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Importance of resonance widths in low-energy scattering of weakly bound light-mass nuclei
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What effect do particle-emitting resonances have on the scattering cross section? What physical considerations
are necessary when modeling these resonances? These questions are important when theoretically describing
scattering experiments with radioactive ion beams which investigate the frontiers of the table of nuclides, far from
stability. Herein, a novel method is developed that describes resonant nuclear scattering from which centroids and
widths in the compound nucleus are obtained when one of the interacting bodies has particle unstable resonances.
The method gives cross sections without unphysical behavior that is found if simple Lorentzian forms are used
to describe resonant target states. The resultant cross sections differ significantly from those obtained when the
states in the coupled channel calculations are taken to have zero width, and compound-system resonances are
better matched to observed values.
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The advent of radioactive ion beams has allowed explo-
ration of nuclei far from the valley of stability, and has led to
an immense experimental effort [1–14]. Theoretical studies of
these systems are vital for interpretation of the resultant data.
Elastic scattering of two nuclei at low energies often gives cross
sections displaying resonances associated with properties of
the compound system, the analysis of which is appropriately
done with a coupled-channel theory in which the low-energy
spectra of the nuclei concerned are most relevant in defining
the coupling interactions. Usually, however, those states are
not considered to be resonances. Herein we present results
found using a theory in which those target state resonance
properties are taken into account. As detailed below, this
requires a mathematically robust, energy-dependent shape to
avoid unphysical behaviors in calculated observables, such
as vanishing bound states, irregular behavior at the scattering
threshold, and with the requirement of causality being restored.

To this end, a multichannel algebraic scattering (MCAS)
method [15] is used. MCAS solves coupled-channel
Lippmann-Schwinger equations in momentum space using
the Hilbert-Schmidt expansion of amplitudes. In this method,
two-body nuclear scattering potentials are expanded into a
series of sturmians [15–17], and then a corollary between
separable scattering potentials and separable T matrices of
the Lippmann-Schwinger equation delivers solutions without
explicitly solving the integral equations. Scattering potentials
used for this investigation have the basic form

Vcc′ (r) = f (r){V0δcc′ + Vll[� · �]cc′

+Vss[s · I]cc′ } + g(r)Vls[� · s]cc′ , (1)

*paul.fraser@curtin.edu.au

for each channel (c), where c denotes a unique set of quantum
numbers, and with parameters for the central (V0), orbit-orbit
(Vll), spin-spin (Vss), and spin-orbit (V�s) components. For the
functions f (r) and g(r), deformed Woods-Saxon form factors
are used:

f (r) = [
1 + e( r−R

a
)
]−1

, g(r) = 1

r

df (r)

dr
. (2)

The radius of the nuclear target is taken to be deformed,
and the Woods-Saxon form factors are expanded to the second
order in terms of this deformation. To treat the nuclear target
as having collective rotor character, deformation is defined
in terms of spherical harmonics [18]. Full details can be
found in Ref. [19]. In this work we consider only quadrupole
deformations.

However, to preclude coupling of the incident nucleon to
Pauli-forbidden orbits in the target states, one must also include
an orthogonalizing pseudopotential (OPP) [20–24], as has also
been used in atomic physics [25,26].

By solving the Lippmann-Schwinger equations in momen-
tum space, one may describe within the same method both
the bound (to particle emission) and scattering states of the
compound nucleus. Bound states of the compound system can
be found by using negative projectile energies, for which all
channels are closed. Details are given in Ref. [15]. For positive
energies, to systematically identify all resonance structures
we use a spectral representation of the S matrix in terms of
complex Sturmian eigenvalues [16].

To obtain S and T matrices, sets of Sturmian functions,
�c′n(r), and their eigenvalues, ηn, are determined from the
coupled-channel interactions, Vcc′ (r). For practical reasons
we choose a set (n) of finite rank, with entries being those
having largest magnitudes of ηn. These are used in defining
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form factors for the Hilbert-Schmidt expansion of these
coupled-channel interactions themselves. The form factors, in
momentum space, χ̂cn(p), are the Fourier-Bessel transforms
of

χcn(r) =
∑
c′=1

Vcc′ (r)�c′n(r). (3)

Obtaining the Sturmian eigenstates, ηp, requires specifica-
tion of the Green’s function [15]

[G0]nn′ = μ

[open∑
c=1

∫ ∞

0
χ̂cn(x)

x2

k2
c − x2 + iε

χ̂cn′ (x) dx

−
closed∑
c=1

∫ ∞

0
χ̂cn(x)

x2

h2
c + x2

χ̂cn′(x) dx

]
. (4)

where the wave numbers are

kc =
√

μ(E − εc) and hc =
√

μ(εc − E), (5)

εc is the target-state centroid and E is the projectile energy.
Typically, the Green’s functions are solved by methods of
complex analysis.

