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Electric dipole polarizability from first principles calculations
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The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to
critical observables such as the radii of the proton and neutron distributions. Its computation is challenging
because most of the dipole strength lies in the scattering continuum. In this paper we combine integral transforms
with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Employing
different interactions from chiral effective field theory, we confirm the strong correlation between the dipole
polarizability and the charge radius, and study its dependence on three-nucleon forces. We find good agreement
with data for the 4He, 40Ca, and 16O nuclei, and predict the dipole polarizability for the rare nucleus 22O.
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I. INTRODUCTION

The electric dipole polarizability αD in nuclei has been
subject of intense studies, both from the experimental and
theoretical sides. Photoabsorption studies have focused on
the determination of the giant dipole resonances (GDR) in
stable nuclei, originally interpreted as a collective motion of
all protons oscillating against all neutrons [1]. The discovery
of a soft peak at low energies in neutron-rich and unstable
nuclei, i.e., the pygmy dipole resonance (PDR), has spurred
a renewed interest in the electric dipole response [2]. For a
recent review, we refer the reader to Ref. [3].

Calculations based on relativistic and nonrelativistic
density-functional theory pointed out that αD is very strongly
correlated with the neutron-skin thickness [4–6]. This can be
contrasted to ab initio computations based on Hamiltonians
from chiral effective field theory (EFT) that found a strong
correlation between the charge and the neutron radii with αD

in 48Ca [7]. In any case, the dipole polarizability is sensitive
to the neutron distribution, and thereby constrains the neutron
equation of state and the physics of neutron stars [8–11]. The
equation of state of asymmetric nuclear matter depends on a
few parameters, such as the slope of the symmetry energy,
which correlates with GDR [12] and PDR [13] features.

Recent experiments measured the dipole polarizability
in 208Pb [14], 68Ni [15], and 120Sn [16,17], and data for
48Ca are presently being analyzed by the Darmstadt-Osaka
Collaboration. Only scarce data exist on unstable nuclei, but
recent activity was devoted, e.g., to 22,24O [18].

The dipole polarizability

αD = 2α

∫ ∞

ωex

dω
R(ω)

ω
, (1)

where α is the fine structure constant, is an inverse-energy-
weighted sum rule of the dipole response function R(ω). Thus,

the determination of the low-energy dipole strength is crucial.
Here ω is the excitation energy and ωex is the energy of the
first state excited by the dipole referred to the ground state.
Within one isotopic chain one expects that neutron-rich nuclei
with a significant low-lying dipole strength also exhibit larger
polarizability than other isotopes. To both interpret recent data
and guide new experiments, it is important to theoretically map
the evolution of αD as a function of neutron number. Theories
that can reliably address exotic nuclei far from the valley of
stability are needed and ab initio methods are best positioned
to deliver both predictive power [19–21] and estimates of the
theoretical uncertainties [22–25].

This paper is organized as follows. Section II describes
the theoretical approach based on integral transforms and the
coupled-cluster method. In Sec. III we present results for
the nuclei 4He, 16,22O, and 40Ca. First, we compare different
computational approaches with each other. Second, we present
results for the dipole polarizability in these nuclei based on an
interaction from chiral EFT that exhibits accurate saturation
properties [26]. Third, we study correlations between the
dipole polarizability and charge radii based on a variety of
nucleon-nucleon (NN) interactions and interactions that also
include three-nucleon forces (3NFs). Finally, we summarize
our results in Sec. IV.

II. THEORETICAL APPROACH

The electric dipole polarizability in Eq. (1) depends on the
dipole response function

R(ω) =
∑∫

f

〈�0|�̂†|�f 〉〈�f |�̂|�0〉δ(Ef − E0 − ω). (2)

Here �̂ = ∑A
i=1 Pi(zi − Zc.m.) is the dipole excitation opera-

tor, where Pi is the proton projection operator and zi, Zc.m. are
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the nucleon, center-of-mass z coordinates, respectively. |�0〉 is
the ground state of the nucleus and |�f 〉 represents the excited
states. The latter can be in both the discrete and continuum
regions of the spectrum, and this is reflected by the combined
discrete and continuum symbol

∑∫
f

[27]. From Eqs. (1) and (2)
it is clear that the dipole polarizability contains the information
on R(ω) at all energies ω, including those in the continuum.
A calculation of αD would then require being able to solve
the many-body scattering problem at such energies, which is
extremely difficult for nuclei with mass number larger than
four.

To make progress, we rewrite αD as a sum rule of the
response function. Starting from Eq. (1) and using the com-
pleteness of the Hamiltonian eigenstates I = ∑∫

f
|�f 〉〈�f | we

obtain

αD = 〈�0|�̂† 1

Ĥ − E0
�̂|�0〉. (3)

One way to calculate αD by means of the sum rule in Eq. (3)
is to represent the Hamiltonian on a finite basis of N basis
functions |n〉. After diagonalization of the Hamiltonian matrix
Hn,n′ , one obtains its N eigenstates |β〉 and eigenvalues Eβ ,
and Eq. (3) becomes

αD =
N∑
β

〈�0|�̂†|β〉〈β| 1

Eβ − E0
|β〉〈β|�̂|�0〉 . (4)

Increasing N yields an increasingly more accurate representa-
tion of the eigenfunctions |β〉 and eigenvalues Eβ of Ĥ , and
eventually the value of αD would converge. In practical cases,
however, the truncated basis states |n〉 used to represent the
Hamiltonian are discrete and have a finite norm. Because the
spectrum of Ĥ has both discrete and continuum parts, one may
question the use of such a discrete basis. Similarly to Ref. [28],
we will show that this approach is rigorous and works quite
well also within coupled-cluster theory.

