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Nuclear Zemach moments and finite-size corrections to allowed β decay
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The finite-size correction to β decay plays an important role in determining the expected antineutrino spectra
from reactors at a level that is important for the reactor-neutrino anomaly. Here we express the leading-order
finite-size correction to allowed β decay in terms of Zemach moments. We calculate the Zemach moments within
a Hartree-Fock model using a Skyrme-like energy density functional. We find that the Zemach moments are
increased relative to predictions based on the simple assumption of identical uniform nuclear charge and weak
transition densities. However, for allowed ground-state to ground-state transitions in medium and heavy nuclei,
the detailed nuclear-structure calculations do not change the finite-size corrections significantly from the simple
model predictions, and are only 10–15% larger than the latter even though the densities differ significantly.
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I. INTRODUCTION

The finite size (FS) of the nucleus results in small
corrections to several low-energy electromagnetic and weak
interaction processes, such as precision studies of atomic
hyperfine splitting [1] and the Lamb shift [2], as well as nuclear
β decay [3]. In all of these processes Zemach [1] moments
enter, and the magnitudes of some of these Zemach moments
have been extracted [4,5] from experimental measurements
in very light nuclei. For heavier nuclei finite-size effects are
often parameterized with a simple estimate based on the size
of a hypothetical uniform-density nucleus (viz., R = r0A

1/3),
where r0 is typically taken to be 1.2 fm and A is the nucleon
number. The FS correction to β decay plays a significant
role in the current reactor neutrino anomaly [6] and so it is
important to examine the approximations and uncertainties
for these corrections. There are other significant contributions
to the anomaly, including the effective charge used in the
Fermi function to describe fission-fragment β-decay spectra
and the treatment of weak magnetism [3,7–9]. In addition,
improved treatments of the branching ratios and fission yields
affect the shape and magnitude of the antineutrino spectra
[10,11]. Considerations of non-nuclear effects such as atomic
screening and exchange [12] are far outside our purview and
will be ignored. In the present work, we focus on the model
dependence of the FS corrections.

In the present work we express the FS correction to allowed
β decay in terms of Zemach moments and compare nuclear-
structure calculations for these moments across a broad range
of masses with the often used R = r0A

1/3 uniform-density
approximation. We note that forbidden β-decay transitions
represent [3,7,10,13,14] about 30% of reactor antineutrino
spectra and the FS corrections for these transitions are more
complicated and more poorly understood than for allowed
transitions. We do not discuss Zemach moments for forbidden
β decays in the present work.

II. THE FINITE-SIZE CORRECTION TO
ALLOWED β DECAY

The interaction of the outgoing electron with the charge
of the daughter nucleus is a large correction that has to be

taken into account in nuclear β-decay studies. The primary
correction involves replacing the plane-wave solution for
the outgoing electron with a point-Coulomb wave function.
Standard practice involves introducing the Fermi function
F (E,Z,A) for a pointlike nuclear charge, and then improving
on this through a finite-size correction to F . Here E is the
total energy of the outgoing electron with mass m, and Z
is the charge of the daughter nucleus. In the present work,
we focus on the FS corrections to allowed β decay. This
correction has been derived previously by other authors [15,16]
in various approximations, but the focus of the present work is
to formulate the problem in terms of the Zemach moments that
play an important role in other electromagnetic [1,2] and weak
interaction processes [3]. Specifically we present an exact
expression for the effect of the finite nuclear charge distribution
to first order in Zα (where α is the fine-structure constant)
expressed together with the weak density in terms of Zemach
moments, which are moments with respect to the folded charge
and weak transition densities. These types of moments are
now the standard description of nuclear finite-size effects
in the Lamb shift in hydrogenic and muonic atoms [2] and
in hyperfine splittings in hydrogenic atoms [1]. This natural
description requires no approximation, unlike the approach of
Ref. [15], and one of our goals is to assess the quality of the
results of that reference.