With these Sturmian form factors,

Vcc′ (p,q) =
∑

n

χ̂cn(p) η−1
n χ̂c′n(q) (6)

and

Tcc′ ∝
∑
n,n′

√
kc χ̂cn(kc)([η − G0]−1)nn′ χ̂c′n′ (kc′)

√
kc′ . (7)

With regards to this investigation, the key feature in the above
is the Green’s function [15].

The spectrum of the compound system is found from
the resolvent in the T matrix, namely [η − G0]−1 where
[η ]nn′ = ηn δnn′ . The trajectories of the eigenvalues in the
complex-energy plane, in particular in the vicinity of the
pole-position P (1,0), can be employed to determine each
resonance centroid and width contained in the S matrix, no
matter how narrow or large the resonance may be [15]. The
bound states of the compound system are defined by the zeros
of that matrix determinant when the energy is E < 0, all
channels then being closed.

Results using the Green’s function Eq. (4) (and from those
later given) are shown in Figs. 1 and 2 using potential strengths
and deformations as per Table I. Fig. 1 presents spectra of 9Be
as an n + 8Be cluster and Fig. 2 shows a set of total elastic
and reaction cross sections in the energy range to just over
5 MeV. 8Be was treated as a rotor with quadrupole deformation
and three states of it, 0+

g.s., 2+
1 , and 4+

1 , were used in the
coupling. In Fig. 1, the spectrum for 9Be found using Green’s
functions as per Eq. (4) is shown in the column furthest right.
For comparison, the experimental spectrum [27], is shown
on the far left. Figure 2 displays the cross sections found
from the same calculation (and others discussed later) whose
spectrum is shown in Fig. 1. The results are identified by the
same notation. In this case, where Eq. (4) is used, the reaction
cross section only becomes nonzero above the energy of the
first target state, which is at 3.41 MeV (laboratory frame), as
necessary.
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FIG. 1. Experimental spectrum of 9Be compared with MCAS
calculations with target states defined as per labels (see text).
Unbracketed numbers are excitation energies, bracketed numbers are
widths, all in MeV.

However, in the low-energy and low-mass regime where
compound-system resonances are important, it is appropriate
to take particle instability of target states into account by
modifying the Green’s functions. In its most basic form [28],
this is done by adding a complex component to the target-state
energy. That is, the description of the target state energy

0 1 2 3 4 5
Elab(MeV)

0

1

2

σ re
ac

tio
n (b

)

2

4

6

8

10

12

14

σ el
as

tic
 (b

)

εc
εc + iΓc/2
ε c+ iΓcU(E)/2
εc + Δεc(E) + iΓcU(E)/2

0 0.3
0

0.1

(a)

(b) (c)

FIG. 2. Calculated n + 8Be elastic scattering (a) and reaction (b)
cross sections. Inset (c) shows threshold behavior of the reaction cross
sections.
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TABLE I. Parameter values defining the n + 8Be interaction.
λ(OPP) are blocking strengths of occupied shells, in MeV. εc and 	c

data from Ref. [27].

Odd parity Even parity

V0 (MeV) − 33.600 − 42.975
Vll (MeV) 4.50 0.75
Vls (MeV) 13.40 7.40
Vss (MeV) 4.00 0.00

R0 a0 β2

3.0 fm 0.65 fm 0.50

Target state εc 	c λ(OPP) 1s1/2 λ(OPP) 1p3/2

0+ 0.00 5.57 eVa 106 0.00
2+ 3.03 1.50 106 3.50
4+ 11.35 3.50 103 0.00

aTreated as 0 MeV in calculation.

becomes

εc + i
	c

2
, (8)

and the Green’s functions thus become

[G0]nn′ = μ

[open∑
c=1

∫ ∞

0
χ̂cn(x)

x2
[
k2
c − x2 − iμ	c

2

]
[
k2
c − x2

]2 + μ2	c
2

4

χ̂cn′ (x) dx

−
closed∑
c=1

∫ ∞

0
χ̂cn(x)

x2
[
h2

c + x2 + iμ	c

2

]
[
h2

c + x2
]2 + μ2	c

2

4

χ̂cn′ (x) dx

]
.

