-
proach only provides the central part of the MOP; the spin-orbit
potential has to be adjusted independently from the central
potential in such a nonrelativistic approach. Nevertheless, this
scheme was applied with quite some success by Jeukenne,
Lejeune, and Mahaux already in the 1970s [5] and is still
rather popular today.

Also the so-called g-folding method developed by Amos
et al. [7] is based on a realistic NN interaction and uses a local
density approximation to account for the medium dependence
of the effective interaction. In this case, however, it is the NN
interaction, which is evaluated by solving the Bethe-Goldstone
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FIG. 3. Example for the real and imaginary part of the scalar (Us)
and vector (U0) components of the Dirac potential as a function of
density for nucleons with an incident particle energy of 90 MeV.
The circles, triangles, x marks, and squares represent the calculated
(adjusted) values for isospin asymmetries β = 0.0, 0.2, 0.6, and
1.0, respectively. The connecting solid line shows the polynomial
interpolation in the case of symmetric matter, while the dashed
and dotted lines visualize the corresponding interpolations for the
neutron- and proton-potentials, respectively.
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TABLE I. The dσ/d� database for neutron elastic scattering.

Target Author (first) Year Energy (MeV) Author (first) Year Energy (MeV)

6-C-12 R. O. Lane 1961 1.04, 2.25 P. Boschung 1971 4.04
R. M. White 1980 6.94 G. Haouat 1975 8.5, 9.0
D. W. Glasgow 1976 10.69, 12.49, 13.94 N. Olsson 1988 17.6, 22.0,
T. Niizeki 1990 35.0 J. H. Osborne 2004 65.0, 107.5, 155, 225
M. Ibaraki 2002 75.0 P. Mermod 2006 94.8

7-N-14 J. L. Fowler 1955 1.08, 1.68, 2.07 F. G. Perey 1974 4.34, 4.92, 6.01, 7.03, 8.56
J. Chardine 1986 7.9, 9.0, 13.5 D. Schmidt 2003 10.81, 12.79
L. Anli 1989 14.0, 17.0 N. Olsson 1989 21.6

8-O-16 L. Drigo 1976 2.56 I. A. Korzh 1980 5
G. Boerker 1988 6.37, 7.51, 9.01, 10.31, 13.61, 14.89 M. Baba 1988 14.1
L. Anli 1989 17 J. P. Delaroche 1986 18.0, 26.0
N. Olsson 1989 21.6 P. Mermod 2006 94.8

11-Na-23 W. E. Kinney 1976 0.55, 0.7, 1.0, 1.2, 1.4, 1.6, 1.7, 2.0 U. Fasoli 1969 1.51, 2.47, 4.04
Th. Schweitzer 1978 3.4 R. E. Coles 1971 5.0
F. G. Perey 1970 5.44, 6.37, 7.6, 8.52 P. Kuijper 1972 14.8

12-Mg-24 D. B. Thomson 1962 3.79 I. A. Korzh 1994 5.0, 6.0, 7.0
W. E. Kinney 1970 7.55, 8.56 M. Adel-Fawzy 1985 8.0, 9.0, 10.0, 11.0, 12.0
A. Virdis 1981 9.76, 14.8 A. Takahashi 1987 14.1
N. Olsson 1987 21.6

13-Al-27 R. L. Becker 1966 3.2 W. E. Kinney 1970 5.44, 6.44, 7.54, 8.56
G. Dagge 1989 7.62 C. S. Whisnant 1984 10.87, 13.88, 16.9
M. M. Nagadi 2003 15.4 J. S. Petler 1985 18,20, 22,25, 26.0
A. Bratenahl 1950 84.0 G. L. Salmon 1960 96.0
C. P. Van Zyl 1956 136.0

14-Si-28 W. E. Kinney 1970 5.44, 6.37, 6.44, 7.55, 8.56 C. R. Howell 1988 7.96, 9.95, 11.94, 13.97, 16.92
J. Rapaport 1977 11.0, 20.0, 25.0 R. Alarcon 1986 21.7
M. Ibaraki 2002 55.0, 65.0, 75.0

15-P-31 K. Tsukada 1961 3.5,3.8,4.2,4.5 J. Martin 1968 5.95
J. D. Brandenberge 1972 7.79,9.05 P. H. Stelson 1965 14.0
G. C. Bonazzola 1965 14.2

16-S-32 F. G. Perey 1970 3,4, 7.05, 7.6, 8.52 S. Tanaka 1969 5.92
C. R. Howell 1988 7.96, 9.95, 11.93, 13.92 J. D. Brandenberge 1972 9.05
A. Virdis 1981 9.76 J. Rapaport 1977 20.0, 26.0
Y. Yamanouti 1977 21.5 R. Alarcon 1986 21.7
J. S. Winfield 1986 30.3, 40.3

19-K-39 J. H. Towle 1965 1.49, 2.38 J. D. Reber 1967 2.06, 3.74, 4.33, 6.52, 7.91
A. J. Frasca 1966 14.0

20-Ca-40 J. D. Reber 1967 2.06, 3.29, 5.3, 7.91 B. Holmqvist 1969 6.09, 7.05
W. Tornow 1982 9.91, 11.9, 13.9 G. M. Honore 1986 16.9
R. Alarcon 1987 19.0, 25.5 J. Rapaport 1977 20.0
N. Olsson 1987 21.6 R. P. Devito 1981 30.3
E. L. Hjort 1994 65.0 J. H. Osborne 2004 107.5, 185.0

22-Ti-48 A. B. Smith 1998 4.5, 5.5, 6.5, 7.55, 8.08, C. St. Pierre 1959 14.0
8.41, 9.06, 9.5, 9.99

24-Cr-52 B. Holmqvist 1969 3,4 W. E. Kinney 1974 4.34, 4.92, 6.44, 8.56
A. B. Smith 1997 7.52 D. Schmidt 1998 7.95, 9.0, 9.8, 10.79, 11.44,
N. Olsson 1987 21.6 12.01, 12.7, 13.65, 14.1, 14.76

25-Mn-55 B. Holmqvist 1969 2.47, 3.0, 3.49, 4.0, 4.56, Th. Schweitzer 1978 3.4
6.09, 7.05, 8.05

A. Takahashi 1992 14.1

26-Fe-56 V. M. Morozov 1972 1.8 W. E. Kinney 1968 4.6, 5.0, 5.56, 6.12, 6.53, 7.55
P. Boschung 1971 5.05 Ruan Xichao 2009 8.17
S. Mellema 1983 11.0, 20, 26 N. Olsson 1987 21.6
T. P. Stuart 1962 24.8 M. Ibaraki 2002 55.0, 65.0, 75.0
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TABLE I. (Continued.)