The electron density near the nuclear surface is increased
by the attractive Coulomb interaction, so that the β-decay rate
is increased by the pointlike Fermi correction. The finite-size
correction to the Fermi function decreases the electron density
near the nucleus and the rate is then decreased (relative to
the point-nucleus Fermi function). Thus, if we express the
FS correction in the form F → F (1 + δFS), the sign of the
finite-size correction δFS is always negative. In the case of
reactor fission β-decay spectra, where the β spectrum of each
fission fragment is normalized to unity, the FS correction
results in a decrease (increase) in the magnitude of the
high-energy component of the electron (antineutrino) spectra.
This increase in the high-energy component of the antineutrino
spectrum is a major source of the reactor neutrino anomaly.

The dimensionless parameters in the FS problem are Zα
and ER/�c, where E is any of the energy scales in the problem
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(such as the electron mass, m, or energy, E, or the antineutrino
energy, Eν), and R is a generic nuclear size. The quantity
Zα is always less than 1, ER/�c � 1/10 for typical values of
E � 5 MeV and R ∼ 4 fm. We will restrict ourselves to first
order in both Zα and the nuclear size R.

The finite-size corrections to this order for allowed Fermi
and Gamow-Teller decays were previously derived by Holstein
[16]. Two normalized finite-size densities contribute to the
correction. One is the weak transition density ρW(r) that
specifies the probability of finding the β-decaying nucleon
at r . In a simple shell model this density is the product of
the initial and final radial single-particle wave functions of the
decaying nucleon. The second density is the charge density of
the nucleus, ρch(r), which determines the Coulomb interaction.
To the order that we work there is one density of each type.

The quantity �h1 in Eq. (25) of Holstein’s paper is
equivalent to our δFS. His form-factor integrals (labeled X and
Y in that equation) can be converted to our Zemach moments
using X + Y = −π

8 〈r〉(2) and X = −π
8 〈r〉r(2). Equation (2) of

Ref. [17] expresses 〈r〉(2) in terms of weak and charge form
factors: 〈r〉(2) = − 4

π

∫ ∞
0

dq

q2 [F W(q2)Fch(q2) − 1], and 〈r〉r(2) is
similar (see the Appendix). Our Zemach moments are given
by

〈r〉(2) =
∫

d3r ρW(r)
∫

d3s ρch(s) | �r − �s |

=
∫

d3s s

∫
d3r ρW(r) ρch(| �r − �s |) , (1)

which is the first radial moment of the convoluted or Zemach
density ρ(2)(s), and

〈r〉r(2) =
∫

d3r ρW(r) �r · �∇r

∫
d3s ρch(s) | �r − �s |

=
∫

d3s s

∫
d3r ρW(r) r

∂

∂r
ρch(| �r − �s |) , (2)

which is the first moment of a more complicated Zemach-
type density ρr

(2)(s) (see the Appendix). Inserting the above
translations of X and Y in terms of Zemach moments into
Holstein’s Eq. (25) we find that the fractional FS correction to
allowed Gamow-Teller transitions of the desired order is

δFS =− Z α

3�c

(
4E 〈r〉(2) + E 〈r〉r(2) − Eν〈r〉r(2)

3

+ m2c4

E
(2 〈r〉(2) − 〈r〉r(2))

)
. (3)

We have independently calculated δFS using different tech-
niques than Ref. [16] and have verified Eq. (3), which is our full
result for the finite-size correction to allowed Gamow-Teller β
decay expressed in terms of two Zemach moments, 〈r〉(2) and
〈r〉r(2), both of which are nuclear structure dependent.

In the special case where ρW and ρch are identical, one can
show that 〈r〉r(2) −→ 1

2 〈r〉(2). In that very useful limit we have

δFS = −3

2

Z α

�c
〈r〉(2)

(
E − Eν

27
+ m2c4

3E

)
(4)

for allowed Gamow-Teller transitions. This is the form of the
FS correction that was used in Ref. [3], where the additional

assumption of a uniform distribution of radius R for both the
weak transition and charge densities was made. Under this
assumption [2], 〈r〉(2) = 36

35R, where R ∼= 1.2 A1/3fm is the
radius of a uniform-density charge distribution that is obtained
by fitting the root-mean-square charge radii of nuclei across
the periodic table [18].

