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Isoscalar E0, E1, E2, and E3 strength in 94Mo
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Isoscalar giant resonances in 94Mo have been studied with inelastic scattering of 240 MeV α particles at small
angles including 0°. All of the expected energy-weighted sum rule (EWSR) for the isoscalar E0 resonance was
found (112%). A significant portion of the EWSR was found for the isoscalar E1 (83%), E2 (61%), and the
high-energy octupole E3 (46%) resonances. The strength distributions are compared with the predictions from
Hartree-Fock random-phase-approximation calculations with the KDE0v1 Skyrme-type interaction.
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I. INTRODUCTION

Giant resonances (GRs) are the broad resonances that
occur at excitation energies between 10 and 30 MeV. They
correspond to the collective motion of nucleons within the
nucleus and have modes classified according to their multipo-
larity l, spin s, and isospin t quantum numbers. The isoscalar
giant monopole resonance (ISGMR) is interesting because its
excitation energy is directly related to the incompressibility of
the nucleus KA (1), where 〈r2〉 is the mean square radius and
m is the mass of the nucleus [1,2].

EGMR =
√(

�2KA

m〈r2〉
)

. (1)

KA can be used to obtain the incompressibility of nuclear
matter KNM by comparison to calculations using mean fields,
where the value for KNM is deduced from the interaction that
best reproduces the experimental data on the strength functions
of the giant resonance. At present, the best value for KNM is
240 ± 20 MeV [3].

Isoscalar giant resonances in the Mo isotopes were first
observed by Moalem et al. who identified the giant quadrupole
resonance (GQR) in all stable Mo isotopes using inelastic
scattering of 110 MeV 3He [4]. Duhamel et al. [5] investigated
the GQR and GMR in 92Mo using inelastic scattering of
152 MeV α particles. Youngblood et al. studied the isoscalar
giant resonances in 90,92,94Zr and 92,96,98,100Mo [6–8] using
inelastic scattering of 240 MeV α particles at small angles
including 0°. Ref. [6] focused on the E0 strength distribution,
which showed high- and low-energy components separated
by 7–9 MeV in these Zr and Mo isotopes. The higher-energy
second peak is not predicted by the Hartree-Fock random-
phase-approximation (HF-RPA) calculations that reproduce
the ISGMR energies in the other nuclei. For the nuclei with
A �= 92, 80%–90% of the strength is in the lower-energy
peak located at 15.7–17.2 MeV. In the A = 92 nuclei, there
is considerably more strength in the higher-energy peak
than in the higher-energy peak of the A �= 92 nuclei. This
enhancement of the strength in the higher-energy region for
92Zr and 92Mo results in KA values for these two nuclei that are
8σ and 4σ above those obtained with interactions that predict
KA values in agreement with those for the other Zr and Mo

isotopes [6]. The excellent peak-to-continuum ratio [9–12] of
data obtained with 240 MeV α particles allows identification of
the GDR, GQR, and high-energy octupole resonance (HEOR)
strength distributions in the range 9 � Ex � 36 MeV. The
strength distributions for these resonances in the Zr [8] and Mo
[7] isotopes were investigated and compared to the results of
spherical Hartree-Fock–based random-phase-approximation
(HF-RPA) calculations [13] with KDE0v1 Skyrme-type ef-
fective interaction [14].

In this paper we report E0, E1, E2, and E3 multipole
strength distributions obtained for 94Mo and compare them
to HF-RPA calculations with the KDE0v1 Skyrme-type
interaction.

II. EXPERIMENTAL PROCEDURE

The experimental technique has been described thoroughly
in Refs. [9,10] and is summarized briefly below. Beams of
240 MeV α particles from the Texas A&M K500 supercon-
ducting cyclotron bombarded a self-supporting 94Mo foil of
4.8 mg/cm2 enriched to more than 95% in the desired isotope,
located in the target chamber of the multipole-dipole-multipole
spectrometer. The horizontal and vertical acceptance of the
spectrometer was 4°. Ray tracing was used to reconstruct the
scattering angle. The vertical acceptance was ±2◦. The focal
plane detector measured position and angle in the scattering
plane, covering Ex ≈ 8 MeV to Ex > 55 MeV (depending
on scattering angle). The out-of-plane scattering angle was
not measured. Position resolution of approximately 0.9 mm
and scattering angle resolution of about 0.09° were obtained.
Cross sections were obtained from the charge collected, target
thickness, dead time, and known solid angle. The target
thicknesses were measured by weighing and checked by
measuring the energy loss of the 240 MeV α beam in each
target. The cumulative uncertainties in target thickness, solid
angle, etc., result in about a ±10% uncertainty in absolute
cross sections. 24Mg spectra were taken before and after each
run, and the 13.85 ± .02 MeV L = 0 state [15] was used as a
check on the calibration in the giant resonance region.

