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Imaginary part of the 9C -9Be single-folded optical potential
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In a recent publication we have argued that using two very successful n-9Be optical potentials [A. Bonaccorso
and R. J. Charity, Phys. Rev. C 89, 024619 (2014)] and microscopic projectile densities, it is possible to build a
single-folded (light-) nucleus-9Be imaginary optical potential which is more accurate than a double-folded optical
potential. By comparing to experimental reaction cross sections, we showed for 8B, 8Li, and 8C projectiles, that a
very good agreement between theory and data could be obtained with such a “bare” potential, at all but the lowest
energies where a small semimicroscopic surface term was added to the single-folded potential to take into account
projectile breakup. In this paper we extend this study to the case of 9C projectiles and assess the sensitivity to the
projectile density used. We then obtained the modulus of the nucleus-nucleus S matrix and parametrize it in terms
of a strong-absorption radius Rs and finally extracted the phenomenological energy dependence of this radius.
This approach could be the basis for a systematic study of optical potentials for light exotic nuclei scattering on
light targets and/or parametrizations of the S matrix. Furthermore our study will serve to make a quantitative
assessment of the description of the core-target part of knockout reactions, in particular their localization in terms
of impact parameters.

DOI: 10.1103/PhysRevC.94.034604

I. INTRODUCTION

Light exotic nuclei have been studied extensively in the
last 30 years and their structure was first enlightened from
measurements of the total reaction cross sections analyzed in
terms of the Glauber model [1]. This lead automatically to
calculations of imaginary parts of the nucleus-nucleus optical
potential in the folding model. Such a procedure, although
very simple, is questionable because the folding model is first
order in the nucleon-nucleon interaction, while the Feshbach
imaginary potential is second order for a real nucleon-nucleon
interaction. Furthermore for light projectiles on light targets,
the optical model itself has to be handled with great care.

Recently [2] we have argued that using two very successful
n-9Be optical potentials [3] and microscopic projectile densi-
ties, such as the ab initio VMC (Variational Monte Carlo) [4,5],
it is possible to build a single-folded (light-) nucleus-9Be
optical potential which is more accurate than a double-folded
optical potential thus overcoming the difficulties discussed
above. This is because the n-9Be optical potentials have strong
surface terms in common for both the real and the imaginary
parts which represent deformation effects, giant resonance
excitations, and the breakup channels of the target. On the
other hand, ab initio VMC [4,5] or other microscopic densities
for the projectile would not contain enough information
to reproduce the breakup channels of the projectile. By
comparing to experimental reaction cross sections, we showed
in Ref. [2], that for the cases of 8B, 8Li, and 8C projectiles,
a very good agreement between theory and data could be
obtained by adding, at the lower energies, a small surface
term to the single-folded potential. In this paper we extend the
study to the case of 9C projectiles, compare to results obtained
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with the JLM potential [6–9], and assess the sensitivity of
the result to the projectile density used. We obtain then
the nucleus-nucleus S matrix, SNN , and parametrize |SNN |2
in terms of a strong-absorption radius [c.f. Eq. (11)] and
finally extract the phenomenological energy dependence of the
parameter Rs . Our results could have interesting implications
in knockout formalisms as well.

9Be is one of the ideal black-disk targets because it does
not have bound excited states and for this reason it has been
chosen in the majority of cases in which breakup of the
projectile or total reaction cross sections have been studied.
It has strong breakup channels itself but indeed these are
taken into account by the n-9Be optical potentials [3] we have
developed which are able to reproduce at the same time the
total, elastic, reaction cross sections and all available elastic
scattering angular distributions.