For allowed Fermi transitions (as opposed to allowed
Gamow-Teller) one should replace the numerical coefficient
of Eν by +1/9 in Eq. (4) and by +1 in Eq. (3). Both results
agree with the first of Eqs. (25) in Ref. [16], where |a|2
and |c|2 denote the squares of the Fermi and Gamow-Teller
matrix elements, respectively, and play no role in extracting the
Coulomb corrections. This also agrees with results of Bottino
and Ciocchetti [19] for allowed Gamow-Teller transitions
involving a common monopole form factor (i.e., a Yukawa
distribution), which was the only distribution they treated
in detail. The allowed Fermi β+ transitions considered in
Ref. [20] also agree with Eq. (3) for the modified Gaussian
distribution considered there, if we take account of the sign
change needed to treat β+ decay rather than β− decay.
Reference [21] used a pointlike charge distribution and a
uniform nuclear transition density, which corresponds to
〈r〉r(2) = 〈r〉(2) −→ 〈r〉 = 3 R

4 and agrees with Eq. (3) if one
uses the conversion factors in Ref. [16]. We note that Eq. (4)
differs from the corresponding ones in Refs. [8,22].

Most calculations of the FS correction appearing in the
literature assume that the weak transition and charge densities
are the same. However, the charge densities are determined
by summing the distributions of all protons in the daughter
nuclei, while the weak transition densities are determined by
the product of the neutron and proton wave functions involved
in the β transitions. Thus we need to examine the effect
of including more realistic nuclear-structure descriptions for
these density distributions in evaluating the Zemach moments
appearing in Eq. (3). For this purpose we use charge and weak
transition densities derived from a density-functional-theory
description of the nucleus.

Although the integrals in Eqs. (1) and (2) appear very
complicated, in reality each is no worse than a triple integral.
Moreover, each can be expressed as the simple r moment of
densities ρ(2)(r) and ρr

(2)(r), respectively. We demonstrate this
in the Appendix: Zemach densities and moments.

III. NUCLEAR DENSITY FUNCTIONAL THEORY

Density functional theory (DFT) is based on theorems
that prove the existence of energy functionals for many-
body systems, which, in principle, include all many-body
correlations [23–25]. Nuclear DFT has the advantage of being
applicable across the entire chart of the nuclides. The main
ingredient in nuclear DFT is the energy density functional that
depends on the distributions of the nucleonic matter, spin, and
kinetic densities, as well as their gradients [26]. The present
work is based on the Skyrme-like energy density functional,
which has the form

ESkyrme =
∑
t=0,1

∫
d3r

[Heven
t (r) + Hodd

t (r)
]
, (5)
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where the time-even part of the energy density is defined
in Ref. [27], and the present calculations do not include the
time-odd component. The time-odd Hamiltonian is generally
important for odd-A and odd-odd nuclei [26]. However, the
current work assumes spherical symmetry, which implies time-
reversal symmetry, and so this term does not contribute [28].
The restriction to a spherically symmetric model and hence
to Heven

t (r) effectively means that our model is only suitable
for nondeformed (spherical) nuclei. We have not justified this
assumption via a detailed study of the structure of all of
the nuclei considered, nor are we claiming that these nuclei
are nondeformed. Rather our goal is to estimate the effect
of improved nuclear-structure calculations on the prediction
of Zemach moments and FS effects over the predictions for
simplified uniform densities.

In the Hartree-Fock (HF) approximation the single-particle
states are calculated by solving the eigen-equations

hαϕi,α = ei,αϕi,α, (6)

where i indicates all nucleonic quantum numbers, α is used
to distinguish the neutron (n) or the proton (p), and ei,α is the
corresponding eigenenergy. If we assume spherical symmetry
[29], the single-particle wave functions (SPWF) ϕi,α have good
quantum numbers [n�j ]. The (reduced) radial wave function
of the [n�j ] orbital uα(n�j,r) is normalized according to∫

dr u2
α(n�j,r) = 1. The local neutron and proton densities

are then simply obtained from the radial wave functions as

ρα(r) =
∑

i

〈�|a†
r,iαar,iα|�〉 (7)

= 1

4πr2

∑
n�j

(2j + 1)u2
α(n�j,r), (8)

where � is the total wave function, i indicates all of the
single-particle quantum numbers, and α distinguishes between
neutrons and protons.