Target Author (first) Year Energy (MeV) Author (first) Year Energy (MeV)

27-Co-59 B. Holmqvist 1969 1.46, 2.0, 2.47, 3.0, 3.49, M. M. Nagadi 2003 9.95, 15.43, 16.88, 18.86
4.0, 4.56, 6.09, 7.05, 8.05

L. F. Hansen 1985 14.6 N. Olsson 1987 21.6
S. T. Lam 1985 23.0

28-Ni-58 B. Holmqvist 1969 3.0 W. E. Kinney 1974 4.34, 6.44, 7.54, 8.56
A. B. Smith 1992 5.5, 6.5, 8.4, 9.5, 9.99 P. P. Guss 1985 7.9, 9.96, 13.94
E. G. Christodoulo 1999 14.0 A. Takahashi 1992 14.1
R. S. Pedroni 1988 16.9 N. Olsson 1987 21.6
Y. Yamanouti 1979 24.0

equation in nuclear matter and then employed in a folding
calculation to evaluate the MOP for finite nuclei. The g-folding
approach has very successfully been applied to reproduce
differential cross sections and spin observables for many nuclei
from 6Li to 238U without adjustable parameters [7–14].

The Mahaux scheme as well as the g-folding method are
based on a nonrelativistic (NR) approach and the energy de-
pendence of the MOP originates from the energy dependence
of the effective interaction g calculated for nuclear matter in
a nonrelativistic Brueckner-Hartree-Fock approximation. Also
the work presented in this paper is based on a realistic model of
the NN interaction and accounts for the effects of correlations
presented in the g matrix. In contrast to the nonrelativistic
approaches, however, it takes the relativistic structure of the
nucleon spinors into account.

An alternative approach is based on the Dirac phenomenol-
ogy as it has been introduced by Walecka and co-workers [15].
Within this Dirac phenomenology the nucleon self-energy
contains a large and attractive component, which transforms
like a scalar under a Lorentz transformation compensated to
a large extent by a repulsive Lorentz vector component. If
one reduces the corresponding Dirac equation for the nucleon
in the nuclear-matter medium to a nonrelativistic Schrödinger
equation, one obtains a Schrödinger equivalent potential with
a central potential which is energy dependent and a strong
spin-orbit term.

An application of this Dirac phenomenology to describe
the optical model potential has been presented by Cooper
et al. [16]. They developed a phenomenological parametriza-
tion of the real and imaginary parts of the scalar and
vector potentials. Fitting the corresponding parameters, which
depend on energy and mass number of the target nucleus, they
obtain a very good global fit of the optical model potential.

A comparison of the rather successful but very different
approaches to a global optical potential, the g-folding method
and Dirac phenomenology, has been made by Deb et al. [11].
They evaluated differential cross sections and spin observables
for nucleon nucleus scattering on five different targets ranging
from 12C to 208Pb at energies of 65 and 200 MeV using
both approaches and conclude that the results are of similar
quality.

It is one aim of the Dirac-Brueckner-Hartree-Fock approach
(DBHF) approach to combine the features of a realistic NN
interaction and its dependence on the medium, as they are
contained in the Mahaux approach and the g-folding model

with those of the Dirac phenomenology [17]. This approach
is founded on a realistic NN interaction and the treatment
of nuclear correlations and the medium dependence of the
effective NN interaction is done in straight analogy to the
Mahaux approach and the g-folding method. The DBHF
approach, however, keeps track of the relativistic structure of
the nucleon self-energy and therefore one can determine the
real and the imaginary parts of the scalar and vector component
of the nucleon self-energy in nuclear matter as a function
of momentum, density, and energy. These components are
then used to evaluate the corresponding MOP using LDA for
these components of the self-energy in straight analogy to the
Mahaux scheme.

In this way, the spin-orbit potential arises naturally from
the coherent sum of the contribution from the scalar and
vector potentials in this relativistic scheme, and the saturation
properties of symmetric nuclear matter are reproduced in
the relativistic DBHF approach, while three-nucleon forces
have to be introduced to obtain a corresponding result within
the nonrelativistic BHF approximation [18–20]. Therefore,
it seems rather attractive to determine a microscopic optical
model based on the DBHF approach as, finally, one may be
able to describe the ground-state properties of nuclei and the
MOP within the same theoretical framework.

For a long period it has been a challenge in theoretical nu-
clear physics to solve the Brueckner-Hartree-Fock scheme in
the relativistic way, especially for isospin asymmetric nuclear
matter. In recent years substantial progress has been obtained
using a so-called subtracted T matrix (STM) representation in
the projection technique to solve DBHF scheme strictly in the
symmetric and asymmetric nuclear matter [21].

In a preliminary study we have explored the isospin
dependent relativistic microscopic optical potential adopting
the self-energies from this DBHF calculation in Ref. [17].
This MOP has been verified by satisfactorily reproducing
the neutron and proton scattering data from 27Al. In this
work, a systematic investigation for this MOP is performed
in a large range of nuclei. The microscopic radial nucleon
density of finite nuclei based on the Hartree-Fock-Bogoliubov
(HFB) calculation are adopted in this calculation instead of
the previous empirical values. Meanwhile, a χ2 assessment
system based on the global simulated annealing algorithm
(GSA) is specially designed to optimize the free factors
and give an overall estimation on the performance of this
MOP.
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TABLE II. The dσ/d� database for neutron elastic scattering.

Target Author (first) Year Energy (MeV) Author (first) Year Energy (MeV)

29-Cu-63 P. Guenther 1986 1.6, 2,3, 3.9 W. E. Kinney 1974 5.5, 7.0, 8.5
S. M. El-Kadi 1982 7.96, 9.94, 11.93, 13.92 J. D. Anderson 1959 14.6
B. Ya. Guzhovskiy 1961 15.0 A. Begum 1979 16.1
A. Bratenahl 1950 84.0 G. L. Salmon 1960 96.0
C. P. Van Zyl 1956 136.0

34-Se-80 R. M. Musaelyan 1987 0.34 E. S. Konobeevskij 1984 1.19
I. A. Korzh 1983 1.5, 2.0, 2.5, 3,5 G. V. Gorlov 1964 4
R. G .Kurup 1984 8.0, 10.0

38-Sr-88 S. A. Cox 1972 0.886 M. Walt 1954 1
D. W. Kent 1962 3.66 V. I. Popov 1971 4.37
D. E. Bainum 1978 11

39-Y-89 R. D. Lawson 1986 4.5, 5.0, 5.5, 5.9, 6.5, 7.14, F. G. Perey 1970 7.6, 8.56
7.5, 8.03, 8.4, 9.06, 9.5, 9.99

G. M. Honore 1986 7.96, 9.95, 11.94, 13.93 S. Mellema 1987 11.0
N. Olsson 1987 21.6

40-Zr-90 P. Guenther 1975 2.0, 2.2, 2.6, 3,4 R. W. Stooksberry 1976 2.11
S. Chiba 1992 4.5, 5.0, 5.5, 5.9, 6.5, Y. Wang 1990 10.0, 24.0