On the other hand, one of the motivations for paying
particular attention to 9C as a projectile, is in nuclear
astrophysics [10]: the current knowledge of the rate of the
8B (p,γ )9C reaction in stellar conditions is contradictory at
best and there is little hope to resolve this, now or in in
the future, by means other than by indirect methods such as
for example the ANC from the breakup 9C → 8B +p. This
reaction gives a possible path to the hot pp chain pp-IV at
high temperatures and away from it toward a rapid α process
at high temperatures and densities and therefore it is important
in understanding nucleosynthesis in supermassive hot stars in
the early universe, including the possible of bypassing the
3α process. The correct description of the breakup reaction
implies a precise knowledge of the various optical potentials
and the corresponding S matrices at intermediate energies in
the 9C-target, 8B-target, and p-target channels.

Another motivation is two-proton radioactivity which has
been studied recently by the HiRA collaboration [11–14].
They have applied nucleon removal to situations in which the
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remaining “core” is beyond the drip line, such as 8C, unbound
by one or more protons, and whose excitation-energy spectrum
can be obtained by the invariant-mass method. By gating on
the ground-state peak, “core” parallel-momentum distributions
and total knockout cross sections have been obtained similar
to previous studies with well-bound “cores”. In addition for
each projectile, knock out to final bound states has also been
obtained in several cases.

II. NUCLEUS-NUCLEUS OPTICAL POTENTIAL

We remind the reader here of some well-known formulas
that we need to refer to in the following.

The Glauber reaction cross section is given by

σR = 2π

∫ ∞

0
bdb(1 − |SNN (b)|2), (1)

where

|SNN (b)|2 = e2χI (b) (2)

is the probability that the nucleus-nucleus (NN ) scattering is
elastic for a given impact parameter b.

The imaginary part of the eikonal phase shift is given by

χI (b) = 1

�v

∫
dzWNN (b,z)

= 1

�v

∫
dz

∫
dr1W

nN (r1 − r)ρ(r1), (3)

where WNN is negative defined as

WNN (r) =
∫

db1W
nN (b1 − b,z)

∫
dz1ρ(b1,z1). (4)

This quantity is the imaginary part of the single-folded optical
potential given in terms of a nucleon-nucleus (nN ) optical
potential WnN (r) and the matter density ρ(b1,z1) of the other
nucleus. In the single-folding method, WnN (r) can be the
imaginary part of a phenomenological nucleon-target potential
such as the (DOM) or the (AB) potentials of Ref. [3]. In the
double-folding method, WNN is obtained from the microscopic
densities ρp,t (r) for the projectile and target, respectively, and
an energy-dependent nucleon-nucleon (nn) cross section σnn,
i.e.,

WNN (r) = −1

2
�vσnn

∫
db1ρp(b1 − b,z)

∫
dz1ρt (b1,z1).

(5)

Also

WnN (r) = − 1
2 �vσnnρt (r) (6)

is a single-folded zero-range n-target imaginary potential and
v is the nucleon-target velocity of relative motion. The WnN

potential of Eq. (6) has the same range as the target density
because σnn is a simple scaling factor. With the potential
Eq. (5), the phase shift becomes

χI (b) = −1

2
σnn

∫
db1

∫
dzρp(b1 − b,z)

∫
dz1ρt (b1,z1).

(7)

A finite-range potential can also be defined as

WNN
I (r) = −1

2
�v

∫
dr1dr2ρp(r1)ρt (r2)vnn(r1 + r − r2),

(8)

where vnn can be a zero-range or a finite-range nucleon-
nucleon interaction such as Gogny [15] or M3Y [16] or a
phenomenological form. In particular a Gogny interaction [15]
contains a pseudo-zero-range power density dependent term.
Equation (8) can give reasonable potentials, however, the
imaginary parts need to be renormalized most of the time.

The previous equations can be generalized in a obvious way
in order to distinguish between the proton and neutron densities
and the proton-neutron and proton-proton cross sections,
using: ρp = ρn

p + ρp
p, and WnN (r) = − 1

2 �v(σnpρp
t (r) +

σppρn
t (r)).