Many of the fission fragments dominating the reactor
antineutrino spectra are deformed nuclei and might not be
well described by our Hartree-Fock model. However, our
goal for these nuclei is to gain an understanding of how FS
corrections are affected by using nuclear-structure models that
are considerably more sophisticated than the assumption of
equal uniform models for the weak transition density and the
charge density.

IV. CHARGE AND WEAK TRANSITION DENSITIES

In order to study the Zemach moments we require nor-
malized charge and weak transition densities. The normalized
charge density is simply

ρch(r) = ρp(r)∫
d3r ρp(r)

= 1

Z
ρp(r). (9)

Within the Skyrme-Hartree-Fock model, the weak transition
density simply involves one term and is given by

ρW(r) = 〈�f |a†
r,kpar,ln|�i〉, (10)

where �i and �f are the total wave functions for the parent
and daughter nuclei, respectively, and ar,ln is the annihilation

operator for the single neutron with quantum numbers l in the
parent nucleus and a

†
r,kp is the creation operator for the single

proton with quantum numbers k in the daughter nucleus. For
allowed β-decay transitions, the neutron or proton are often
in the same [n�j ] orbital or in spin-orbit-partner orbitals (i.e.,
orbitals with the same n� and j ,j ′ = � ± 1/2). The weak
transition density is then given by the product of reduced wave
functions

ρSHF
W (r) = 1

4πr2

u∗
p(n�j ′,r)un(n�j,r)∫

dr u∗
p(n�j ′,r)un(n�j,r)

. (11)

We note that, since the spherical mean fields derived from
the Skyrme density functional involve both a spin-orbit and
Coulomb interaction, the neutron and proton radial wave
functions are different even for states in the same [n�j ] orbital,
but are not orthogonal.

V. RESULTS AND DISCUSSION

For the purpose of the present study, the numerical code
HFBRAD [30] was used to solve the Skyrme-Hartree-Fock equa-
tions in coordinate space within the assumption of spherical
symmetry. The energy density functional SLy4 Skyrme-EDF
[31] was used, which is a common choice for DFT predictions.

A. Density distribution

In Fig. 1 we show the SLy4 Skyrme-EDF prediction for the
total charge density of 120Sn, as well as the contributions from
individual shells. The theoretical charge density distribution is
in reasonable agreement with the experimental one, especially
in the nuclear surface. Orbitals with higher angular momentum
tend to peak near the nuclear surface and thus dominate this
region of the charge density. At smaller (intermediate) radii
the experimental charge density is relatively flat. In contrast,
the intermediate theoretical density exhibits features that can

2 4 6 8
0.00

0.02

0.04

0.06

0.08

ρ(
r)
(fm
-3
)

r (fm)

Exp.
Uni.
Total
1s1/2
1p3/2
1p1/2
1d5/2
2s1/2
1d3/2
1f7/2
2p3/2
2p1/2
1f5/2
1g9/2

120Sn

FIG. 1. Charge density distribution of 120Sn as calculated by SLy4
EDF. The contribution from each single-particle state is given. The
experimental data [32] are also plotted for comparison. A uniform
density distribution (labeled “Uni.”) that extends to R = 1.2A1/3 fm
is also shown.
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FIG. 2. (a) The radial wave functions of the neutron in the
parent nucleus and the proton in the daughter nucleus participating
in the allowed ground-state-to-ground-state β− decay of 100Nb. (b)
Normalized charge density in the daughter nucleus 100Mo, normalized
weak transition density calculated from the corresponding SPWFs,
and the uniform density distribution for the A = 100 nucleus, labeled
by “Charge,” “Weak,” and “Uniform,” respectively. The convoluted
densities ρ(2)(r) and ρr

(2)(r) determining the Zemach moments 〈r〉(2)

and 〈r〉r
(2), respectively, are plotted in panels (c) and (d). Assuming

that the weak density is identical to the normalized charge density
produces the curve labeled “Charge.” The curve labeled “Mix” uses
the calculated charge and weak densities, while the curve labeled
“Uniform” assumes that both densities have a common uniform
density distribution.

largely be attributed to orbitals with nodes, which tend to
peak at these radii. This effect has been discussed in detail in
Refs. [33], where it is found that Hartree-Fock-type models
tend to predict exaggerated charge density fluctuations, in part
because of an inadequate treatment of many-body correlations.