Data were taken with the spectrometer at 0.0◦(0.0◦ < θ <
2.0◦) and at 4.0◦(2.0◦ < θ < 6.0◦). Sample spectra obtained
for 94Mo are shown in Fig. 1.
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FIG. 1. Inelastic α spectra obtained for 94Mo are shown. The lines
are examples of continua chosen for analyses. The bump in the spectra
between 45 and 60 MeV is due to (α,5Li) and (α,5He) reactions with
subsequent decay into an α particle and a nucleon.

III. MULTIPOLE ANALYSIS

Single-folding distorted wave Born approximation
(DWBA) calculations (as described in Refs. [9,10,16]) were
carried out with PTOLEMY [17]. Optical model parameters
obtained for 240 MeV α scattering on 90Zr [18] were used
and are shown in Table I. In addition to the experimental
uncertainties indicated in the tables for the energy-weighted
sum rule (EWSR), a variation of optical parameters has been
shown to change the DWBA cross sections [18] by 10%–15%.

Calculations were performed with a Fermi mass distri-
bution, ρ(r) = ρ0[1 + e(r−c)/a]−1, with c and a shown in
Table I [19]. The calculations for the transition densities, sum
rules, and DWBA calculations were discussed thoroughly in
Refs. [9,10,16,20].

A continuum of events consisting of various reactions such
as multipole excitation, multistep excitation, pickup-breakup,
and knock-out reactions as well as possibly some background
from slit scattering is present in the data. In the analysis of the
data, this continuum is represented by a straight line at high
excitation joined to a Fermi shape at low excitation to model
the particle decay threshold. The inelastic α spectra obtained
at several angles are each divided into a peak and continuum.

The peak and continuum cross sections are then divided into
bins by excitation energy. To obtain the multipole components
for each bin, the experimental angular distributions of the
peak and continuum cross sections are compared to the single-
folding DWBA calculations done with PTOLEMY, and then the
strengths of the isoscalar L = 0−4 contributions are varied in
order to minimize χ2. The isovector giant dipole resonance
(IVGDR) contributions are calculated and held fixed in the
fits. The experimental and calculated angular distributions

TABLE I. Optical model potential and Fermi mass density
parameters used in DWBA calculations for 94Mo are shown; rc0 is
the Coulomb radius parameter.

V (MeV) W (MeV) ri (fm) ai (fm) rc0 c a

40.2 40.9 0.786 1.242 0.960 5.0264 0.515

FIG. 2. 94Mo differential cross sections for three excitation ranges
of the GR peak and the continuum are plotted vs center-of-mass
scattering angle. Each bin is 480 keV wide and the average energies
for each bin are shown. The lines through the data points indicate
the multipole fits. The contributions of each multipole are shown.
The statistical errors are shown but are mostly smaller than the data
points.

are illustrated in Fig. 2 for selected energy bins for the GR
peak and continuum. The uncertainty for each multipole is
determined by incrementing or decrementing the strength of
that multipole, adjusting the strengths of other multipoles by
fitting to the data, and continuing until the new χ2 is 1 unit
larger than the χ2 from the best fit.

Analyses are done several times using different assumptions
about the continuum in order to estimate the uncertainties
due to the choice of continuum. Typical choices for the
continuum can be seen in Fig. 1. For purposes of estimating
the uncertainties, the continuum could have a linear slope at
high excitation that does not quite match the experimental data,
could be lowered so that it is always below the data, could have
a different low-energy cutoff and slope, or can have slope and
or amplitude which is altered at selected angles.

These separate analyses are then combined into an average
distribution. Errors were calculated by adding the errors from
the multipole fits (30%–60% of the total uncertainty) in
quadrature with the standard deviations between the different
fits (generally between 1% and 4% of the total uncertainty)
and the systematic experimental uncertainty.

IV. DESCRIPTION OF MICROSCOPIC CALCULATIONS

Microscopic mean-field–based random-phase-approxi-
mation (RPA) theory provides a description of collective states
in nuclei [3,21]. A description of the spherical HF-based RPA
calculations of the strength functions and centroid energies of
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the isoscalar (T = 0) giant resonances in nuclei can be found
in Ref. [7] and is summarized below.