A. Integral transforms

Integral transforms reduce the continuum problem of
calculating R(ω) to the solution of a bound-state-like problem
[29–31]. In such an approach, one first calculates the integral
transform I(σ ) of the response function. In a second step,
one might invert the integral transform to obtain the response
function R(ω), or one might compute relevant observables
(such as the dipole polarizability) directly from the integral
transform. Here, we will use the Stieltjes integral transform
[32] for the direct computation of the dipole polarizability.

The Stieltjes integral transform reads

I(σ ) =
∫

R(ω)

ω + σ
dω, (5)

with σ being real and positive. Using the completeness on
the Hamiltonian eigenstates and the definition of the response
function from Eq. (2) yields

I(σ ) =
〈
�0|�̂† 1

Ĥ − E0 + σ
�̂|�0

〉

= 〈�0|�̂†|�̃(σ )〉, (6)

where we have defined

|�̃(σ )〉 ≡ 1

Ĥ − E0 + σ
�̂|�0〉. (7)

The function |�̃(σ )〉 is the solution of the following
Schrödinger-like equation with a source

(Ĥ − E0 + σ )|�̃(σ )〉 = �̂|�0〉. (8)

Since σ > 0, and for large interparticle distances |�0〉 → 0,
one has that asymptotically (and for nonsingular operators �̂)
|�̃(σ )〉 should satisfy a Schrödinger equation with eigenvalues
smaller than E0. This implies that |�̃(σ )〉 → 0 asymptotically;
namely, it has bound-state-like asymptotic conditions. We are
therefore allowed to calculate I(σ ) using a bound-state basis
expansion, i.e., an L2 square integrable basis such as harmonic
oscillator functions. Noticing that Eq. (6) differs from Eq. (3)
only by the presence of σ > 0, we proceed as described above,
namely using a representation on a bound-state basis and
increasing the number N of basis functions up to convergence.
Then the value of αD can be obtained as

αD = 2α lim
σ→0+

I(σ ) , (9)

avoiding the continuum problem. The limit taken with positive
σ is crucial not only to allow the use of a bound-state basis, but
also because it avoids poles (we recall that E0 is negative). For
σ < 0 poles will certainly be present, presumably at different
places depending on the basis. We indeed observe several poles
in the region of σ < 0, while the curve is persistently smooth
for σ � 0 in Fig. 1, where we show I(σ ) for 4He calculated
with a realistic interaction [26], as detailed later. We choose
4He, where calculations are faster and can be benchmarked
with few-body methods.

Below we will use an implementation of Eq. (9) to
compute the dipole polarizability of heavier nuclei. To test
this approach, we will also compare it to αD obtained by
the dipole response function as in Eq. (1). If one were able
to invert the Stieltjes transform, one could obtain R(ω) to
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FIG. 1. The Stieltjes integral transform I(σ ) as a function of σ

in the case of 4He.
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calculate the integral in Eq. (1). Unfortunately, the inversion
of this integral transform presents the typical difficulties of
an ill-posed problem. In fact, in Ref. [32] it was shown
that inversions performed with the regularization method [33]
generate quite different responses, all compatible with the
same Stieltjes transform within numerical errors. Therefore,
we will employ the much more suitable Lorentz integral
transform (LIT) [30,31]

L(σ,	) = 	

π

∫
R(ω)

(ω − σ )2 + 	2
dω, (10)

where 	,σ ∈ R, and 	 > 0. The Lorentzian kernel L(σ,	)
is peaked at σ and has the width 	. The LIT can be
much more easily inverted to yield the response function,
because the width 	 introduces a finite resolution. Thus, the
response function is smeared only in a narrow region of space
determined by the width 	.

The calculation the Lorentz transform proceeds as for the
Stieltjes transform, using the definition of response function
and the completeness of the eigenfunctions of the Hamiltonian.
One finds

L(z) = 	

π

〈
�0|�̂† 1

(Ĥ − z∗)

1

(Ĥ − z)
�̂|�0

〉
, (11)

with z = E0 + σ + i	. The LIT can be rewritten in a form
that resembles Eq. (6) as

L(z) = 1

π
Im

[〈
�0|�̂† 1

(Ĥ − z)
�̂|�0

〉]

= 1

π
Im[〈�0|�̂†|�̃(z)〉] . (12)

Here we defined the function

|�̃(z)〉 ≡ 1

Ĥ − z
�̂|�0〉. (13)

Similarly as for Eq. (7), |�̃(z)〉 has a bound-state-like nature
and a finite norm