8.03, 9.06, 9.99
D. E. Bainum 1978 11.0 M. Ibaraki 2002 55.0, 65.0, 75.0

41-Nb-93 A. B. Smith 1985 4.5, 5.0, 5.5, 5.9, 6.5, 7.14 R. S. Pedroni 1991 7.95, 9.94, 11.93, 13.92, 16.91
7.5, 8.03, 8.4, 9.06

J. C. Ferrer 1977 11.0 E. G. Christodoulo 1999 14.0
R. Finlay 1991 20.0

42-Mo-98 P. Lambropoulos 1973 1.5 A. B. Smith 1975 2.0, 3.0, 4.0
J. Rapaport 1979 7.0, 9.0, 11.0, 16.0, 20.0, 26.0

45-Rh-103 A. B. Smith 1994 4.51, 5.0, 5.9, 6.5, 7.5,
8.03, 8.4, 9.06, 9.5, 10.0

49-In-115 S. A. Cox 1972 0.87 B. Holmqvist 1969 3.0, 4.0, 7.05, 8.05
A. B. Smith 1984 3.05, 3.75 R. L. Becker 1966 3.2
S. Chiba 1990 4.5, 5.0, 5.9, 7.14, 8.03, J. C. Ferrer 1977 11.0

9.06, 9.99
J. O. Elliot 1956 14.0 L. F. Hansen 1985 14.6

50-Sn-120 S. Tanaka 1972 1.52, 2.05, 2.57, 3.08 C. Budtz-Jorgense 1984 3.0, 3.2, 3.4, 3.6, 3.8, 4.0
R. M. Wilenzick 1965 6.04 P. P. Guss 1989 9.94, 13.92, 16.91
J. Rapaport 1980 11.0 T. P. Stuart 1962 24.0
E. L. Hjort 1994 65.0

79-Au-197 R. B. Day 1965 0.5, 2.5 F. T. Kuchnir 1968 0.6, 1.6
S. A. Cox 1972 0.878, 2.0 A. B. Smith 2005 4.51, 5.51, 6.51, 7.51, 8.41, 9.99
S. C. Buccino 1966 5 M. A. Etemad 1973 7
B. Holmqvist 1971 8.05 L. F. Hansen 1985 14.6

82-Pb-208 V. M. Morozov 1972 1.8 J. R. M. Annand 1985 4.0, 5.0, 6,7
D. Schmidt 1996 7.93, 8.98, 9.87, 10.96, 11.92, W. E. Kinney 1974 8.5

13.12, 14.23
J. Rapaport 1978 11.0, 26.0 A. Takahashi 1987 14.1
R. W. Finlay 1984 20.0, 22.0, 24.0 R. P. Devito 1980 30.3, 40.0
M. Ibaraki 2002 55, 65.0, 75.0 A. Bratenahl 1950 84.0
J. H.Osborne 2004 85.0, 95.0, 107.0, 127.5, 155.0, A. Oehrn 2008 96.0

185.0, 225.0
C. P. Van Zyl 1956 136.0

83-Bi-209 N. Olsson 1982 1.48, 1.97, 2.23, 3.05 J. R. M. Annand 1985 4.0, 5.0, 5.5, 6.5, 7.0
R. K. Das 1990 7.5, 8.0, 9.0, 10.0, 11.0, N. Olsson 1987 21.6

12.0, 20.0, 24.0
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FIG. 4. Comparison of predicted neutron total cross section (solid
line) and experimental data (points) and KD calculation (dashed line)
for n + 12C. The experimental data are measured for natural carbon.

The paper is composed as follows. In Sec. II, the general
formalism of the DBHF approach is briefly introduced. The
isospin dependent relativistic MOPs of finite nuclei are built
in Sec. III through combining the self-energies and the
microscopic radial nucleon density by the improved local
density approximation (ILDA) [5]. The global analysis of
nuclear scattering is carried out in Sec. IV for neutron and
proton scattering and induced reactions on 12C -208Pb and the
calculated results are compared with the calculated results
with the widely used phenomenological Koning-Delaroche
(KD) global optical potential [22] and the experimental data
of various scattering quantities. Finally, the overall discussion
is summarized in Sec. V.

II. SELF-ENERGY IN NUCLEAR MATTER

Realistic NN interactions contain strong short-range and
tensor components. Therefore, it is necessary to account for the
corresponding correlations between the interacting nucleons.
In the relativistic Brueckner-Hartree-Fock approach this is
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FIG. 5. Comparison of predicted neutron total cross section (solid
line) and experimental data (points) and KD calculation (dashed line)
for n + 56Fe. The experimental data are measured for natural iron.
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FIG. 6. Comparison of predicted neutron total cross section (solid
line) and experimental data (points) and KD calculation (dashed line)
for n + 208Pb. The experimental data are measured for natural lead.

achieved by considering the equation for two interacting nucle-
ons in nuclear matter. This leads to the ladder approximation of
the relativistic Bethe-Salpeter (BS) equation [21,23], written
in an abbreviated operator notation,

T = V + V QGGT, (1)

where T is the nucleon-nucleon interaction matrix in the
nuclear medium and V is the bare NN interaction, re-
spectively. The Pauli exclusion principle is included by the
Q operator and the in-medium nucleon propagation of the
nucleons is described by the Green’s function G. Therefore,
GG represents the two-nucleon propagator in nuclear matter.
The Green’s function G fulfills the Dyson equation,

G = G0 + G0�G. (2)

G0 denotes the free nucleon propagator, and the self-energy
term � is defined in first order of the effective interaction T
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FIG. 7. Comparisons of angular distributions for n + 12C, 27Al,
40Ca, 56Fe, 98Mo, and 208Pb at incident neutron energy around
30 MeV. The dashed lines indicate the results from KD potential
and the solid lines denote the present prediction.
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FIG. 8. Comparisons of angular distributions for n + 28Si, 40Ca,
56Fe, 90Zr, 120Sn, and 208Pb at incident neutron energy around 65 MeV.
The dashed line indicates the results from KD potential and the solid
line denotes the present prediction.

through the following standard Hartree-Fock equation

� = Tr[GT ]. (3)

Note that the self-energy contains the direct and exchange
terms at the same time, and the Tr symbol denotes a trace on
spin and isospin quantum numbers as well as a momentum
integration over all nucleon within the Fermi sea. Because
Eqs. (1)–(3) are strongly coupled, they have to be solved
iteratively until convergence is reached.

Generally, the Lorentz structure of the relativistic self-
energy � can be expressed as [24]

�m(k,kF ,β) = �m
s (k,kF ,β) − γ0�

m
0 (k,kF ,β)

+ γ · k�m
v (k,kF ,β). (4)

In this equation, �s is the scalar part of self-energy and �0

and �v denote the timelike and spacelike terms of the vector
part, respectively. The superscript m is used to sign the proton
and neutron because they should be distinguished in isospin
asymmetric nuclear matter. Note that these components of
the self-energy are functions of the nucleon momentum (k),
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density or Fermi momentum (kF ), and asymmetry parameter
β = (ρn − ρp)/ρ, where ρn, ρp, and ρ indicate the neutron,
proton, and total densities in nuclear matter, respectively.