In this paper we will: i) compare the characteristics of
the imaginary potentials calculated from Eq. (4) using the
potentials of Ref. [3], from Eq. (5) using microscopic densities,
and with the JLM potential; ii) compare the respective S
matrices from Eq. (2) and obtain the strong-absorption radii Rs

defined as |SNN (Rs)|2 = 1
2 . We will also compare integrands

of Eq. (1) to study “localization” effects on the reaction cross
section; iii) calculate the reaction cross sections obtained
from Eq. (1) using the single-folded potential Eq. (4) and the
double-folded potential Eq. (5), test different densities, and
study the effect of adding an extra surface term [c.f. Eq. (9)]
to the single-folded potential; iv) parametrize the S matrix and
study the energy dependence of the “strong-absorption radius”
parameter, thus making a link with similar studies performed
in the 1980s for heavy-ion reactions [17] and more recently
by Gomes and collaborators to study the reduction of reaction
cross sections in term of a geometrical parameter [18].

III. 9C -9Be IMAGINARY POTENTIAL

In this section we discuss the details of the 9C -9Be imagi-
nary potentials. As already argued in [2], one characteristic of a
double-folded potential with a zero-range interaction is that its
radial shape is determined solely by those of the densities used.
As such the distinction of surface and volume terms cannot
be usually reproduced. In particular their respective contri-
butions, which are strongly energy dependent, as shown by
phenomenological potentials, cannot be distinguished. Indeed,
Satchler and Love [19], discussing the folding model for 9Be
scattering, found evidence of anomalously large deformation
and surface effects, which is consistent with the results of [3].
When experimental data are available, this problem is often
solved by renormalizing the folded potential so that it would
reproduce the data. However dynamical aspects of surface
reactions which are typical and very relevant for light nuclei
are difficult to reproduce even with a renormalized folded
potential. In particular, we notice that the “unphysical” positive
imaginary potentials that sometimes have been introduced at
short distances, might simply reflect the need to correct the
folded potential, which is too attractive in the interior, thus
making the resulting potential more surfaced peaked [20,21].
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Indeed coupled-channel calculations have overcome such
difficulties [22–24].

In the following of the paper we will discuss differences in
the imaginary part of two types of potentials: the 9C -9Be po-
tential obtained making a single-folding calculation in which
we use one density and the nucleon-nucleus phenomenological
potential [3] vs. the double-folded and JLM potentials. The
accuracy of such a procedure can be checked by using
these potentials to calculate total reaction cross sections and
compare them to experimental results. Such cross sections
will be calculated, in the eikonal approximation, without
renormalizing the potential for all but the JLM case. At
energies smaller than about 80 MeV/nucleon, we notice that
the loosely bound nature of the projectiles would provide a
second-order imaginary term to the potential representing the
valence nucleon breakup channels. Since the folding model
misses such a term, we have added to the single-folding
potential, a surface potential of the Woods-Saxon–derivative
type:

W (r) = −4aiWsurf
d

dr

1

1 + e(r−Ri )/ai
(9)

with very small strength (Wsurf = 0.8 to 0.015 MeV). The
radius has been taken [25] as Ri = 0.92 (A1/3

p + A
1/3
t ) = 3.8

fm, which is close to the distance of closest approach for
head on collisions where the absorption is maximized. On the
other hand the diffuseness should be large according to [2,25],
and equal to ai = 1/(2

√
2mSp/�) = 2 fm for 9C, since Sp =

1.296 MeV.

A. n-9Be imaginary potential

In Ref. [2] we compared the DOM and AB potentials with
the potential from Eq. (6). It was shown that both of these
“phenomenological” potentials are shallower in the interior
than at the surface, thus having a longer range than the folded
potential, although the latter was obtained from a realistic
VMC density [4,5]. Therefore this observation clarified that
when one such neutron-nucleus potential is then folded with

a projectile density, the resulting potential, at least for a light,
very deformed nucleus like 9Be, will miss the strong dynamical
effect, contained instead in a phenomenological potential, of
a surface dominance and a longer range. Besides, it will be
affected by the ambiguities discussed in Ref. [26] related to
the choice of the nucleon-nucleon cross section.