〈�̃(z)|�̃(z)〉 = L(z) = 	

π

∫
R(ω)

(ω − σ )2 + 	2
dω < ∞. (14)

A couple of remarks are in order here. First, we note that
the positive parameter σ enters in the Stieltjes and Lorentz
transforms with minus and plus signs, respectively. While in
the Stieltjes transform the bound-state-like nature of |�̃〉 is
due to that minus sign, in the Lorentz case it is due to the
presence of the imaginary part 	. Second, in the limit 	 → 0
the Lorentzian kernel becomes a δ function

L(σ,	 → 0) =
∫

R(ω)δ(ω − σ )dω = R(σ ). (15)

This allows us to estimate the dipole polarizability also using
Eq. (15) together with Eq. (1)

αD = 2α

∫
L(σ,	 → 0)

σ
dσ. (16)

However, in L(σ,	) one must be careful in taking smaller 	
since the convergence in the model space expansion becomes
increasingly difficult.

B. Coupled-cluster implementation

In this subsection we will compute the dipole polarizability
via Eq. (9) with the coupled-cluster method. This calculation
proceeds similarly as done for the LIT in Refs. [34,35].

Coupled-cluster theory [36–43] is based on the exponential
ansatz for the ground-state

|�0〉 = eT̂ |0R〉; (17)

see Refs. [44,45] for recent reviews. Here, |0R〉 is a reference
product state, and the cluster operator T introduces particle-
hole (p-h) excitations into the reference. Using second quanti-
zation and normal ordering the dipole excitation operator with
respect to the reference state yields the response function [35]

R(ω) =
∑

n

〈0L|�†|nR〉〈nL|�|0R〉δ(�En − �E0 − ω).

(18)

Here �En, �E0 are the correlation energies of the nth excited
state and ground state respectively, and solve

H |0R〉 = �E0|0R〉 or 〈0L|H = 〈0L|�E0,
(19)

H |nR〉 = �En|nR〉 or 〈nL|H = 〈nL|�En.

Here we used similarity-transformed operators via

O = e−T̂ ÔNe+T̂ , (20)

and ÔN is the normal ordered form of any operator Ô, e.g., Ĥ
or �̂. Substituting Eq. (18) in Eq. (5), and making use of the
expressions in Eq. (19), yields

I(σ ) =
〈
0L|�† 1

H − �E0 + σ
�|0R

〉
. (21)

This equation resembles Eq. (6), when operators are replaced
by their similarity transformed counterparts, and one needs
to distinguish between left and right states because of the
non-Hermitian nature of the excitation operator T̂ . We proceed
as in Subsec. II A, and define a state |�̃(σ )〉 as the solution of

(H − �E0 + σ )|�̃R(σ )〉 = �|0R〉. (22)

Equation (22) resembles Eq. (15) in Ref. [35] and can be
solved using the equation-of-motion coupled-cluster method
for excited states [46]. In this approach, one regards

|�̃R(σ )〉 = R̂(σ )|0R〉 ≡
(

r0(σ ) +
∑
i,a

ra
i (σ )ĉ†aĉi+

+ 1

4

∑
i,j,a,b

rab
ij (σ )ĉ†aĉ

†
bĉj ĉi + · · ·

⎞
⎠|0R〉

≡
∑

α

Ĉαrα(σ )|0R〉 ≡ Ĉ · r(σ )|0R〉, (23)

as an excited state of the similarity-transformed Hamiltonian
H based on p-h excitations of the reference. In the last line of
Eq. (23) the index α labels the 0p-0h, 1p-1h, 2p-2h, . . . states

|�α〉 ≡ |0R〉,∣∣�a
i

〉
,
∣∣�ab

ij

〉
, . . . . (24)
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We also defined the column vector r(σ ) with elements
r0(σ ),ra

i (σ ),rab
ij (σ ), . . . and a row vector Ĉ whose elements are

strings of normal-ordered creation and annihilation operators.
Combining Eq. (22) with Eq. (19) and the linear ansatz for
|�̃(σ )〉, the Stieltjes transform becomes

I(σ ) = 〈0L|�†R̂(σ )|0R〉 = SLM(σ )−1SR. (25)

Here SL and SR are row and column vectors respectively with
elements

SR
α = 〈�α|�|0R〉,

SL
α = 〈0L|�†|�α〉, (26)

and M is a matrix with elements

Mαβ(σ ) = 〈�α|[H,Ĉβ]|0R〉 + σδαβ. (27)

The right-hand side of Eq. (25) can be calculated using
the Lanczos procedure. Because we are dealing with non-
Hermitian operators, we have to make use of the generalized
Lanczos algorithm for nonsymmetric matrices [47]. In this
approach, one first defines two pivot vectors

v0 = SR

√
SL · SR

,

w0 = SL

√
SL · SR

, (28)

and repeated application of the matrix M(σ ) generates the
Lanczos basis in which M is tridiagonal

M(σ ) =

⎛
⎜⎜⎜⎜⎝

a0 − σ b0 0 0 · · ·
b0 a1 − σ b1 0 · · ·
0 b1 a2 − σ b2 · · ·
0 0 b2 a3 − σ · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠.