(9)

This equation has no poles on the real axis, and integration
may proceed normally [28]. The spectrum in Fig. 1 identified
by the complex energy εc + i 	

2 resulted when using the same
interaction as before but with the 2+ and 4+ states of 8Be
having their known particle-emission widths [27].

Cross sections are calculated using the S matrix, which has
the general form

Scc′ = δcc′ − ilc′ −lc+1πμ

N∑
n,n′=1

√
kcχ̂cn(kc)

× ([η − G0]−1)nn′ χ̂c′n′(kc′)
√

kc′ , (10)

where η is an array of Sturmian eigenvalues. G0 is the Green’s
function defined by Eq. (4) in the case where no target state
widths are considered, and by Eq. (9) in the case where states
are described as per Eq. (8). As the systems considered herein
do not have particle emission widths in their ground states,
the Sturmians “in the elastic channel” χ̂1n(k1) and χ̂1n(k1) will
not be different from cases where no target-state widths are
considered. However, S matrices and thus cross sections will
still be altered by the inclusion of particle-emission widths
through the channels of ([η − G0]−1)nn′ not involving the
target ground state. The cross sections that result from using
complex energies for the 2+

1 and 4+
1 states in 8Be, are shown

in Fig. 2, identified by the notation εc + i 	
2 .

Of note, with particle-emission considered, the reaction
cross section is nonzero from zero projectile energy upwards,
due to loss of flux from target decay. However, its asymptotic
behavior at low projectile energies is unphysical, and is due to
the Lorentzian form that implicitly defines the target states in
Eq. (9) being nonzero at and below the scattering threshold, as
also observed in a technical note, Ref. [29]. This also affects
the energy of bound states, causing some to become spuriously
unstable.

To overcome this nonphysical behavior, a scaling factor is
applied to target-state widths, such that the target states are
now described as

εc + i
U (E)	c

2
, (11)

which changes the Green’s functions of Eq. (9) by multiplica-
tion of 	c in both integrals by U (E). The minimum conditions
placed on the scaling function are

U (E) = 0 at E � 0,

U (E) = 1 at E = εc,

U (E) → 0 as E → ∞.

In addition, to fully eliminate asymptotic behavior in the
reaction cross sections, it is required that

dU (E)

dE
→ 0 as E → +0.

See Ref. [29] for an example in which a scaling function was
investigated where the last condition was not met (and where
causality correction, discussed below, was not addressed.)

The concept of energy dependent widths goes back to
Wigner [30], and is widely used in nuclear cross section
estimates [31]. Typically, the low-energy dependence of such
scaled resonances are ruled by the centrifugal (and eventually
Coulomb) barrier. The probability of formation of a resonance
is modulated at low energies by these “penetration” factors. It
is these factors which lead to the requirement on the scaling
functions that they and their derivatives are vanishing at the
scattering threshold.

However, the introduction of energy-dependent widths
necessitates an energy-dependent addition to the target-state
centroid, transforming the energy of the state to

εc + εc(E) + i
	cU (E)

2
. (12)

This is because the Green’s functions define the Sturmian
eigenvalues of the expansion of the potential. Thus, making
the prescription of the target states complex effectively makes
the potential an optical potential. As detailed in Refs. [32,33],
energy-dependent complex components in optical potentials
lead to a wave equation that violates causality unless the
potential is restricted by the addition of a dispersion relation
to the real part of the potential. These concepts have been
used in phenomenological optical models in, for example,
Refs. [34,35].