Except for s-wave-to-s-wave transitions, the weak tran-
sition densities are zero at the origin, and they peak at
intermediate radii. Thus, they are distinctly different in shape
from the charge densities, in strong contrast to the uniform
density assumption.

B. Charge, weak, and convoluted densities

In Figs. 2 and 3 we compare the charge and weak
transition densities for the parent-daughter pairs 100Nb -100Mo
and 121Sn -121Sb, respectively, where the transition densities
represent the allowed ground-state-to-ground-state β decays.
For both nuclear systems the charge and weak transition
densities are very different in shape. Figs. 2(a) and 3(a) show
the single-particle wave functions of the last neutron and
the last proton that are closest to the Fermi surfaces. The
corresponding normalized weak transition density, calculated
using Eq. (11), is shown in Figs. 2(b) and 3(b) and is
compared with the normalized charge density distribution and
the uniform density distribution.

The densities that determine the Zemach moments 〈r〉(2) and
〈r〉r(2) are shown at panels (c) and (d) respectively, in Figs. 2
and 3. They are derived in the Appendix in Eqs. (A3) and (A5)
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FIG. 3. The same as Fig. 2, but for the allowed ground-state-to-
ground-state β− decay of 121Sn.

in a form convenient for computation

ρ(2)(r) = 4π

2r

∫ ∞

0
dx x ρW(x)

∫ x+r

|x−r|
dz z ρch(z) (12)

and

ρr
(2)(r) = −ρ(2)(r) + 1

2r

∫
d3x ρW(x)[(x + r)ρch(x + r)

− (x − r)ρch(| x − r |)] . (13)

We note that
∫

d3r ρ(2)(r) = 1 and
∫

d3r ρr
(2)(r) = 0, and that

〈r2〉(2) = 〈r2〉W + 〈r2〉ch, where the first quantity is the mean-
square radius of the weak density and the second quantity is
the mean-square radius of the charge density.

The Skyrme-Hartree-Fock convoluted densities ρ(2)(r) and
ρr

(2)(r) are found not to deviate significantly from the uniform
density predictions, contrary to naive expectations based on the
large differences between the individual component densities.
The largest differences are seen at small radii, where the
Skyrme-Hartree-Fock convoluted densities tend to be lower
than those obtained assuming uniform densities. The reason for
this lies in the convolution procedure, which folds the charge
and weak densities together. This leads to greater Zemach-
density components at large radii, as seen in Figs. 2(c–d)
and 3(c–d). The normalization condition weights the tails
of densities more heavily, and this extra strength in the tails
must be compensated by reducing strength near the origin. We
note that folding together two uniform distributions (each with
extent R) leads to a Zemach density that extends to 2R [2].

C. Zemach moments

In Table I we list the moments 〈r〉, 〈r2〉, and 〈 1
r
〉 derived

from the Skyrme-Hartree-Fock point densities and compare
these to the predictions of a simple uniform density that
extends to R = 1.2A1/3. The corresponding Zemach moments
determining the FS correction are listed in Table II. The
Hartree-Fock Zemach moments are larger in general than the
uniform-density values. But the value of 〈r〉(2) in heavy nuclei
is only 10% higher than the uniform-density estimate. The
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TABLE I. Single-density moments 〈r〉, 〈r2〉, and 〈 1
r
〉, with units

fm, fm2, and fm−1, respectively. These moments are derived using
a uniform-density distribution, a point charge density, or a weak
transition density, which are labeled as “Uni,” “Ch,” and “Weak,”
respectively. The spin and parity of 61Cr and 61Mn have not been
assigned definitively by ENSDF, but we took both to be 5/2−. In
addition we took the spin and parity of 104Nb to be 1+.