(29)

In what follows, we employ the matrix M in the Lanczos basis.

We note that SL · SR = 〈0L|�†
�|0R〉 and find the expression

I(σ ) = 〈0L|�†
�|0R〉x00(σ ), (30)

for the Stieltjes integral transform. Here

x00(σ ) = w0[M(σ )]−1v0. (31)

From the identity I = M(σ )[M(σ )]−1, one finds the linear
system ∑

β

Mαβ(σ )xβ0(σ ) = δα0, (32)

where we defined xβ0(σ ) = [M(σ )−1]β0. Using Cramer’s rule
to solve the linear system, we find that x00(σ ) is given by the
continued fraction

x00(σ ) = 1

(a0 − σ ) − b2
0

(a1−σ )− b2
1

(a2−σ )−···

, (33)

and finally Eq. (30) becomes

I(σ ) = 〈0L|�†
�|0R〉

⎧⎪⎪⎨
⎪⎪⎩

1

(a0 − σ ) − b2
0

(a1−σ )− b2
1

(a2−σ )−···

⎫⎪⎪⎬
⎪⎪⎭. (34)

Then, from Eq. (9), one finds that the electric dipole polariz-
ability is the continued fraction

αD = 2α〈0L|�†
�|0R〉 lim

σ→0+

⎧⎪⎪⎨
⎪⎪⎩

1

(a0 + σ ) − b2
0

(a1+σ )− b2
1

(a2+σ )−···

⎫⎪⎪⎬
⎪⎪⎭,

(35)

which is equivalent to the Lanczos sum rule of Ref. [28]. We
note that Eq. (35) is an exact result if the operators T̂ and
R̂ are expanded up to Ap-Ah excitations in a nucleus with
mass number A. However, in practical calculations T̂ and R̂
are truncated since a full expansion is not feasible due to the
very high computational cost. In this paper we truncate T̂ and
R̂ at singles-and-doubles excitations. However, we remind
the reader that such a truncation includes exponentiated 1p-
1h and 2p-2h excitations. The exponent yields also products
of higher order. As the GDR consists of a superposition of
1p-1h excitations, a truncation at singles-and-doubles only is
expected to be a good approximation. Similarly, the dipole
polarizability is most sensitive to the GDR. The coupled cluster
with singles-and-doubles (CCSD) truncation has been shown
to agree with the hyperspherical harmonics method within 1%
for the radius and dipole polarizability of 4He [34]. The effect
of neglected 3p-3h excitations on these observables in heavier
nuclei will be investigated in future work.

Summarizing, we presented three different methods to
evaluate the electric dipole polarizability: (i) Compute the LIT
for the dipole response, obtain R(ω) from its inversion—with
inversions performed as described in Refs. [34,48,49]—and
compute the dipole polarizability from Eq. (1); (ii) use Eq. (16)
for 	 → 0; and (iii) use the continued fraction as in Eq. (35).
The second method is in principle a discretization of the
continuum and it will be interesting to compare it with the
other two methods.

III. RESULTS

In Refs. [34,35] coupled cluster results for the dipole
response in 4He were benchmarked against virtually exact
results from the effective interaction hyperspherical harmon-
ics [50,51] method. Those calculations were based on NN
forces [52] from chiral EFT. In this paper we augment the
Hamiltonians to include 3NFs from chiral EFT.

First, we check the convergence of our results with
respect to model-space parameters and compare the three
different calculational approaches for the dipole polarizability
using the NNLOsat interaction [26]. Then, we compare to
experimental data for 4He, 16O, and 22O. We remark that
the LIT inversions shown in this sections are obtained with a
regularized least square fit technique and that bands may only
be an underestimation of the full error. Other procedures of
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inversion will be investigated in the future. Finally, we explore
correlations of the dipole polarizability with the charge radius
in 16O and 40Ca by employing a variety of Hamiltonians.
In addition to NNLOsat and the family of interactions from
Ref. [53], we also use a large set of realistic NN potentials
[52,54–57] to probe systematic uncertainties in the underlying
Hamiltonians.

When adding 3NFs, we use a Hartree-Fock basis built on 15
major harmonic oscillator shells. We vary the model space size
up to Nmax = 14 and we truncate the 3NFs matrix elements
at E3max = Nmax for 4He and 16,22O. For our purposes, this
truncation provides sufficiently well-converged results. In fact,
for the more challenging neutron-rich 22O nucleus, increasing
E3max to 16 leads to a variation in energy of only 400 keV. For
the calculations in 40Ca with the NNLOsat interaction and the
Hamiltonians from Ref. [53] we employed the same Nmax and
E3max truncations used for 48Ca by Hagen et al. in Ref. [7].

A. The 4He nucleus

Figure 2 shows the electric dipole polarizability of 4He
obtained from the continued fraction of Eq. (35) with the
NNLOsat interaction, as a function of the model space size
Nmax. The four curves represent calculations with different
values of oscillator frequency �. The convergence in Nmax is
excellent and independence on � is reached with Nmax = 14.
The uncertainty at Nmax = 14 for the different values of � is
about 0.1%.