The strength or response function can be obtained from the
RPA states |n〉 with corresponding energy En:

S(E) =
∑

n|〈0 |F |n〉2|δ(E − En), (2)

where F is the single-particle scattering operator F = ∑
f (i).

The ISGMR energies [mk = ∫EkS(E)dE] are given by

Econ =
√

m1

m−1
Ecen = m1

m0
, Escal =

√
m3

m1
, (3)

where Econ is the constrained energy, Ecen is the centroid
energy, and Escal is the scaling model energy. The energy-
weighted sum rule (EWSR), m1, is calculated using the
Hartree-Fock ground state wave function.

The fully self-consistent mean-field calculation of the
response function uses an effective two-nucleon interaction
which is obtained from a fit to the ground states properties
of nuclei. The effective interaction determines the HF mean
field. The RPA calculation includes all of the components of
the two-body interaction using a large configuration space and
was done using the numerical approach of Refs. [13,22]. The
calculations of the strength functions and centroid energies of
the isoscalar (T = 0) giant resonances in the nuclei were done
using an occupation number approximation for the single-
particle orbits of open shell nuclei. For the single-particle
scattering operator F = ∑

i f (ri)YL0 we used f (r) = r2 for
the monopole (L = 0) and quadrupole (L = 2), f (r) = r3

for the octupole (L = 3), and f (r) = r3 − 5
3 〈r2〉r was used

for the dipole (L = 1). The form of the dipole scattering
operator takes into account the contribution from spurious
states [23,24]. The KDE0v1 Skyrme-type effective interaction
was used. In an external test of 240 Skyrme-type effective
interactions [25,26], the KDE0v1 was the only one to pass con-
straints relating to experimental data on properties of nuclear
matter and nuclei. The appropriate experimental excitation
energy ranges were used: 9–40 MeV for the ISGMR and
isoscalar giant quadrupole (ISGQR), 9–20 MeV for the low
component of the isoscalar giant dipole (ISGDR), 20–36 MeV
for the high component of the ISGDR, and 14–40 MeV for the
high-energy octupole (HEOR). The calculated distributions
are shown superimposed on the experimental results in Fig. 3.
The smearing width (�) for the calculated distributions for
the E0-E3 multipoles are shown in Table II and are FWHM.
The smearing widths were chosen so that the visual rendering
of the calculation would provide a good comparison with the
experimental strength distribution. The energy moments are
included in Tables III and IV. The theoretical strengths are
calculated over a range of 0–100 MeV and contain 100% of
the EWSR for E0-E3.

V. DISCUSSION

The E0-E3 multipole distributions obtained for 94Mo are
shown in Fig. 3. Two peak fits are shown for the E0 and E1
distributions, and a single Gaussian fit is shown for E2 and
E3. The parameters for these fits and for the moment ratios
[m1/m0 and

√
(m3/m1)] are shown in Table III.

FIG. 3. Strength distributions obtained for 94Mo are shown by the
histograms. Error bars represent the uncertainty based on the fitting
of the angular distributions and different choices for the continuum,
as described in the text. Gaussian fits to the E0 and E1 distributions
for the individual peaks (blue and purple) and their sum (red) are
shown. The green lines are the strength distributions obtained with the
HF-RPA calculations using the KDE0v1 interaction, smeared using
the widths in Table II to more closely represent the data as discussed
in the text. The orange lines are the HF-RPA strength distributions
without smearing and with the strength scaled to fit on the figure.

A. E0 strength

In the E0 strength distribution, 112 ±19
12 % of the sum

rule was identified in the energy range analyzed, 9 � Ex �
40 MeV. As in other A ≈ 90 nuclei [6–8], the strength is
separated into high- and low-energy components. The low-
energy component is fit well with a Gaussian centered at
16.51 MeV. This peak contains about 82% of the EWSR.
The high-energy component is at 23.59 MeV and contains
approximately 21% of the EWSR. The energies and strengths
of the components follow the general trend seen for the other
Mo isotopes studied in Refs. [6,7]. The energies obtained for
the four Mo isotopes from Refs. [6,7] and for 94Mo from the
two peak fits are plotted vs A in Fig. 4. Lines representing
74/A1/3 and 109/A1/3 are shown as a reference on the low
and high plots. The low-energy peak is possibly decreasing
faster than A−1/3, while the high-energy peak shows no
systematic change in energy. As was observed in the other Mo
isotopes [6,7], the results of the HF-RPA calculation for the
E0 strength calculation show a single, slightly asymmetrical
peak concentrated in a narrow band just above the narrow peak
in the data. Although the distributions are not in agreement,
the centroid, scaled, and constrained energy moments are in
agreement within the errors.