〈r〉Uni 〈r〉Ch 〈r〉Weak 〈r2〉Uni 〈r2〉Ch 〈r2〉Weak
〈

1
r
〉Uni 〈

1
r
〉Ch

14C -14N 2.17 2.43 2.80 5.02 6.73 8.78 0.52 0.50
25Na -25Mg 2.63 2.79 3.29 7.39 8.75 11.63 0.43 0.42
35S -35Cl 2.94 3.08 3.57 9.24 10.66 13.77 0.38 0.39
45Ca -45Sc 3.20 3.30 4.03 10.93 12.06 17.12 0.35 0.36
61Cr -61Mn 3.54 3.53 4.23 13.39 13.74 18.88 0.32 0.33
64Co -64Ni 3.60 3.61 4.23 13.82 14.29 18.87 0.31 0.32
100Nb -100Mo 4.18 4.13 4.97 18.61 18.74 25.80 0.27 0.28
104Nb -104Mo 4.23 4.18 5.01 19.11 19.15 26.14 0.27 0.28
121Sn -121Sb 4.45 4.42 4.98 21.14 21.33 28.11 0.25 0.26

Hartree-Fock prediction for the smaller Zemach-like moment
〈r〉r(2) is 30% higher than the uniform-density value, but 〈r〉r(2) is
significantly less important numerically in Eq. (3) than 〈r〉(2).
The ratio 〈r〉(2)/〈r〉r(2) for the mixed case is closer to 1.7 than
the equal-density prediction of 2.0.

All of the nuclear-structure information required to cal-
culate the leading-order finite-size correction to β decay is
contained in the two Zemach moments, 〈r〉(2) and 〈r〉r(2).
Our primary purpose in this work is to assess the quality of
approximating the physical charge and weak densities by equal
uniform densities, which is the approximation for the Zemach
moments that was used in the calculations of Ref. [3]. We can
see from Figs. 2 and 3 that the weak transition density looks
nothing like the charge or uniform densities for those cases.
Although the charge density has roughly the shape of a uniform
density, the weak density has substantial components that peak
in the tail of the charge distribution, and Table I demonstrates
that the mean-square radius of the weak density is substantially
greater than that of the charge density. If the mean-square
radius of the weak density is its dominant feature, the weak
form factor can be approximated by a two-term Taylor series

(viz., F W(q2) ∼= 1 − q2〈r2〉W/6), which is an approximation
used in Ref. [15]. In the Appendix we show that this leads to an
expression relating the Zemach and charge density moments,
namely, 〈r〉BB

(2)
∼= 〈r〉ch + 〈r2〉W〈 1

r
〉ch/3. The latter approximate

Zemach moment (labeled “Mix BB” in Table II) is greater than
the Hartree-Fock value labeled “Mix” by roughly 5%, and
is therefore fairly accurate. The Hartree-Fock “Mix” value
is larger that the equal uniform density result by amounts
that varies from 10% to 30% from heavy to light nuclei, as
stated above. Because the β-decaying nuclei in reactors tend
to be rather heavy, the equal uniform density approximation is
actually rather good, and the differences (∼10–15%) based on
variations in the values of 〈r〉(2) in the table are in general much
less than those subjectively assumed in Ref. [3]. It is important
to note that the differences all result in mixed moments that
are greater than those based on the uniform density. This is
presumably due to the effect of the folding of the tails of the
mixed distributions leading to more extended distributions than
the uniform case, which we briefly discussed earlier. It may
be a general feature of mixed vs uniform density moments,
with the former being larger. It is nevertheless remarkable
that two densities with very different shapes produce Zemach
moments in substantial agreement with the simple equal and
uniform model.

D. The finite-size corrections

In Fig. 4 we compare the FS correction for the
100Nb → 100Mo ground-state-to-ground-state transition using
the Zemach moments listed in Table II with the result obtained
using Eq. (4) with 〈r〉(2) = 36

35R. The latter equation only
holds true for equal charge and weak transition densities, and
the value 36

35R for the Zemach moment further requires the
assumption of uniform densities. The improved treatment of
the densities leads to a small change in the FS correction, i.e.,
the slopes of the two lines in the right panel of Fig. 4 differ
by 12%. The left panel of Fig. 4 shows that this leads to a
maximum change in the shape of the β-decay spectrum of
0.5%. The 12% change in δFS translates into a 0.5% change in
the shape of the β-spectrum because the FS correction comes
in as a (1 + δFS) multiplicative spectrum correction and so the

TABLE II. Zemach moments 〈r〉(2) and 〈r〉r
(2) calculated from convoluted densities ρ(2)(s) and ρr