Details of such DBHF calculations and the method to
extract these Dirac components using the STM representation
are described in Refs. [21,25,26]. The self-energies used in the
present study are determined using the Bonn B potential [27]
for the bare NN interaction and solving the DBHF equations
for isospin asymmetric nuclear matter with various densities
and isospin asymmetries.

III. RELATIVISTIC MICROSCOPIC OPTICAL
POTENTIAL IN FINITE NUCLEI

In the relativistic scheme, the wave function of an incident
particle described in terms of a Dirac spinor 	 is obtained by
the solution of the corresponding Dirac equation,

[�α · �p + γ0(M + Um
s ) + Um

0

]
	m = ε	m, (5)
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FIG. 11. Comparison of predicted dσ/d� (solid lines) and
experimental data (points) and KD calculation (dashed lines) for
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TABLE III. The χ 2/N of dσ/d� for n + 12C -40Ca reactions.

Nuclide N of data points MOP KD

12C 293 3.35 2.43
14N 336 0.21 0.22
16O 309 0.91 0.66
23Na 221 0.31 0.22
24Mg 270 0.56 0.19
27Al 426 0.068 0.069
28Si 391 0.24 0.15
32S 388 0.22 0.07
40Ca 399 0.22 0.075

where Um
s and Um

0 are the scalar and vector components of the
scattering potential,

Um
s = �m

s − �m
v M

1 + �m
v

, Um
0 = −�m

0 + ε�m
v

1 + �m
v

, (6)

and ε = E + M is the single-particle energy, E is the kinetic
energy of the nucleon in the free space, and M indicates the
mass of the nucleon.

To calculate the scattering observables of finite nuclei,
this Dirac equation is typically reduced to a Schrödinger-
type equation by eliminating the lower components of the
Dirac spinor in a standard way. The equation for the upper
components of the wave function is transformed into[

− ∇2

2ε
+ V m

cent + V m
s.o.(r)�σ · �Ł + V m

Darwin(r)

]
ϕ(r)

= ε2 − M2

2ε
ϕ(r), (7)

where V m
cent, V

m
s.o., and V m

Darwin represent the Schrödinger equiv-
alent central, spin-orbit, and Darwin potentials, respectively.
The potentials in Eq. (8) are obtained from the scalar Us and
vector U0 potentials as

V m
cent = M

ε
Um

s + Um
0 + 1

2ε
[Um2

s − (Um
0 + Vc)2],

V m
s.o. = − 1

2εrDm(r)

dDm(r)

dr
,

V m
Darwin = 3

8εDm(r)

[
dDm(r)

dr

]2

− 1

2εrDm(r)

dDm

dr

− 1

4εDm(r)

d2Dm(r)

d2r
, (8)

TABLE IV. The χ 2/N of dσ/d� for n + 48Ti -63Cu reactions.

Nuclide N of data points MOP KD

48Ti 378 0.13 0.05
52Cr 562 0.16 0.03
56Fe 333 0.23 0.09
58Ni 701 0.17 0.11
63Cu 282 0.11 0.06

TABLE V. The χ 2/N of dσ/d� for n + 80Se -209Bi reactions.

Nuclide N of data points MOP KD

80Se 152 0.17 0.11
88Sr 81 0.09 0.03
89Y 620 0.19 0.05
90Zr 1110 0.14 0.05
93Nb 629 0.13 0.03
98Mo 180 0.30 0.36
103Rh 400 0.12 0.06
115In 744 0.10 0.05
120Sn 357 0.08 0.03
140Ce 105 0.19 0.05
197Au 390 0.22 0.10
208Pb 885 2.25 1.80
209Bi 767 0.27 0.06

where Vc is the Coulomb potential for a charged particle and
D denotes a quantity defined as

Dm(r) = M + ε + Um
s (r) − Um

0 (r) − Vc. (9)

The radial potentials in finite nuclei, namely, V m
cent, V m

s.o.,
and V m

Darwin in Eqs. (8) and (9), can be associated with the
scalar Us and vector U0 in nuclear matter through the LDA
using the local nucleon density ρ(r) for the nucleus considered.
In this work, a finite range correction in Gaussian form is
adopted in LDA to further remedy the potentials to obtain the
better prediction of the scattering experimental data, that is,
the so-called ILDA,

UILDA(r,E) = (t
√

π )−3
∫

ULDA(r ′,E)exp(−|�r − �r ′|2/t2)d3r ′,

(10)

where t is an effective range parameter of the potential ULDA

in normal LDA approach at radius r ′ [5,17]. It is included
to account for a finite-range correction of the nucleon-nucleon
interaction, which is not incorporated in the DBHF calculation.
They modify the radial distribution of Vcent while keeping its
volume integral constant. The potential ULDA is related to the
Us and U0 in nuclear matter by

ULDA(r,E) = UNM(k,E,ρ(r),β(r)), (11)

and UNM represent the corresponding potential in nuclear
matter using the isospin asymmetry β of the target nucleus
and the momentum k and energy E of the incoming nucleon.
In our present studies we adopt the radial nucleon density, ρ(r),
from the HFB approach with Gogny D1S force [28], instead
of the empirical values by the Negele’s formula [29], which
has been employed for our pilot study [17].

In Fig. 1, we compare the radial density and asymmetry
distributions for 208Pb as derived from HFB approach and the
empirical formula. The radial densities obtained in the HFB
approach show oscillations in the interior of the nucleus, which
reflect the structure of the single-particle wave functions. Note,
however, that the oscillations are smoothed out to a large extent
in the ILDA potentials by the finite range correction of Eq. (10).
Also note the enhancement of the neutron density in the surface
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FIG. 12. Comparison of predicted dσ/d� (solid lines) and
experimental data (points) and KD calculation (dashed lines) for
n + 56Fe.

of the nucleus in the microscopic calculation. This neutron
skin leads to large isospin asymmetries, as presented in the
left panel of Fig. 1.

In addition, as for this microscopic optical potential, the ap-
plicability of the theory should indicate that the formalism does
not include the coupling to giant resonances (10 to 30 MeV)
and the compound nucleus formation (< 10 MeV), which has
been discussed before and stressed in, e.g., Ref. [7]. At the
low energies, we include the compound nuclear contribution to
the elastic differential cross sections by the Hauser-Feshbach
statistic theory through the optical model code APMN [30],
which employs the Hauser-Feshbach model to determine the
contributions from the compound nuclear elastic scattering by
concerning six competing single-particle emission reactions,
including neutron, proton, deuteron, tritium, α, and 3He. The
formation of giant resonances will be discussed further in other
future work.