B. 9C -9Be

In this section, we study a series of potentials and calculate
the associated 9C + 9Be reaction cross sections.

The double folding will be performed with predicted VMC
and Hartree-Fock (HF) densities, and with the JLM method. In
contrast to this we will single fold the (AB) potential of Ref. [3]
with the same VMC and HF densities and compare the results.
For comparison we will also consider a relativistic Hartree
Fock density [27], the multiple-width Gaussian basis method
density based on antisymmetrized molecular dynamics [28]
and the microscopic cluster density [29].

Our procedure will suggest ways to determine the “strong-
absorption radius” Rs at which |SNN |2 = 1

2 , and the diffusivity
parameter a for a parametrized form of the S matrix, i.e.,

SNN = exp (−ln2e(Rs−b)/a). (10)

Due to the energy dependence of the optical potential,
the strong-absorption radius is also energy dependent. It is
customary to parametrize such as a dependence as

Rs = rs(Einc)
(
A1/3

p + A
1/3
t

)
. (11)

Equation (10) is also used to describe [30] the core-target
elastic scattering, or “survival probability” in one-nucleon
transfer and/or knockout reactions and thus it constraints the
core-target S-matrix Sct which is a very relevant quantity in the
calculation of the absolute cross sections and in the extraction
of the “experimental” spectroscopic factors.

We start by showing in Figs. 1 and 2 imaginary potentials
corresponding to 20, 38, 65, and 83 MeV/nucleon. We
show separately the JLM renormalized in order to fit the
experimental data, the double-folded potential calculated with
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FIG. 1. Potentials calculated at 20 (LHS) and 38 MeV/nucleon (RHS). These include the double-folded (d.f.) and the single-folded (s.f.)
results. The surface contribution (surf), the sum of the single-folded and surface values (tot), and the JLM result. The double-folded potentials
are calculated with the HF densities.

034604-3



A. BONACCORSO, F. CARSTOIU, AND R. J. CHARITY PHYSICAL REVIEW C 94, 034604 (2016)

0 2 4 6 8 10 12 14
r (fm)

0.001

0.01

0.1

1

10

100

1000

W
(r

) (
M

eV
)

83MeV d.f. 
83MeV JLM
83MeV tot
83MeV s.f.
83MeV surf

0 2 4 6 8 10 12
r (fm)

0.01

0.1

1

10

100

1000

W
(r

) (
M

eV
)

66MeV surf
66MeV s.f.
66MeV tot
66MeV JLM N=0.85
66MeV JLM bare
66MeV d.f

FIG. 2. As for Fig. 1 but now the potentials are calculated at 66 (LHS) and 83 MeV/nucleon (RHS). At 66 MeV/nucleon the “bare” JLM
(JLM bare) is also shown.

the HF densities (d.f.), the single-folded potential (s.f.), Eq. (4),
obtained also using the HF densities, the surface correction
(surf) Eq. (9), and the sum of the two (tot). The strength of a
surface potential due to breakup, according to Ref. [25] is very
small. Here we have constrained its magnitude in order to get
cross sections close to the experimental values. It is clear that
the surface correction has the effect of modifying the tail of
the potentials and that this tail is more evident at low energies.
We interpret this as an effective way of taking into account the
“halo” of the 9C projectile and in particular, its breakup. In
Table I we give the volume integrals per number of interacting
nucleon pairs of these potentials, their rms radius, and the
strength of the surface term Eq. (9). The volume integral and
rms radius calculated with the VMC densities is also given for
comparison although this potential is not shown in the previous
figures. Obviously the volume integrals of the double-folded
potentials are the same because all densities are normalized to
the correct number of neutron and protons in the projectile and
target. Thus the volume integrals depend only on the velocity
of relative motion and the free σnp,pp which we take from the
parametrization given in Ref. [26]. The rms radii are however
different because the VMC and HF densities have different
rms radii whose values are given on Fig. 4.