TABLE II. The Lorentzian smearing width (�) for the calculated
distributions are shown.

E0 E1 E2 E3
� (MeV) 6.5 5.0 10.0 13.0
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TABLE III. Parameters for energy moments obtained for isoscalar multipoles in 94Mo are shown. The moments from the KDE0v1
calculation results are over the experimental energy range 9 � Ex � 40MeV.

Moments

E0 E1 E2 E3

Expt. KDE0v1

m1 (frac. EWSR) 1.12 ± 0.19
0.12 0.95 0.83 ± 0.35

0.20 0.77 ± 0.11
0.10 0.45 ± 0.10

m1/m0 (MeV) 17.57 ± 1.14
0.30 18.06 24.57 ± 3.41

1.59 16.12 ± 0.66
0.39 21.10 ± 0.31

0.17

rms width (MeV) 5.68 ± 5.53
1.93 4.40 8.02 ± 3.89

1.81 7.61 ± 1.74
1.04 6.64 ± 0.53

0.30√
m3/m1 (MeV) 19.62 ± 3.54

1.15 19.39 28.20 ± 4.61
2.11 19.56 ± 1.92

1.12 24.03 ± 0.73
0.28√

m1/m−1 (MeV) 17.06 ± 0.75
0.19 17.67 23.09 ± 2.84

1.31 15.48 ± 0.44
0.26 19.84 ± 0.23

0.17

B. E1 strength

Much of the expected E1 EWSR (83 ±35
20 %) was identified

in the range 9–40 MeV. The strength is divided into 1�ω
and 3�ω [27–29] components. The high-energy component
is the compression mode, and its energy is related to KA.
The low-energy component is mostly in the range 9 � Ex �
20 MeV, and the high-energy component is mostly in the
range 20 � Ex � 36 MeV [7]. The high and low peaks are
fit well with Gaussians. The low-energy component is at
15.07 ±0.22

0.19 MeV and contains 12% of the EWSR, and the
high-energy component is at 26.50 ±0.44

0.42 MeV and contains
45% of the EWSR. The sum of the strength in these two
components is less than the 83% observed over the 9–40 MeV
range. In the E1 strength distribution for energies above
30 MeV (Fig. 3), the strength has large error bars which
extend to the axis, and in this region the strength may
effectively be zero. The results of the HF-RPA calculations
for the E1 strength (broadened with a Lorentzian shape with
� = 5.0 MeV) are shown superimposed on the data in Fig. 3.
The calculated strength is in a broad peak with some strength
at low excitation and indications of several components and
structure at ≈27 and 32 MeV. The strength rises to a maximum
near 30 MeV, roughly 4 MeV greater than the high peak from
the experimental strength, and then tails past 40 MeV. In the
low-energy range (9 � Ex � 20 MeV) there is a weak peak
near the experimental one and also another one below it.
The calculation and the data do not agree, but the amount of
strength predicted in the low-energy range is nearly the same
as the experimental value obtained from the Gaussian fit of
the low peak. In the high-energy range (20 � Ex � 40 MeV),

TABLE IV. Parameters obtained for energy moments from the
KDE0v1 calculation are shown. The results are over the experimental
energy ranges (E1 low range: 9 � Ex � 20 MeV, E1 high range:
20 � Ex � 40 MeV, E2 : 9 � Ex � 40 MeV, and E3 : 14 � Ex �
40 MeV).

KDE0v1

E1 Low range E1 High range E2 E3
m1/m0 (MeV) 14.29 29.05 16.54 25.98
rms width (MeV) 3.31 4.49 5.05 5.63
m1 (frac. EWSR) 0.13 0.77 0.86 0.64

the calculation for the peak position is greater than the
experimental one by ≈2 MeV and predicts more strength than
identified in the experimental data. In Fig. 5, the centroids
of the Gaussian fit to the low- and high-energy peaks and
the strength in the low and high peaks for the isotopes from
Ref. [7] and for 94Mo is plotted vs A. For the Mo isotopes, the
calculated positions of the low- and high-energy peaks tend to
not be in agreement with the experimental position.

C. E2 strength

The E2 peak is located at (m1/m0) 14.56 ± .09 MeV
and 61 ± 9% of the E2 EWSR was identified. The peak
was fitted with a Gaussian and m1/m0,rms width, and the
Gaussian parameters are given in Table V. The Gaussian
energy is approximately 1.5 MeV less than m1/m0 because

FIG. 4. The centroids of the Gaussians obtained from the fits
to the E0 distributions for the Mo isotopes are plotted vs A. The
(red) lines show 74A−1/3 and 109A−1/3 in the upper and lower plots,
respectively.
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TABLE V. Parameters obtained for Gaussian fits for isoscalar multipoles in 94Mo are shown.