(2)(s), respectively, for the allowed ground-
state-to-ground-state β− decays. The calculations using the uniform-density distribution, the charge density only, or charge and weak densities
together, are labeled “Uni,” “Ch,” and “Mix,” respectively. The values of 〈r〉Uni

(2) and 〈r〉Mix
(2) approximated by using Eq. (A12) are labeled as

〈r〉UniBB
(2) and 〈r〉MixBB

(2) , respectively. The values of 〈r〉rUni
(2) and 〈r〉rMix

(2) approximated by using Eq. (A13) are labeled as 〈r〉rUniBB
(2) and 〈r〉rMixBB

(2) ,
respectively. All results are in units of fm.

〈r〉Uni
(2) 〈r〉UniBB

(2) 〈r〉Ch
(2) 〈r〉Mix

(2) 〈r〉MixBB
(2) 〈r〉rUni

(2) 〈r〉rUniBB
(2) 〈r〉rCh

(2) 〈r〉rMix
(2) 〈r〉rMixBB

(2)

14C -14N 2.97 3.04 3.40 3.66 3.89 1.49 1.74 1.69 2.09 2.93
25Na -25Mg 3.61 3.68 3.89 4.22 4.44 1.80 2.11 1.94 2.47 3.29
35S -35Cl 4.04 4.12 4.30 4.62 4.86 2.02 2.36 2.14 2.66 3.57
45Ca -45Sc 4.39 4.48 4.58 5.07 5.33 2.20 2.56 2.28 3.07 4.07
61Cr -61Mn 4.86 4.96 4.90 5.36 5.62 2.43 2.83 2.44 3.19 4.17
64Co -64Ni 4.94 5.04 5.00 5.41 5.64 2.47 2.88 2.49 3.16 4.06
100Nb -100Mo 5.73 5.85 5.73 6.28 6.55 2.86 3.34 2.85 3.76 4.83
104Nb -104Mo 5.80 5.93 5.79 6.33 6.60 2.90 3.39 2.89 3.78 4.83
121Sn -121Sb 6.10 6.23 6.11 6.56 6.86 3.05 3.56 3.05 3.71 4.87
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FIG. 4. (Left) The ratio (DFT/uniform) of the ground-state-to-
ground-state 100Nb → 100Mo β-decay spectrum. The DFT (uniform)
finite-size correction was calculated using the values of 〈r〉(2) and
〈r〉r

(2) in Table II that are labeled “Mix (Uni).” Both spectra are
normalized to unity. (Right) The FS correction δFS for the DFT and
the (equal) uniform-density approximation.

ratio of the new to old normalized β-decay spectrum is a line
of slope (δnew

FS − δold
FS )/2 that goes through unity at E0/2, where

E0 is the end-point energy.

VI. SUMMARY

The magnitudes of the expected reactor antineutrino spectra
have recently been increased [9], in part because of changes
in the treatment of the FS corrections to allowed nuclear β
decay. In this work we have expressed the FS correction to
allowed nuclear β decay in terms of nuclear Zemach moments.
Using the Skyrme-Hartree-Fock model we evaluated these
Zemach moments for ground-state-to-ground-state transitions
for a range of nuclei. Our previous evaluations made the
very simplified assumption of uniform distributions for the
normalized charge and weak transition densities determining
these Zemach moments [2,3,17]. Despite the large differences
between the shapes of the weak transition densities calculated
using Hartree-Fock and those from model uniform densities,
the change in the Zemach moments was found to be relatively
small, only ∼10–15% for medium and heavy nuclei, although
the changes uniformly produced mixed-density moments
greater than uniform density moments.