IV. GLOBAL ANALYSIS OF NUCLEON-NUCLEI
RELATIVISTIC MICROSCOPIC

OPTICAL POTENTIAL

A. Dirac potentials in the full density region for finite nuclei

Most experimental data have been taken for stable nuclei
and very limited scattering data exist for unstable isotopes.
Therefore, the eventual goal of this work is to develop
a relativistic MOP model which is capable of describing
scattering data for all stable nuclei and will be tested for
many unstable nuclei in the near future. The microscopic
basis of the present calculations originates from the real and
imaginary parts of the Dirac components, Um

s and Um
0 , of

the nucleon self-energies calculated in the DBHF approach
for symmetric and asymmetric nuclear matter. Such DBHF
calculations, however, yield reliable results only for densities
ρ > 0.08 fm−3. The procedure to derive self-consistent DBHF
results does typically not converge at lower densities. This
reflects the situation that homogeneous nuclear matter is
unstable at such low densities with respect to the formation of
an inhomogeneous density profile containing nuclear clusters.
In particular, the solution of the T matrix of Eq. (1) yields
bound states in the deuteron channel.

For the derivation of the optical model potential for
finite nuclei, however, we also need results at densities ρ <
0.08 fm−3. Therefore, we have to extrapolate the results to
these low densities with the natural constraint that the Dirac
potentials Um

s and Um
0 vanish at ρ = 0. As a first guess

for these data points below ρ = 0.08 fm−3 one may take a
linear extrapolation, which would be too simple. To make the
extrapolation process more flexible, we introduce auxiliary
mesh points at ρ = 0.04 fm−3 for the real parts and at ρ =
0.04 and 0.06 fm−3 for the imaginary parts, and the “initial”
values of Um

s and Um
0 at these points are obtained using linear

assumption. Then, two enhancement factors are involved to
slightly modify the initial values (f1 for the real Um

s and Um
0 ,

f2 for the imaginary Um
s and Um

0 ) to achieve the “optimized”
values. Based on the optimized values and the microscopic
results by DBHF at ρ > 0.08 fm−3, the polynomial fittings are
employed to derive the Dirac potentials in the full density space
to construct the Schrödinger equivalent potentials of finite
nuclei. In practice, we have chosen to represent the density
dependence of the Dirac potentials in terms of a polynomial fit
with a polynomial of degree 5 for the real part and a polynomial
of degree 7 for the imaginary part. Actually, a large amount of
such polynomial fittings are required one by one corresponding
to all incident nucleon energies and isospin asymmetries of
finite nuclei in this study. The central issue in the whole process
is to fix the values of (f1, f2), and they are expected to be
constant for all cases to minimize phenomenological effect.
A χ2 assessment system is specially designed to fulfill this
optimization, which is illuminated as follows. In addition, the
effective range factor t in Eq. (10) is also fixed in company
with (f1, f2) in the same process.

First of all, as mentioned in Sec. I, one of the main criteria
to evaluate a good optical model potential is that it can well
reproduce as many of the measured scattering observables as
possible. Therefore, we utilize the experimental scattering data
in the χ2 assessment. 40Ca and 208Pb, for which a large number
of experimental data of proton and neutron scattering were
measured, are both double-magic nuclei and they represent
proper examples to cover a good range from isospin symmetric
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to asymmetric nuclei; consequently, the scattering data of these
two nuclei were selected for optimization in this study.

Most optimization procedures obtain the parameters
through minimizing a certain χ2 value [22,31], given, for
example, by

χ2 =
P∑

i=1

(
σ cal

i − σ
exp
i

σ
exp
i

)2

, (12)

where σ
exp
i is the ith experimental point, σ cal

i is the ith calcu-
lated result, and P indicates the total number of experimental
data in the consideration. In this work, the value of χ2/N
is adopted as the criteria for optimization. χ2 uses the same
form with Eq. (12), N = P − F is the number of degrees of
freedom, and F is the number of free parameters. Meanwhile,
we employ the GSA method based on the Monte Carlo
sampling in a predefined region of the free parameters to search
the minimal χ2/N . It is known, however, that it is not possible
to obtain a “best fit” through the numerical optimization
procedure alone [22]; therefore, a visual goodness-of-fit
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FIG. 15. Comparisons of analyzing power for n + 12C, 40Ca,
58Ni, and 208Pb at incident neutron energy around 10 MeV. The
dashed line indicates the results from KD potential and the solid line
denotes the present work.

estimation evaluator is also incorporated. In this work, in a first
step the angular distributions of elastic scattering, dσ /d�, of
40Ca and 208Pb are taken into account to optimize the χ2/N
between experimental data and our theoretical calculations.
After the “minimal” χ2/N value is achieved for dσ /d�,
the other observables, such as analyzing power (Ay) for
nucleon-nucleus elastic scattering as well as the neutron total
cross section (σtot) and proton total reaction cross section
(σreac), etc., are then utilized in the visual goodness estimation
for a further assessment of MOP.

As a result, (f1,f2) is searched as (0.86,1.14), which is
slightly different from an absolute linear shape with (f1,f2) =
(1.0,1.0), and the effect range factor t is determined as 1.35 fm
for p-A and 1.45 fm for n-A, which are comparable to t =
1.4 fm derived in our pilot study [17] focused on the target
nucleus 27Al. Moreover, it is found that the calculation of
MOP are not very sensitive to variations of f1 and f2. Both the
linear assumption and the optimized one can provide a good
reproduction to scattering observables, as illuminated in Fig. 2.
However, the χ2/N value is improved a little; for example, the
value is changed from 0.29 to 0.22 when (0.86,1.14) is applied
to the neutron scattering from 20Ca.

The isospin dependent Dirac potentials in the full density
region are determined with the fixed (f1,f2). As an example,
we present the values for the real and imaginary parts of the
Dirac potentials Um

s and Um
0 for nucleons with an energy

of 90 MeV in Fig. 3. The calculated values by DBHF
for densities ranging between 0.08 and 0.2 fm−3, as well
as those for the auxiliary mesh points are represented by
circles, triangles, x marks, and squares for isospin asymmetries
β = (ρn − ρp)/ρ of 0.0, 0.2, 0.6, and 1, respectively. The
corresponding polynomial interpolations are visualized in
terms of a solid line for isospin symmetric nuclear matter
(β = 0), while the dashed line shows the interpolation for the
neutron and the dotted line for the proton potentials at β > 0.
It is observed that the microscopic DBHF calculations have
almost been rigorously adopted in the present Dirac potentials
at ρ > 0.08 fm−3 and potentials at lower densities decrease,
keeping the natural tendency of microscopic calculation,
which is good to guarantee the microscopic properties of this
MOP. Moreover, Um

s and Um
0 exhibit a very strong dependence

but also a rather smooth way on the neutron-proton asymmetry
parameter β at all nuclear densities, as shown in Fig. 3. It is
not practical to provide all the fitted polynomial coefficients in
this paper to satisfy the diverse applications of the public.
We plan to release an executable file on the international
web to generate this MOP for any required target and energy
automatically in the future.