Here, the dispersion relation is an energy-dependent adjust-
ment of the target-state centroid energy, εc(E), given by the
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FIG. 3. (a) Scaling function U (E) of Eq. (15) for q = 1, and Z =
2 with εc = 1. (b) Numerically evaluated εc(E) with U (E) having
parameters as above and 	c = 2 MeV. (c) Inset showing approach to
−0 as projectile energy increases.

principal part integral

εc(E) = 	c

2

1

π
P

∫ ∞

0

U (E′)
E′ − E

dE′ . (13)

This manifests in Eq. (9) [with 	 multiplied by U (E)] as wave
numbers with the form

kc =
√

μ[E − εc − εc(E)],
(14)

hc =
√

μ[εc + εc(E) − E].

Many nuclear targets have a ground state with no particle-
emission width, and when considering the channels involving
those ground states, the wave numbers have the form of Eq. (5)
rather than Eq. (14), and the Green’s function of Eq. (4) applies
rather than Eq. (9) [modified by U (E) and εc(E)].

One candidate for an energy-dependent target-state width
scaling is based upon a Wigner distribution [36], modified to
meet the necessary conditions

U (E) = eq

(
E

εc

)Z

e−q(E/εc)ZH (E), (15)

where q and Z are positive parameters. The Heaviside function
ensures proper bound-state properties. Without it the Green’s
function is complex for negative E. The upper panel of Fig. 3
shows the scaling function of Eq. (15) for q = 1, and Z = 2.
The lower panel shows the integrated result of Eq. (13) with
εc = 1 MeV and 	c = 2 MeV.

At projectile energies below that of a resonant target state’s
actual centroid, the effect of reducing the width of that state
increases the centroid used for purposes of defining the wave
number. Conversely, at projectile energies above the actual

centroid, the reduction in target state width decreases the
centroid used. The transition from positive to negative centroid
correction occurs at E > εc for these values of q and Z, which
is caused by the exponential suppression of the scaling function
U (E) at energies larger than E. As projectile energy tends to
infinity, the centroid correction tends to +0.

Column 2 of Fig. 1 shows the resonances and bound states
of an MCAS calculation with resonant states defined as per
Eq. (12), using the Green’s function defined accordingly. The
calculation used the same potential as all the others, and in
fact the parameters were tuned for this case. The appropriately
labeled curves in Fig. 2 show the resultant elastic and reaction
cross sections. Column 3 of Fig. 1 and the matching curves
of Fig. 2 show the results of the energy-dependent scaling of
widths but neglecting the causality correction to the centroid
energy.

It is seen from differences between columns 2 and 5 of Fig. 1
that consideration of nuclear instability in scattering calcula-
tions has nontrivial impact upon compound-state centroids,
affecting how scattering potentials must be defined to match
experiment. The differences between column 2 and 3 show that
the causality correction accounts for a significant part of this
variation. The result of the full physical description of target
states (column 2) gives the best centroid values for the 1

2
−

and
5
2

+
resonances, the features that dominate the calculated cross

sections.
The 1

2
−

resonance is only known to decay by neutron

emission, and the 5
2

+
resonance by neutron and γ emission

[27], and so this MCAS calculation considers all important
components of the resonances’ widths. The calculation with
no consideration of 8Be decay widths (column 5) leads a
width for the 1

2
−

state that is only 9% of that observed
experimentally, where the calculation with target-state width
scaling and causality correction (column 2) gives a result that
is 50% of the known value. The calculation in which decay
widths are included but not scaled (column 4) produces 112%
of the known value, but as with column 3, the calculated
result is unphysical as previously discussed. Regarding the
5
2

+
resonance, the width result in column 5 is 44% of the

experimental value, while that of column 2 is 144%, a slightly
better ratio, and that of column 4 is a large overestimation at
260%. The centroid of the 5

2

−
resonance is poorly recreated

in all calculations, and concordantly the widths are over- or
underestimated in all cases by orders of magnitude. Thus,
certainly in the case of the 1

2
−

resonance, and arguably that

of the 5
2

+
resonance, consideration of particle emission from

target states is seen to be a necessary ingredient in better
describing scattering involving loosely bound nuclei. Further
investigation of scaling factor forms may yield yet better
descriptions of compound-system resonance shapes.

The appropriately labeled curves in Fig. 2 show cross
sections resulting from defining target states as per Eq. (12),
and with target state width scaling but neglecting the causality
correction. Again the reaction cross section is nonzero from
zero projectile energy upwards due to flux loss, but it is
observed that the scaling factor successfully eliminates the
erroneous asymptotic rise in the reaction cross section near
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FIG. 4. (a) n + 12C elastic scattering cross section with gedanken
particle-emission widths, 	c, of 12C 2+

1 and 0+
2 states as per the axis.