Then in Table II for a series of incident energies of the
system 9C + 9Be, we give in the second column some data
from Ref. [32]; in columns three and four, the calculated total
reaction cross sections with the double-folded potential in two
cases. One with 9C and 9Be densities from VMC; the other with
both densities from HF. In the next columns we provide cross

section obtained by single-folding the (AB) potential from
Ref. [3] with a HF density for 9C and then adding the surface
potential Eq. (9) whose strength is also given, the “bare”
JLM results and those with the “renormalized” JLM are also
shown as indicated. The renormalization factor is given in the
next column. For the single-folded-plus-surface calculation,
we provide then the strong-absorption radius and diffuseness
a obtained from a fit to the calculated |SNN |2 with Eq. (10).
Other projectile densities have also been tested [4,27–29] in
the single-folding formula Eq. (4) and the dependence of the
cross sections on the density used is shown of the (LHS)
of Fig. 3. The long-dashed curve is from the microscopic
cluster model density [29]; short dashed curve is from the
molecular dynamics density [28]; dotted-dashed curve is from
HF density and double-dotted-dashed curve is from VMC
density [4]; double-dashed-dotted curve is the “bare” JLM
result. The relativistic HF density [27] gives results very close
to HF and it is not shown for simplicity. Furthermore the full
curves correspond to the calculations with the double-folded
potentials. Thick curves obtained with HF densities, while thin
curves obtained with VMC densities. These two calculations
show a behavior with energy similar to the data, but as
expected [31] the absolute values are smaller than the data [32].
The single folded potentials with VMC and HF densities give
a good reproduction of both the energy dependence and the
magnitude of the data, but only at energies higher than about
60 MeV/nucleon. Figure 4 shows the densities we have used.
In the inset, they are reported on a logarithm scale to visualize
their different tails at large radii. Part of the reason for the small

TABLE I. Volume integrals of the imaginary potentials shown in Figs. 1, 2, their rms radii, and the strength of the surface term Wsurf (see
text).

Elab Jd.f.VMC rms Jd.f.HF rms J ren
JLM rms J +surf

s.fold rms Js.fold rms Wsurf

(MeV/nucleon) (MeV fm3) (fm) (MeV fm3) (fm) (MeV fm3) (fm) (MeV fm3) (fm) (MeV fm3) (fm) (MeV)

20 657 3.38 656 3.55 259 4.42 198 4.72 172 3.81 0.8
38 438 3.38 437 3.55 212 4.40 272 4.29 255 3.85 0.5
66 302 3.38 301 3.55 143 4.31 248 3.96 245 3.86 0.1
83 262 3.38 261 3.55 147 4.27 232.2 3.87 231.7 3.85 0.015
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TABLE II. Experimental reaction cross sections, second column, from Ref. [32]. Calculated total reaction cross sections with the double-
folded potential using VMC densities for both 9C and 9Be (third column); double-folded potential using HF densities for both 9C and 9Be
(fourth column); using the single-folded potential with HF density for 9C (fifth column) and with the added surface potential (sixth column),
with the “bare” JLM and with the renormalized JLM for 9C + 9Be. The renormalization factor for the JLM potential and strength of the
additional surface potential for the single-folded potential are also given. For the case of σ+surf

s.fold we then give strong-absorption radius Rs from
|SNN (Rs)|2 = 1

2 , and Rfit
S from the fit to the calculated |SNN |2 according to Eq. (10). In this case also the diffuseness-like parameter is given.

Last column: rs from Eq. (11) and Rs .