B. Experimental database

After the optimization by concerning scattering data of
40Ca and 208Pb, the present MOP is assessed through a global
prediction and analysis for the main observables of neutron-
and proton-induced scattering reactions in a large mass region
of 12 � A � 209 below incident energy 200 MeV. The most
abundant natural isotopes are considered, and nuclei with even
as well as odd mass numbers are incorporated.
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TABLE VI. The dσ/d� database for proton elastic scattering.

Target Author (first) Year Energy (MeV) Author (first) Year Energy (MeV)

6-C-12 S. Mazzoni 1998 2.5 V. M. Lebedev 2006 7.5
An-Zhu 2003 22.0 M. Harada 1999 26.0
M. Ieiri 1987 29.7, 34.5, 44.7 V. I. Grancev 1983 48.5
A. A. Rush 1971 50.0 M. Ieiri 1987 54.4, 64.9, 74.8, 83.8
H. O. Meyer 1983 122.0, 160.0, 200.0, 250 V. M. Hannen 2003 150.0

13-Al-27 M. Chiari 2001 0.783, 1,2, 3.01 I. E. Dayton 1956 17.0
G. M. Crawley 1968 17.5 R. Dittman 1969 28.0
C. B. Fulmer 1969 61.4 G. Gerstein 1957 92.9, 95.7
A. E. Taylor 1961 142.0 V. Comparat 1974 156.0
A. Johansson 1960 160.0, 177.0,183.0 S. Dahlgren 1967 185.0

14-Si-28 E. Fabrici 1980 14.26, 17.24, 20.17, 30.5, 40.21 M. Nakamura 1983 45.0, 50.0, 55.0, 60.0
S. Kato 1985 65.0 C. Olmer 1984 80.0, 100.0, 135.0, 179.0
O. Sundberg 1967 185.0 K. H. Hicks 1988 200.0, 250.0

20-Ca-40 J. F. Dicello 1971 10.4, 14.5, 17.6, 20.6 R. H. Mccamis 1986 25.0, 30.0, 35.0, 40.0, 45.0, 48.0
K. Yagi 1964 55.0 H. Sakaguchi 1982 65.0
P. Schwandt 1982 80.0, 135.0, 160.0 C. Rolland 1966 152.0
A. Johansson 1961 182.0 H. Seifert 1993 201.0

26-Fe-56 N. Boukharouba 1992 4.08, 5.02, 6.56, 7.74 K. Kikuchi 1959 7.4, 14.1
J. Benveniste 1964 10.9 R. Varner 1986 16.0
I. E. Dayton 1956 17.0 P. Kossanyi-Demay 1967 18.6
S. F. Eccles 1966 19.1 B. W. Ridley 1964 30.3
M. K. Brussel 1959 39.8 F. E. Bertrand 1969 61.5
H. Sakaguchi 1982 65.0 D. J. Steinberg 1964 146
V. Comparat 1974 156.0 A. Johansson 1961 176

28-Ni-58 L. L. Lee, Jr. 1964 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 S. Kobayashi 1960 14.4, 15.4
R. Varner 1986 16.0 S. F. Eccles 1966 18.6
J. R. Tesmer 1972 20.0 E. Fabrici 1980 35.2
L. N. Blumberg 1966 40.0 C. B. Fulmer 1969 61.4
H. Sakaguchi 1982 65.0 A. Ingemarsson 1979 178.0
H. Sakaguchi 1998 192.0 H. Takeda 2003 250.0

40-Zr-90 G. W.Greenlees 1971 9.7 K. Matsuda 1967 14.7
R. Varner 1986 16.0 J. B. Ball 1964 22.5
R. De Swiniarski 1977 30.0 L. N. Blumberg 1966 40.0
C. B. Fulmer 1969 61.4 H. Sakaguchi 1982 65.0
A. Nadasen 1981 80.0, 135.0, 160.0 V. Comparat 1974 156.0
E. Hagberg 1971 185.0

50-Sn-120 G. W. Greenlees 1971 9.7 R. Varner 1986 16.0
W. Makofske 1972 16.0 S. D. Wassenaar 1989 20.4
B. W. Ridley 1964 30.3 L. W. Put 1971 30.4
G. S. Mani 1971 49.4 F. E. Bertrand 1970 61.5
S. Kailas 1984 104.0 P. Schwandt 1982 135.0
V. Comparat 1974 156.0 H. Takeda 2003 200.0, 250.0

82-Pb-208 W. Makofske 1972 16.0 W. T. H. Van Oers 1974 21.0, 24.1, 26.3, 30.3, 35.0,
45.0, 47.3

D. W. Devins 1962 30.8 L. N. Blumberg 1966 40.0
C. B. Fulmer 1969 61.4 H. Sakaguchi 1982 65.0
A. Nadasen 1981 80.0, 121.0, 160.0, 182.0 V. Comparat 1974 156.0
C. Djalali 1982 201.0

As is well known, the EXFOR library is a comprehensive
database that gathers the nuclear reaction measurements of
the world [32]. The experimental data adopted in our analysis
are all referred in this library. The details of measured elastic

scattering angular distribution are specified in this paper by the
first author and publication year, which are shown in Tables I
and II for neutron-induced reaction and Table VI for proton-
incident reaction according to the diversified target nuclei.
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XU, MA, ZHANG, TIAN, VAN DALEN, AND MÜTHER PHYSICAL REVIEW C 94, 034606 (2016)

50 100 150 200
0.2

0.4

0.6

0.8

1

1.2

Energy (MeV)

σ re
ac

 (
b)

Reaction cross sections of p+40Ca

A.Auce+(2005)
A.Ingemarsson+(1999)
R.F.Carlson+(1975)
J.F.Dicello+(1970)
KD potential
this work

FIG. 16. Comparison of predicted reaction cross section (solid
lines) and experimental data (points) and KD calculation (dashed
lines) for p + 40Ca.

Other measurements like neutron total cross section and proton
reaction cross section are also depicted in the same way in
figures.

C. Results for neutron scattering

About 500 sets of elastic scattering angular distributions,
30 sets of analyzing power angular distributions, and 20 sets of
total neutron cross sections for 32 different targets are involved
in this systematic comparison. The present calculations are
compared with experimental data and the results from the
widely used KD optical potential.

Because nucleon densities of very light nuclei are not
described in a reliable way by means of the Hartree-Fock-
Bogoliubov approach, we take 12C as the lightest target in this
study. Overall, the predictions of the MOP are in rather good
agreement with the experimental data as well as the results
calculated by KD potential for such large mass and energy
ranges. Meanwhile, it is also observed that the performance of
global KD potential is satisfactory even beyond its application
scope. The discussion is given in the following sections in
detail.
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FIG. 17. Comparison of predicted reaction cross section (solid
lines) and experimental data (points) and KD calculation (dashed
lines) for p + 120Sn.
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FIG. 18. Comparison of predicted reaction cross section (solid
lines) and experimental data (points) and KD calculation (dashed
lines) for p + 208Pb.