Let us compare the three different ways to calculate the
dipole polarizability for 4He as described at the end of Sec. II A.
Equations (1) and (16) require an integration in energy and we
present αD(ε), where ε is the upper limit of the integration.
Figure 3 shows the results. The blue band shows method
(i), i.e., αD is obtained from integrating Eq. (1), and R(ω)
stems from an inversion of the LIT. Here, the width of the
blue band is an estimate of the uncertainty involved in the
inversion procedure. The red solid line shows method (ii), i.e.,
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FIG. 2. The electric dipole polarizability in 4He as a function of
the model space size Nmax. Curves for different values of �, the
underlying harmonic oscillator frequency, are shown.
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FIG. 3. The electric dipole polarizability αD(ε) in 4He as a
function of the integration energy ε: (i) using the LIT and Eq. (1) in
blue (band); (ii) using Eq. (16) in red (solid); (iii) using the continued
fraction of Eq. (35) in black (dashed). Calculations are performed for
� = 22 MeV and Nmax = 14.

αD obtained from the LIT at small 	 using Eq. (16). The black
dashed line shows the method (iii), i.e., αD obtained using the
continued fraction in Eq. (35).

We note that the different methods yield the same dipole
polarizability. The integration methods (i) and (ii) exhibit a
similar dependence on the integration range, the difference
being that the former is smooth while the latter increases in
steps. Here, method (ii) has the advantage of a more sharply
defined threshold. We also note that the dependence on the
integration range is useful for comparisons with data for
experiments that probe only a limited region of the energy
spectrum.
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FIG. 4. Electric dipole polarizability in 16O as a function of the
model space size Nmax for different values of �.
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FIG. 5. Charge radius in 16O as a function of the model space size
Nmax for different values of �.

B. The 16O nucleus

Figure 4 shows the electric dipole polarizability in 16O as a
function of the model space size calculated with the NNLOsat

interaction, while Fig. 5 shows the same for the charge radius,
which has been obtained from the point-proton radius taking
into account contributions from nucleonic charge radii (see
Ref. [7] for details). We observe that the curves for different
� values converge very nicely and only a small residual �
dependence remains at the largest model space size Nmax = 14.
Based on the spread of the different � curves for Nmax = 14,
we obtain a conservative error of 2.8% for the electric dipole
polarizability and a conservative error of 0.7% for the charge
radius.

Figure 6 compares the results from the three methods to
obtain the polarizability for 16O. The blue band (i) shows the
integration as in Eq. (1) of the weighted response function, and
the width of the band takes into account the uncertainty of the
inversion. The red solid line (ii) refers to the integration of
the weighted LIT with Eq. (16). The black dashed line (iii) is
the reference value calculated with the continued fraction using
Eq. (35). Again, we find good agreement of the results for the
dipole polarizability.

C. The 22O nucleus

The dipole strength of the neutron-rich nucleus 22O was
measured by Leistenschneider et al. [18] via Coulomb ex-
citation in experiments at GSI. Figure 7 shows the electric
dipole polarizability as a function of the model space size of
the calculation. After having investigated various frequencies,
we find that � = 18 MeV is the best converging curve.
However, the convergence for different � is slower than
what is observed in lighter nuclei, resulting in a conservative
uncertainty of about 8% at Nmax = 14. This might be because
the excess neutrons in 22O are loosely bound, making the wave
function more extended and thus the convergence slower. We
note that αD of 22O is larger than for 16O.
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FIG. 6. The electric dipole polarizability αD(ε) in 16O as a
function of the integration limit ε. The blue band (i) is obtained
integrating the weighted response function as in Eq. (1); the red solid
curve (ii) is calculated integrating the weighted LIT at small 	 as in
Eq. (16); the black dashed line (iii) is obtained from the continued
fraction of Eq. (35). Calculations are performed with Nmax = 14 and
� = 22 MeV.

Finally, in Fig. 8 we show a comparison between the
methods (ii) and (iii) to calculate αD . We used the largest model
space and the fastest converging frequency of � = 18 MeV
and find good agreement between the two methods. Because
the convergence of the LIT calculations is not at subpercent
level, we cannot presently obtain stable inversions and include
the method (i) in the comparison. Nevertheless, by looking
at the laddered curve we learn about the convergence of
this sum rule as a function of the energy. This will be used
in the following subsection to make a comparison with the
experimental data from Ref. [18].
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FIG. 7. The electric dipole polarizability αD in 22O as a function
of the model space size Nmax. Different curves for different values of
the underlying harmonic oscillator basis frequency � are shown.
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FIG. 8. The electric dipole polarizability αD(ε) in 22O as a
function of the integration limit ε. The red solid curve (ii) is calculated
integrating the weighted LIT at small 	 as in Eq. (16); the black
dashed line (iii) is obtained from the continued fraction of Eq. (35).
Calculations are performed with Nmax = 14 and � = 18 MeV.