Elab σexp σ VMC
d.fold σ HF

d.fold σs.fold σ+surf
s.fold σ bare

JLM σ ren
JLM NJLM Wsurf Rs Rfit

s afit rs

(MeV/nucleon) (mb) (mb) (mb) (mb) (mb) (mb) (mb) (MeV) (fm) (fm) (fm) (fm)

20 1267 1409 1078 1565 1338 1538 1.65 0.8 6.12 6.25 1.01 1.47
38 1086 1191 1112 1341 1250 1324 1.20 0.5 5.95 5.99 0.97 1.44
40.9 1216 ± 57 1064 1166 1117 1291 1235 1215 0.95 0.4 5.95 5.99 0.98 1.44
43 1050 1148 1103 1275 1221 1260 1.10 0.4 5.95 5.99 0.99 1.44
43.6 1269 ± 22 1046 1144 1106 1235 1219 1257 1.10 0.3 5.82 5.70 0.80 1.40
59 960 1042 1047 1124 1130 1111 0.95 0.2 5.70 5.64 0.82 1.36
61.1 1104 ± 20 950 1030 1045 1122 1119 1119 1.00 0.2 5.68 5.63 0.83 1.36
66 928 1006 1028 1066 1091 1028 0.85 0.1 5.60 5.55 0.80 1.35
67.4 1074 ± 32 923 999 1026 1056 1087 1087 1.00 0.08 5.60 5.53 0.80 1.35
68.3 1064 ± 16 919 995 1024 1052 1082 1063 0.95 0.075 5.55 5.49 0.80 1.33
83 867 934 948 979 1015 987 0.93 0.015 5.40 5.38 0.78 1.29
84.9 981 ± 15 861 928 979 983 1008 989 0.95 0.01 5.40 5.36 0.80 1.29
95 833 895 949 952 968 956 0.97 0.01 5.40 5.28 0.79 1.29
97.2 919 ± 24 827 888 949 951 963 923 0.90 0.005 5.35 5.28 0.80 1.28

cross sections obtained with these model densities is that they
do not extend to large enough radii. Notice that from about 5 fm
the various densities show differences on a logarithmic scale.
Here they have already dropped by three orders of magnitude
with respect to the central density. Still the corresponding
total reaction cross sections, Fig. 3 (LHS) show differences
thus suggesting once again the very-long-range nature of the
nuclear interaction for halo nuclei. Finally on the right-hand

side of Fig. 3 we report again the data [32] together with our
results from the single folding with HF density plus the surface
term (full cyan line) and the renormalized JLM (dot-dashes
brown line). Both calculations reproduce the energy slope and
the absolute values of the data. We report for completeness
also the experimental values [33,34] and theoretical cross
sections [2] for 8Li and 8B projectiles. Note the very close
similarity between the 8B and 9C values.
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FIG. 3. (LHS) Energy dependence of the reaction cross sections for 9C -9Be calculated according to Eq. (1). We compare results obtained
using the the single-folding potential with n-9Be from [3] and various projectile densities, in particular VMC [4], YK-E [28], PD [29] (see also
text), and JLM. The two full lines are the results of calculations with the double-folded potentials. Thick maroon line is with HF densities,
blue thin line with VMC densities. Data are from Ref. [32]. (RHS) We show here again the data from Ref. [32] and results of reaction cross
section calculations which have been modified to fit the data. One is from the single-folding potential plus the additional surface term Eq. (9),
the second is a renormalized JLM. For comparison results obtained for 8Li and 8B projectiles from Ref. [2] using the single-folded plus surface
term potential. Data are from Refs. [33,34].
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FIG. 4. 9C densities used in the calculated cross sections shown
in Fig. 2.

One interesting result of our study, as seen in Table I, is that
although the volume integrals of the potentials obtained by
double-folding VMC and HF densities are basically identical,
their radii are not. The potentials obtained with HF densities
have slightly larger radii and this reflects in the larger cross
sections shown in Table II. This finding is intriguing and
contradicts the common wisdom that potentials with equal
volume integrals would give equal reaction cross sections.
We believe this situation is novel in what we are dealing
with very-light and deformed nuclei in which the surface and
surface-dominated reactions must be dominant over volume
characteristics. Furthermore we notice that the JLM potential,
even in the bare case, provides cross sections larger than the
two double-folded potentials although its volume integrals are
much smaller. Once again, this is due to the fact that its radii
are larger than those of the double-folded potentials. In fact the
HF densities we have used for JLM were obtained from a HF
calculation in which the surface term of the density functional
was adjusted to reproduce the experimental binding energy.