1. The neutron total cross section

The calculated neutron total cross sections of 12C, 56Fe, and
208Pb are compared with the experimental data and the results
of KD potential in Figs. 4, 5, and 6, respectively. Within the
scope of application (En > 30 MeV), a satisfactory prediction
is obtained for light nucleus 12C. Because more Ramsauer-
like structures appear for the heavy nuclei, the data quality of
prediction decreases with increasing mass number. The cross
sections are underestimated in this work. The most deviation
between experimental data and calculation reaches 10% for
208Pb.

2. The elastic scattering angular distribution

As abundant experimental data exist, we show more
concern on dσ/d� in this MOP study. Overall, the predicted
results are satisfactory even below the energy scope of applica-
tion of MOP. As the examples, the calculated dσ/d� around
incident neutron at 30 and 65 MeV are plotted individually
in Figs. 7 and 8, where the present predictions coincide with
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FIG. 19. Comparison of predicted angular distribution (solid
lines) and experimental data (points) and KD calculation (dashed
lines) for p + 28Si, 40Ca, 56Fe, 90Zr, and 208Pb at incident neutron
energy 65 MeV and 61.5 MeV for p + 120Sn.
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FIG. 20. Comparison of predicted dσ/d� (solid lines) and
experimental data (points) and KD calculation (dashed lines) for
p + 28Si.

experimental data and the KD results very well. More details
for diversified nuclei are exhibited in the following contents.

Note that for neutron elastic differential cross sections, as,
e.g., in Fig. 9, the incident laboratory energies are in MeV.
The curves and data points at the top are true values, while the
others are offset by factors of 0.01, 0.0001, etc.

Targets 12C -40Ca. Nine target nuclei including 12C, 14N,
16O, 23Na, 24Mg, 27Al, 28Si, 32S, and 40Ca are examined
in this mass region. The results presented in this section
are predictions of the present relativistic MOP except that
of 40Ca, which is included in the optimization procedure as
mentioned in Sec. IV B. The resulting χ2/N are tabulated in
Table III. The results for all nuclei are smaller than 1.0, except
for the target nucleus 12C. It is remarkable that the results
obtained for the phenomenological KD potential exhibit the
same trends as can be observed in the microscopic optical
potential. For some target nuclei like, e.g., 27Al both models
yield a very small value for χ2/N , while both models yield a
rather poor result for other nuclei, like, e.g., 12C. The scattering
on such nuclei is very much influenced by the existence of
specific surface excitation modes, which cannot be described
in terms of a global optical model (see discussion above). It
is worth mentioning that the value for χ2/N for 40Ca, which
has been included in the fit procedure, is comparable to the
corresponding value for the other nuclei, which have not been
considered in the optimization procedure.

The visual comparisons of the present predictions for 12C,
27Al, and 40Ca with the experimental data, as well as those with
KD potential are shown in Figs. 9, 10, and 11, respectively.
An excellent agreement with experimental data for n + 27Al is

TABLE VII. The χ 2/N of dσ/d� for p + 12C -40Ca reactions.

Nuclide N of data points MOP KD

12C 637 3.70 0.34
27Al 336 0.88 0.90
28Si 513 4.78 0.56
40Ca 682 0.37 0.22

TABLE VIII. The χ 2/N of dσ/d� for p + 56Fe -208Pb reactions.

Nuclide N of data points MOP KD

56Fe 516 0.16 0.12
58Ni 557 0.15 0.13
90Zr 536 3.61 0.29
120Sn 406 0.27 0.85
208Pb 1028 0.29 0.72

observed in Fig. 10, as already indicated in the corresponding
value for χ2/N in Table III. From the results displayed
in Fig. 9 one can see that main contributions to the large
value of χ2/N for 12C originate from the deviations between
measurements and theoretical results at the energies around
En = 7 to 13 MeV. The results for 40Ca by MOP is good except
for a slight underestimation at energies 10–20 MeV around the
angles between 30◦ to 60◦, while the phenomenological results
describe the data in this region in a very reasonable way.

Targets 48Ti -63Cu. We compare results for five nuclei in
this mass region, which are important components of structure
materials: 48Ti, 52Cr, 56Fe, 58Ni, and 63Cu. The values of χ2/N
are suspended around 0.11–0.17 except for a slightly larger
value of 0.23 for 56Fe (see Table IV). As an example we
show our prediction for 56Fe in Fig. 12 and compare it with the
experimental data and the results of corresponding calculations
using the phenomenological KD model. Overall, our results
show a fairly good agreement with the experimental data. The
largest discrepancies occur for incident energies around 10 to
20 MeV in a region of scattering angles between 30◦ and 90◦.
In fact, this deviation appears throughout this mass region.

Targets 80Se -209Bi. Thirteen nuclei including 80Se, 88Sr,
89Y, 90Zr, 93Nb, 98Mo, 103Rh, 115In, 120Sn, 140Ce, 197Au,
208Pb, and 209Bi are utilized to test the performance of this
MOP. Good agreement is obtained generally, which could
be perceived through the criteria χ2/N in Table V and
Figs. 13 and 14 for 98Mo, 103Rh, and 208Pb. It is noticed
that the deviation in the minimum of the angular distribution
at scattering angels 30◦–60◦ around En = 20 MeV, which
has been discussed above for 48Ti -63Cu, also shows up for
these nuclei. The results near the incident energy 20–30 MeV
generally exhibit the underestimation around 50◦, which is
illustrated also by dσ/d� for 208Pb in Fig. 14. Apart from
these defects above, all the dσ/d� for other heavy target
nuclei are reproduced in a very nice way.

3. The analyzing power

As mentioned above, it is an important feature of the
relativistic description that the spin-orbit term can be naturally
involved in the scheme without any additional parameter,
which is beneficial to derive the spin-orbit observables Ay(θ )
and Qy(θ ). The Ay(θ ) at incident energies around 10 MeV
are selected to show the ability of predictions for 12C, 40Ca,
58Ni, and 208Pb in Fig. 15, and good agreements with the
experimental data for all nuclei are obtained.
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FIG. 21. Comparison of predicted dσ/d� (solid lines) and
experimental data (points) and KD calculation (dashed lines) for
p + 58Ni.

D. Results for proton scattering

About 150 elastic scattering angular distributions, 65
analyzing powers, and reaction cross sections of ten commonly
targets have been included in our systematic comparison. The
experimental database of dσ/d� is summarized in Table VI
and depicted by the first author there. As for other quantities,
the experimental data for plotting are introduced in the figures.

We compare the present calculations with the experimental
data and KD results. As a whole, the various proton scattering
observables are predicted satisfactorily using MOP just like
its performance in neutron scattering reactions; the results are
discussed in the following sections.