Gaussian fits

E0 peak 1 E0 peak 2 E2

Centroids (MeV) 16.51 ± 0.19
0.21 23.59 ± 0.78

0.76 14.55 ± 0.13

FWHM (MeV) 5.73 ± 0.39
0.36 5.87 ± 1.06

1.14 5.28 ± 0.17

Frac. EWSR 0.82 ± 0.06 0.21 ± 0.05 0.59 ± 0.03

Gaussian fits

E1 Low peak E1 High peak E3

Centroids (MeV) 15.07 ± 0.22
0.19 26.50 ± 0.44

0.42 24.60 ± 0.46

FWHM (MeV) 3.19 ± 0.36
0.22 5.99 ± 0.45

0.49 9.24 ± 0.53
0.50

Frac. EWSR 0.12 ± 0.02 0.45 ± 0.05 0.39 ± 0.03

of the inclusion of the apparently random strength at high
excitation in the calculation of the energy moments. In the Mo
isotopes studied in Ref. [7], the E2 strength distribution was
slightly asymmetric on the low-energy side. Moalem et al.
[4] measured the GQR in 94Mo with inelastic scattering of
110 MeV 3He. Our result for % EWSR, Gaussian energy,
and width agree within the errors with their work. Figure 6
compares the Gaussian centroid energy of the GQR in the Mo
isotopes obtained from the four experiments [4,5,7], the GQR
measurement of 92Mo with inelastic scattering of 120 MeV α
particles by Duhamel et al. [5], and the m1/m0 obtained from
the calculation with the KDE0v1 interaction. The calculated
distribution shows a peak that is located at a higher energy by

FIG. 5. The centroids of the Gaussian fits to the low- and high-
energy peaks in the ISGDR distributions for each of the Mo isotopes
from Ref. [7] and 94Mo from this work are plotted vs A in the top
panels. The strength in the low and high peak is plotted in the lower
panels.

approximately 1 MeV, but it does show a similar amount of
tailing on the high-excitation side.

D. E3 strength

In the harmonic oscillator shell model description of the
giant resonances, the E3 resonance is split into a 1�ω low-
energy octupole (LEOR) containing 25% of the E3 EWSR
and 3�ω high-energy octupole (HEOR) containing 75% of the
EWSR [30]. Coupling these modes with the octupole/octupole
residual reaction gives an LEOR with approximately 35% of
the EWSR and HEOR with 65% EWSR [30]. The low-energy
cutoff for the measured data lies in the middle of the higher
region of the LEOR. The HF-RPA calculation with KDE0v1
interaction puts the LEOR at about 8 MeV, which is below
the 9 MeV cutoff. The HEOR is predicted to be located at
about 29 MeV. The experimental strength for the HEOR is in a
broad peak centered at 24.6 MeV and contains 39% of the E3
EWSR. The calculated energy is 25.98 MeV. As was noted in
Ref. [7], the calculated energies for the HEOR are sensitive to

FIG. 6. The centroid of the Gaussian fit to the E2 strength in each
of the Mo isotopes from Ref. [7] (blue diamonds) and 94Mo from this
work (light blue circle) is plotted vs A.

034315-5



J. BUTTON et al. PHYSICAL REVIEW C 94, 034315 (2016)

the effective mass. Using a larger effective mass would lower
the predicted energy.

VI. SUMMARY

We have obtained distributions for isoscalar E0, E1, E2,
and E3 strength in 94Mo and compared these to spherical
Hartree-Fock RPA calculations using the KDE0v1 Skyrme-
type interaction. The E0 strength has a high-energy tail similar
to that in the A �= 92 Mo nuclei which is not present in heavier
nuclei. The source of this tail is not understood. The position
of the high-energy part of the isoscalar dipole is about 2.5 MeV
below that from the HF-RPA calculation. Position, strength,
and width of the E2 distributions agree within errors with

those obtained by Moalem et al., but are ≈1MeV below those
obtained with the HF-RPA calculations. The HEOR strength
lies in a broad peak centered at 24.6 MeV, approximately
2 MeV below that obtained with the HF-RPA calculations.

Microscopic calculations beyond the mean-field approx-
imation, which include nuclear structure effects, may be
necessary to obtain the correct energies and strength distribu-
tions. Additionally, using microscopic transition densities in
analyses of the experimental cross-section data may improve
agreement between experiment and theory.
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