D. Comparison to experiment

Table I compares theoretical results with experimental data.
We observe that for both 4He and 16O calculations are in
good agreement with the experimental data. For 4He the
experimental data is obtained by combining measurements
from Refs. [58–60]. We also present a comparison with
other ab initio results obtained with hyperspherical harmonics
[61,62] and with the no-core shell model [63]. Because the
experimental error bar is quite large, all theoretical calculations
are compatible with data.

For 16O the calculation of the dipole polarizability with the
NNLOsat interaction overlaps with the experimental value [64].

TABLE I. Theoretical values of αD for different nuclei calculated
with the NNLOsat interaction in comparison to experimental data
from Refs. [58–60] and other calculations from Refs. [63] (a), [61]
(b), and [62] (c) for 4He, to experimental data from Ref. [64] for
16O. For 22O we compare to the value obtained integrating the data
from Ref. [18] first over the whole energy range (d) and then only the
first 3 MeV of the strength (e), corresponding to the low-lying dipole
strength. Values are expressed in fm3. The theoretical uncertainties
of our calculations stem from the � dependence in the model space
with Nmax = 14.

Nucleus Theory Exp.

4He 0.0735(1) 0.074(9)
0.0673(5)a

0.0655b

0.0651c

0.0694c

16O 0.57(1) 0.585(9)
22O 0.86(4) 0.43(4)d

0.05(1) 0.07(2)e
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FIG. 9. 4He photoabsorption response function calculated with
different methods and interactions (see text for details) compared
with experimental data from by Nakayama et al. [68] (blue circles),
Arkatov et al. [58,59] (white squares), Nilsson et al. [69] (yellow
squares), Shima et al. [70,71] (magenta circles), and Tornow et al.
[72] (green squares).

This is an improvement compared to the previous calculation
limited to NN interaction only [65].

For the 22O nucleus, to compare our calculations with
experimental data we integrate the experimental strength of
Ref. [18] up to the available energy range of about 18
MeV above threshold, obtaining α

exp
D = 0.43(4) fm3. This

value is much lower than our calculated αth
D = 0.86(4) fm3

shown in Fig. 8, which corresponds to the integration of
the strength up to infinity. The theoretical result exceeds
the experimental value by a factor of two and we also find
that the integration of the theoretical strength over the first
18 MeV exhausts the 87% of the polarizability sum rule. On the
other hand, Leistenschneider et al. observed a PDR extending
for about 3 MeV above the neutron emission threshold of
Sn = 6.85 MeV. Integrating the data over this interval yields a
dipole polarizability α

exp
D (3MeV) = 0.07(2) fm3. While our

calculations in Fig. 8 do not reproduce the experimental
threshold, integration over the first 3 MeV of the strength and
considering the different � frequencies yields αth

D(PDR) =
0.05(1) fm3. This is consistent with the experimental result.

In Fig. 9 we show the response function of 4He. The
response function is obtained from the inversion of the LIT
as described in Refs. [34,48,49] and the width of the band
is an estimate of the inversion uncertainty. The dark band
from Ref. [35] is the result obtained with coupled cluster
with singles-and-doubles (CCSD) using a NN interaction at
next-to-next-to-next-to-leading order (N3LO) [52]. The light
band represents the calculation of this work with NNLOsat [26]
and it has been obtained by inverting the LIT with 	 = 10 and
20 MeV calculated at Nmax = 14 and � = 22 MeV. This
is also the curve that has been integrated with method (i)
in Fig. 3. To emphasize the shape of the response function
in the continuum, in Fig. 9 we shift the N3LO curve to
the experimental threshold, i.e., from 17.54 MeV (theory)
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FIG. 10. 16O photoabsorption response function calculated with
coupled cluster with singles-and-doubles using a NN interaction
only [35,52] (dark band) and NNLOsat [26] (light band). The red
circles are the experimental data from Ishkhanov et al. [73] while the
white triangles with error bars are the experimental results by Ahrens
et al. [64].

to 19.8 MeV (experiment), while the NNLOsat threshold
well reproduces the experimental one since the potential is
fitted to binding energies of 4He and 3H. We find that the
NNLOsat response function, which includes three-nucleon
forces, presents a larger peak with respect to other results
with three-nucleon forces from Refs. [66,67]. Finally, the
theoretical results are compared with the experimental data
by Nakayama et al. [68] (blue circles), Arkatov et al. [58,59]
(white squares), Nilsson et al. [69] (yellow squares), Shima
et al. [70,71] (magenta circles), and Tornow et al. [72] (green
squares).

In Fig. 10 we show the response function for 16O calculated
with a NN interaction using CCSD [35] (light band) and then
with NNLOsat (dark band). The calculations are compared with
the experimental data from Ahrens et al. [64] (triangles with
error bars) and Ishkhanov et al. [73] (red circles). The response
function with NNLOsat has been obtained again by inverting
the LIT with both 	 = 10 and 20 MeV and at frequency
� = 22 MeV. The large error band for the NNLOsat results
from the fact that the largest available model space size in our
calculation, namely Nmax = 14, is smaller than the Nmax = 18
used for the N3LO potential. Similarly to what is done for 4He,
also in this case we plot the theoretical curves to start from
the experimental threshold; i.e., we shift the N3LO (NNLOsat)
curve from their threshold of 14.25 (10.69 [26]) MeV to the
experimental value of 12.1 MeV. In particular, for the NNLOsat,
we have found that by using the threshold energy as a fit
parameter in the inversion, we obtain response functions that
correctly reproduce αD only with a threshold energy varied
around 5% of the experimental value. Overall, it is interesting
to see that three-nucleon forces enhance the strength, slightly
improving the comparison with the experimental data.