With this procedure the single particle levels near the Fermi
energy are more realistic and the resulted range reflects in some
measure the delocalization of the weakly bound neutrons.
However our goal here is to obtain the best absolute cross sec-
tions at all energies. This does not seem possible by using any
of the projectile densities we have tried. Indeed, as it is shown
by Fig. 3 (LHS), the slope does not depend on the density.

In Fig. 5 we show the S matrices (LHS) at 66 MeV/nucleon
and the total integrand of Eq. (1) (RHS). One notices that the
JLM potential gives the largest cross sections because the S
matrix attains the unitary value at larger distances than with the
other potentials. The large impact parameters contribute indeed
mostly to the reaction cross section. This can be understood by
looking at the JLM potential shown in Fig. 2 (RHS). Overall,
this potential is not as deep as the other potentials but it has
a region on the surface (between about 5 fm to 10 fm) where
it is deeper than all other potentials. On the other hand we
notice that the double-folded potential gives rise to a “sharper”
S matrix, corresponding also to a smaller strong-absorption
radius. As we anticipated, this is because the important surface
effects are missing.

Looking again at Fig. 3, we notice that the simple addition
of the very weak surface potential to the single-folded potential
provides the change of slope in the energy dependence of the
reaction cross section, expected on the basis of the published
experimental results of similar systems [2,33,34]. Furthermore
we notice from Table II that the strength of the extra
surface term has dropped by two orders of magnitude from
80 MeV/nucleon on and indeed the results look independent
from the presence of the extra surface imaginary potential.
Consistent with our expectations, this result shows that at
high energies the imaginary potential is of volume type
and that its strength has saturated. Thus it appears that the
energy dependence of the n-9Be potential [3] is enough to
provide the correct energy dependence of the nucleus-9Be
potential for energies larger than about 65 MeV/nucleon,
and the single-folded potential as given by Eq. (4) will then
have an accurate predictive power without any correction or
renormalization.
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IV. CONCLUSIONS

As we mentioned in the Introduction and shown by our
calculations, double-folded potentials are unable to repro-
duce experimental reaction cross sections, irrespective of
the densities used. Several ad hoc corrections have been
applied in the literature [20–24]. In order to minimize such
corrections and obtain also a better understanding of the
reaction channels contributing to the reaction cross section,
we have presented in this work, some results obtained using
new ideas to improve the understanding and calculations of the
nucleus-nucleus imaginary potential for scattering of exotic
light nuclei, the corresponding S matrices and total reaction
cross sections. We have been concerned with systems like
9C -9Be for which the optical potential and, in particular,
the double-folded-model version of it needs careful handling
and a good understanding of the reaction channels involved.
The existing formalisms, such as for example JLM, have
been improved because no arbitrary renormalization has been
applied to the folded potential. This has been done using a
single-folding model in which the n-9Be target potential has
been taken from a phenomenological fit to data over a large
range of energies [3]. Projectile densities have been taken from
a series of microscopic calculations [4,5,27–29] and results
have been compared. Depending on the projectile density
used, the absolute cross sections are different but the slope
of the energy dependence of the cross section is the same.
Because it appears that none of those distributions is able to

describe the low-energy increase of the reaction cross sections,
a semimicroscopic surface term has been included according
to Ref. [25]. Such a term has the diffuseness obtained from
the projectile valence particle separation energy while the
strength is very small. It is clear that a potential of this type
does not modify the internal absorption but simply reproduces
surface reactions such as breakup which are important for
weakly bound nuclei. Thus it cannot be considered as a
renormalization of the whole potential because it modifies
only its tail. The results are extremely encouraging and we
propose that by using n,p-target phenomenological potentials
fitted to experimental data, folded with exotic nuclei densities,
reaction cross sections could be calculated and compared to
experimental data. Missing surface effects could be reproduced
adding surface potentials according to Ref. [25].
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