1. The proton reaction cross section

It is noticed that the experimental data of proton reaction
cross sections, σreac, are much less than σtot for neutron in
both quantity and in quality. Therefore, we also refer to the
calculated σreac by KD potential in the process of visual
goodness-of-fit estimation. We sample the predicted σreac

for 40Ca, 120Sn, and 208Pb in Figs. 16, 17, and 18. It can
be observed that the present calculations are good but only
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FIG. 22. Comparison of predicted dσ/d� (solid lines) and
experimental data (points) and KD calculation (dashed lines) for
p + 90Zr.

slightly overestimate the experimental values in the whole
energy region. In some cases, such as p + 120Sn in the lower
energy region, this MOP looks better than the global KD. After
comparisons, the maximum deviation between the predicted
reaction cross sections and measurements is less than 20%.

2. The elastic scattering angular distribution

We collect the proton elastic scattering angular distribution
just as the case for neutron. The dσ/d� of proton scattering
from six nuclei, 28Si, 40Ca, 56Fe, 90Zr, 120Sn, and 208Pb, around
proton incident energy at 65 MeV are collected in Fig. 19.
The perfect agreement between the present calculations and
experimental data displays the powerful prediction ability of
this MOP. In addition, we also condense dσ/d� curves of
various energies belonging to the same nucleus in one figure,
as in Fig. 20. Similarly, in these condensed figures, the curves
and data points at the top are true values, while the others are
offset by factors of 0.01, 0.0001, etc., and incident laboratory
energies are in MeV.

Targets 12C -40Ca. With respect to the differential cross
section dσ/d�, the resulting χ2/N of nuclei in this mass
region are listed in Table VII. The values for 12C and 28Si
are obviously larger than for the other nuclei. To explore the
source of this discrepancy, we focus our discussion on 28Si
(see Fig. 20). It is observed that the theoretical results and
the measurements are in good agreement within the entire
angular region for incident energies Ep < 120 MeV. At higher
energies, however, our predictions tend to underestimate the
data for the differential cross section. This feature is the main
resources to cause the poor χ2/N .

Targets 48Ti -208Pb. The χ2/N of dσ/d� in this target
region is shown in Table VIII. The χ2/N values show a
good prediction in this target region. Some of them are
even lower than the corresponding values by KD potential.
We look through the details by considering dσ/d� of 58Ni
in Fig. 21. The present predictions, measurements, and
phenomenological KD results are consistent perfectly with
each other in the entire energy region.
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90Zr is the only example for which the χ2/N is not
particularly good. Therefore, we compare the calculated
dσ/d� for 90Zr in Fig. 22. It is found that most theoretical
values are consistent with the measurements, and the main
deviations occur at specific incident energies such as 22.5 and
135.0 MeV. In addition, a very good performance of the MOP
also occurs in the calculations for p + 208Pb, as shown in
Fig. 23.

3. The analyzing power and spin rotation function

The predicted analyzing power Ay(θ ) and spin rotation
function Q(θ ) of proton scattering from 208Pb at Ep = 80
and 200 MeV are plotted in Fig. 24. The predicted phases of
Ay(θ ) and Q(θ ) look well, whereas the amplitudes are not
ideal, which remain to be improved in the future. In addition,
to show more results of other nuclei, we also plot Ay(θ ) of
56Fe and 58Ni in Fig. 25, where the applied experimental data
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FIG. 25. Comparison of predicted Ay (solid lines) and experi-
mental data (points) and KD calculation (dashed lines) for p + 56Fe
and 58Ni. The curves and data points at the top represent true values;
the others are offset by factors of 2, 4, 8, etc.

TABLE IX. The Ay database for proton elastic scattering from
56Fe and 58Ni.

Target Author (first) Year Energy (MeV)

26-Fe-56 R. Varner 1986 16.0
P. J. Van Hall 1977 17.2, 20.4, 24.6
R. De Leo 1996 65.0

28-Ni-58 R. Varner 1986 16.0
P. J. Van Hall 1977 20.4, 24.6
D. C. Kocher 1976 60.2
H. Sakaguchi 1982 65.0, 192.0
H. Takeda 2003 250.0

are listed in Table IX. It is shown that the amplitudes of Ay(θ )
by MOP are better around the lower energy region.

V. SUMMARY

The central aim of this study is to provide a relativistic MOP
for nucleon-nucleus scattering, which is based on the DBHF
calculation of the nucleon self-energy in nuclear matter. After
adjustment of very few parameters, the new optical potential
qualitatively reproduces many sets of nucleon scattering data
for stable targets across the nuclear mass table between 12C to
208Pb at nucleon incident energies below 200 MeV. Therefore,
this model can be used to make predictions for unstable
targets. At least it can provide an advanced framework for
the description of scattering data from unstable nuclei and for
studying nuclear structure models of exotic nuclei.

The microscopic basis of this study are Dirac-Brueckner-
Hartree-Fock calculations of nuclear matter using realistic
forces, which have been adjusted to describe nucleon-nucleon
scattering phases. One of the basic features of this relativistic
approach is that it provides a specific energy dependence for
the optical model and also predicts a spin-orbit term without
the need to introduce any additional parameters (see, e.g.,
Ref. [18]).

The complex isospin dependent self-energies are extracted
from the DBHF approach with projection techniques using
the Bonn B bare NN interaction. The MOP with Bonn A
has also been tested and the results show that the prediction
of the scattering for finite nuclei is not very sensitive to
the choice of a realistic nucleon force, Bonn A or Bonn
B. Therefore, Bonn B has been adopted following our pilot
study [17]. The present MOP is very strictly built on the DBHF
calculations in nuclear matter at ρ > 0.08 fm−3 by means of
the improved local density approximation. For the purpose
of describing the observables of scattering, we construct the
optimization method according to the annealing algorithm.
The range factors in ILDA and the scalar and vector potentials
below 0.08 fm−3 are extracted using this method from the
experimental data of 40Ca as an example for isospin symmetric
nuclei and 208Pb for isospin asymmetric nuclei. Then they are
applied for many nuclei and energy regions. Good predictions
for most nuclei are achieved by the resulting MOP only with
the free parameter t . The results of the MOP are of a quality,
which is comparable to the widely used phenomenological KD
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global potential. A bit of imperfection still exists in both n + A
and p + A systems for specific target nuclei.

Certainly, it is impossible to depict all quantities in a perfect
way within the spherical nuclear optical model and the present
MOP, especially for the strongly deformed nuclei around rare
earth and actinide. Also, it should be kept in mind that the
MOP is based on a microscopic study of nuclear matter.
Therefore, all features, which are related to surface excitation,
e.g., the particle-vibration coupling, are not explicitly taken
into account. Such features shall be included in future studies.
Moreover, we plan to make the present MOP available in the
form of an interactive web-based application.
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