E is the projectile energy. (b) Contour map detail of the top panel.
Target states are as per the right of Eq. (12), with q = 1, Z = 2 in
Eq. (15).

the threshold. This is highlighted by the inset panel. Causality
restoration, by altering centroids, affects the shape of the
cross sections, with consequences for scattering-potential
parametrization.

To further illustrate the effect of the Green’s functions
of Eq. (9) modified with U (E) and εc(E), we examine a
gedanken case of the scattering of low-energy neutrons from
12C, with coupling of the neutron to the 0+

1 , 2+
1 , and 0+

2
states of 12C. A range of artificial particle-emission widths
are assigned to the 2+

1 and 0+
2 states of the target, with the

resulting elastic-scattering and reaction cross sections shown
in Figs. 4 and 5, respectively. Note that the width scaling factor,
Eq. (15), tends to zero as εc tends to zero, meaning that within
this formalism ground state widths cannot be considered. Thus,
ground state widths are set to zero and the principle-parts
method of solving the Green’s functions of Eq. (4) is retained
for this channel.

Figure 4 shows that, while the inclusion of target state
widths has minimal impact upon the scattering background,
with increasing target-state widths, compound-system reso-
nances are reduced in amplitude and increased in width. With
increasing target-state widths, narrow resonances are sub-
sumed into the scattering background. The wider compound-
state resonances persist to greater widths. Note that, even when

2 3 4 5
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FIG. 5. (a) n + 12C reaction cross section with gedanken particle-
emission widths, 	c, of 12C 2+

1 and 0+
2 states as per the axis. E is

the projectile energy. (b) Contour map detail of the top panel. Target
states are as per the right of Eq. (12), with q = 1, Z = 2 in Eq. (15) (c)
Detail, showing behavior of reaction cross section for small widths.

not discernible from the scattering background, the method of
obtaining resonances outlined above still identifies them.

The contour map view in the second panel of Fig. 5 shows
that when target-state widths equal 0 MeV, the reaction cross
section only becomes nonzero above the energy of the first
target state, at 4.81 MeV (laboratory frame), as is necessary.
When target-state widths are increased, the reaction cross
section becomes non-zero for all projectile energies greater
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FIG. 6. Calculated n + 12C reaction cross for 	c = 0.5 MeV.

than the scattering threshold, as particle decay leads to flux
loss. As target widths increase from zero, compound-system
resonances immediately appear and dominate this region
below the first target state energy. The third panel presents
several reaction cross sections at small 	c to show their
behavior in more detail.

The second panel further shows that as widths increase,
these resonances rapidly become subsumed into the scattering
background. No unphysical asymptotic behavior is observed
at projectile energies near the scattering threshold.

To further examine behavior of the reaction cross section
near the scattering threshold, Fig. 6 shows the case of the

12C 2+
1 and 0+

2 states each having a width of 0.5 MeV. The
two results shown used target states defined as per Eqs. (8)
and (12) respectively. As in the 9Be investigation, the former
has erroneous asymptotic behaviour as E → +0, which is
eliminated in the latter.

In conclusion, a method of accounting for states that are
particle unstable in nuclei undergoing low-energy resonant
scattering is developed, which is free of unphysical behavior
at the scattering threshold and conserves causality. This is
performed by choosing an appropriate target-state resonance
shape, modifying a Lorentzian by use of widths dependent on
projectile energy, with a correction to target-state centroid en-
ergy. Resultant scattering cross sections are markedly different
from those found when particle instability is not considered.
Compound-system resonances decrease in magnitude and
increase in width, with otherwise narrow resonances becoming
obscured into the scattering background. This was shown to
improve agreement between calculated and observed widths of
such resonances. When using parameter-driven scattering po-
tentials, the effects of the target-state resonance shape—and in
the case energy-dependent modified Lorentzians, the centroid
correction—are nontrivial in defining the potential. Compound
spectra associated with, and scattering cross sections from,
weakly bound radioactive ion beams with light-mass targets
should be influenced by such considerations as these.
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