Comparing Figs. 3 and 6 with Figs. 9 and 10 respectively,
and taking into account the results summarized in Table I,

it is clear that the polarizability is not very sensitive to the
structure and shape of the response function, but rather to the
distribution of the dipole strength at low energies.

E. Correlations between αD and rch

Let us also attempt to probe systematic theoretical uncer-
tainties that are due to the employed interaction by considering
results from different families of Hamiltonians. Such an
approach can help to correlate observables of interest; see
Refs. [4–7,74–76] for examples. To study such correlations,
one needs a considerable number of different interactions, so
that one can obtain results spanning a wide range of values
for the observables under investigation. For this reason, we
choose to use similarity renormalization group (SRG) [55] and
Vlow−k [56] evolutions as a tool to generate a set of phase-shift
equivalent two-body interactions. When adding three nucleon
forces at next-to-next-to-leading order—without considering
the induced three-body forces—the low-energy constants were
recalibrated on light nuclei observables [53]. Finally, we also
consider the newly developed NNLOsat interaction [26], which
well reproduces radii [7].

We note that a correlation between the electric dipole
polarizability and the nuclear charge radius rch is expected
from the nuclear droplet models [77,78] in heavy nuclei. In
what follows we investigate correlations between the dipole
polarizability and charge radius in 16O and 40Ca using a
variety of interactions. We base our calculations on NN forces
and 3NFs from Refs. [26,53], and also consider computations
limited to NN forces alone. Results with 3NFs are also listed

TABLE II. List of results with three-body Hamiltonians [26,53]
for ground-state energy per nucleon, charge radius, and electric
dipole polarizability, plotted in Fig. 11. For the notation of the
potentials we follow Ref. [53]. Energies have been obtained with
a �-CCSD(T) approximation [42,79,80]. Experimental values are
taken from Refs. [81] (energy), [82] (radius), and [64] (electric dipole
polarizability).

16O E0/A [MeV] rch [fm] αD [fm3]
Interaction

2.0.2.0 (EM) −7.70 2.62 0.46
2.2/2.0 (PWA) −7.14 2.74 0.54
1.8/2.0 (EM) −7.98 2.60 0.44
2.2/2.0 (EM) −7.50 2.63 0.48
2.8/2.0 (EM) −7.16 2.67 0.52
NNLOsat −7.68 2.71 0.58

Experiment −7.98 2.6991(52) 0.58(1)
40Ca

2.0.2.0 (EM) −8.22 3.35 1.67
2.2/2.0 (PWA) −7.24 3.55 2.03
1.8/2.0 (EM) −8.69 3.31 1.57
2.2/2.0 (EM) −7.89 3.38 1.75
2.8/2.0 (EM) −7.35 3.44 1.94
NNLOsat −8.15 3.48 2.08
Experiment −8.55 3.4776(19) 2.23(3)
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FIG. 11. αD vs rch in 16O and 40Ca. Empty symbols refer to calcu-
lations with NN potentials only: (a) SRG evolved Entem-Machleidt
interaction [52] with � = 500 MeV/c and λ = ∞, 3.5, 3.0, 2.5, and
2.0 fm−1, (b) SRG evolved Entem-Machleidt interaction [52] with
� = 600 MeV/c and λ = 3.5,3.0 and 2.5 fm−1, (c) SRG evolved
CD-BONN [54] interaction with λ = 4.0 and 3.5 fm−1, (d) Vlow−k

evolved CD-BONN potentials with λ = 3.0, 2.5, and 2.0 fm−1, and
(e) Vlow−k-evolved AV18 [57] interaction and λ = 3.0 and 2.5 fm−1.
The red diamonds (f) refer to calculations that include 3NF: The large
one is from NNLOsat [26] and the others are from chiral interactions
as in Ref. [53]. The green bands (exp) show the experimental data
[64,82].

in Table II for 16O and 40Ca (some were previously published
in Refs. [7,26] while others have been newly calculated).

Figure 11 shows αD—calculated with method (iii)—as
a function of rch in 16O and 40Ca for various interactions.
The charge radii are based on the point-proton radii with
contributions from nucleonic charge radii; see Ref. [7] for
details. Empty symbols correspond to calculations with NN
potentials only. In particular, Fig. 11(a) is obtained from
SRG evolved Entem and Machleidt [52] interaction with
cutoff � = 500 MeV and, in order of decreasing rch values,
λ = ∞, 3.5, 3.0, 2.5, and 2.0 fm−1, while for Fig. 11(b) we
used the same interaction with cutoff � = 600 MeV and, in
order of decreasing rch values, λ = 3.5, 3.0, and 2.5 fm−1. The

points in Fig. 11(c) represented with triangles pointing up are
calculations with the SRG evolved CD-BONN [54] potential
with, in order of decreasing rch value, λ = 4.0 and 3.5 fm−1,
while the triangles pointing down in Fig. 11(d) are calculations
with the Vlow−k [56] evolved CD-BONN interaction and
λ = 3.0,2.5 and 2.0 fm−1. The hexagons [Fig. 11(e)] are
calculations with Vlow−k-evolved AV18 [57] interaction and
λ = 3.0 and 2.5 fm−1, in order of decreasing radius. The red
diamonds [Fig. 11(f)] are calculations including 3NFs. The
larger red diamond is the value obtained with NNLOsat [26],
while the smaller ones are the potentials from Ref. [53] also
used for the calculations in 48Ca in Ref. [7]. The error bars
for the calculations represent uncertainties arising both from
the coupled-cluster truncation scheme and the model space
truncations and are estimated to be of the order of 1% for
the charge radius and 2% for the polarizability (see Ref. [7]
for details). Finally, the green bands are the experimental
values for the polarizability [64] and the charge radius [82],
respectively.

We note that αD and rch are strongly correlated. We also note
that NN interactions alone systematically underestimate both
αD and rch while the inclusion of 3NFs improves the agreement
with data. The agreement with data is particularly good for the
interaction NNLOsat. We note that one cannot blindly use a
correlation between theoretical data points to extrapolate to
experimental results. The data based on NN interactions, even
when extrapolated with a simple linear or quadratic curve,
do not meet the experimental values. In contrast, the results
from NN and 3NFs can be interpolated (when, e.g., the charge
radius is known) to yield a sensible prediction for the dipole
polarizability.

IV. CONCLUSIONS

In conclusion, we employed integral transforms to compute
the electric dipole polarizability in β-stable nuclei and rare
isotopes. This approach employs bound-state technology but
takes the continuum properly into account. We presented in
detail the formalism for coupled-cluster calculations of αD

and computed the dipole polarizability in 4He, 16,22O, and
40Ca. Formulations as the dipole polarizability as an energy-
weighted sum rule facilitate the comparison to data in cases
where only lower-lying dipole strengths are measured.

The comparison with data reveals the important role of
three-nucleon forces, and results based on the NNLOsat

interaction agree well with data in 4He and 16O, and 40Ca. For
the neutron-rich 22O, the low-lying dipole strength within 3
MeV of threshold theoretical results are consistent with data,
while the total theoretical dipole strength is about a factor
of two larger than what can be computed from the available
data. Further investigation is needed to study the shape of the
low-energy strength distribution.

Finally, we studied 16O and 40Ca with different two- and
three-body interactions and observed a strong correlation
between the dipole polarizability and the charge radius. Such
a correlation could be useful to predict either of the two
observables, when only one of them is experimentally known.
Work in this direction is underway for heavier nuclei, such as
68Ni and 90Zr.

034317-9



M. MIORELLI et al. PHYSICAL REVIEW C 94, 034317 (2016)

ACKNOWLEDGMENTS

TRIUMF receives federal funding via a contribution
agreement with the National Research Council of Canada.
This work was supported in parts by the Natural Sciences
and Engineering Research Council (Grant No. SAPIN-2015-
00031), the US-Israel Binational Science Foundation (Grant
No. 2012212), the Pazy Foundation, the MIUR Grant No.
PRIN-2009TWL3MX, the Office of Nuclear Physics, U.S. De-
partment of Energy, under Grants No. DE-FG02-96ER40963
(University of Tennessee) and No. DE-SC0008499
(NUCLEI SciDAC Collaboration), and the Field Work
Proposal ERKBP57 at Oak Ridge National Laboratory.
Computer time was provided by the Innovative and Novel
Computational Impact on Theory and Experiment (INCITE)
program. This research used resources of the Oak Ridge
Leadership Computing Facility located in the Oak Ridge

National Laboratory, supported by the Office of Science
of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725, and computational resources of the
National Center for Computational Sciences, the National
Institute for Computational Sciences, and TRIUMF.

This manuscript has been authored by UT-Battelle, LLC,
under Contract No. DE-AC05-00OR22725 with the U.S.
Department of Energy. The United States Government retains
and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains
a nonexclusive, paid-up, irrevocable, worldwide license to
publish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes.
The Department of Energy will provide public access to these
results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

[1] B. L. Berman and S. C. Fultz, Rev. Mod. Phys. 47, 713
(1975).

[2] T. Kobayashi, S. Shimoura, I. Tanihata, K. Katori, K. Matsuta,
T. Minamisono, K. Sugimoto, W. Müller, D. L. Olson, T. J. M.
Symons, and H. Wieman, Phys. Lett. B 232, 51 (1989).

[3] T. Aumann and T. Nakamura, Phys. Scr. 2013, 014012
(2013).

[4] P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 81, 051303
(2010).

[5] J. Piekarewicz, B. K. Agrawal, G. Colò, W. Nazarewicz, N. Paar,
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