Many of the allowed transitions contributing to reactor
antineutrino spectra involve transitions to excited states of
the daughter nucleus. The present Hartree-Fock model is only
designed to calculate ground-state wave functions, so we have
not calculated such transitions. However, for allowed β-decay
transitions to excited states that are dominated by a weak
transition density involving neutron and proton orbitals of the
same quantum numbers n�j , or their spin-orbit partners, all
of the conclusions drawn in the present work hold. However,
this is not the case for the ∼30% of the transitions making
up fission antineutrino spectra that result from forbidden β
decays, because the FS corrections considered in the present
work only apply to allowed β decays.
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APPENDIX: ZEMACH DENSITIES AND MOMENTS

The second form in Eq. (1) defines 〈r〉(2) as the first radial
moment of a convoluted or Zemach density

ρ(2)(s) =
∫

d3x ρW(x) ρch(| �x − �s |) . (A1)

The transformation from the first form to the second form
in Eq. (1) is obtained by changing the inner variable �s
to �r − �s and then interchanging the order of integration.
The integral above can be simplified to a two-dimensional
integral by first choosing the z axis of the ŝ coordinate
system along the vector x̂. This reduces the integration to
two variables: x and cos θ = x̂ · ŝ. The integral over cos θ
can be simplified by changing variables from μ = cos θ to
| �x − �s |=

√
x2 + s2 − 2xsμ, which produces [2]

1

4π

∫
d�x ρch(| �x − �s |)

= 1

2

∫ 1

−1
dμ ρch(

√
x2 + s2 − 2xsμ)

= 1

2xs

∫ x+s

|x−s|
dz z ρch(z), (A2)

and finally

ρ(2)(s) = 4π

2s

∫ ∞

0
dx x ρW(x)

∫ x+s

|x−s|
dz z ρch(z). (A3)

It follows immediately from Eq. (A1) that
∫

d3s ρ(2)(s) = 1
if the individual densities are so normalized.

A similar treatment of Eq. (2) allows it to be written as the
first radial moment of a Zemach-type density ρr

(2)(s)

ρr
(2)(s) =

∫
d3x ρW(x) x

∂

∂x
ρch(| �x − �s |)

= 4π

2s

∫ ∞

0
dx x2 ρW(x) x

∂

∂x

1

x

∫ x+s

|x−s|
dz z ρch(z).

(A4)

Performing the derivative leads to a relatively simple result:

ρr
(2)(s) = −ρ(2)(s) + 1

2s

∫
d3x ρW(x)[(x + s)ρch(x + s)

− (x − s)ρch(| x − s |)]. (A5)

We note that
∫

d3s ρr
(2)(s) = 0, which follows from the first

form in Eq. (A4).
The relationship between the first Zemach moment and

Holstein’s form factor expression is

〈r〉(2) = − 4

π

∫ ∞

0

dq

q2
[F W(q2)Fch(q

2) − 1], (A6)
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where F W(q2) = ∫ ∞
0 d3x ρW(x)e−i �q·�x and analogously for

Fch(q2). We can verify this by inserting both form factor
definitions into the q integral. Noting that the integrand in
Eq. (A6) is always finite, we have

− 4

π

∫ ∞

0

dq

q2
[F W(q2)Fch(q

2) − 1]

= − 1

π2

∫
d3q

q4
[F W(q2)Fch(q

2) − 1]

=
∫

d3x ρch(x)
∫

d3y ρW(y)I (z), (A7)

where �z = �x − �y and

I (z) = − 1

π2

∫
d3q

q4
(ei �q·�z − 1)

= − 4

πz

∫ ∞

0

dq

q3
[sin (qz) − qz]

= −4z

π

∫ ∞

0

dt

t3
[sin (t) − t]. (A8)

We twice integrate by parts the coefficient of the bracketed
term in the final integral, which produces −π

4 for the integral
and thus I (z) = z. Inspection of the last form of Eq. (A7)
demonstrates that the result is indeed 〈r〉(2).

The form-factor form of 〈r〉r(2) is given by

〈r〉r(2) = − 8

π

∫ ∞

0
dq Fch(q

2)
d F W(q2)

dq2
, (A9)

which can be verified in much the same way that Eq. (A6)
was verified. We need the following trick for rewriting the
derivative

− 8

π

∫ ∞

0
dq Fch(q

2)
d F W(q2)

dq2

= − 1

π2

∫
d3q

q4
Fch(q

2) �q · �∇qF W(q2) . (A10)

The factor of �q · �∇q acting on the Fourier exponential in
F W(q2) [defined below Eq. (A6)] produces �y · �∇y . The rest
of the derivation is straightforward.

A uniform model credibly approximates the charge density,
but not the weak transition density. Reference [15] treats the
weak transition density as a form factor, which the authors
expand as a power series in q2 [see Eq. (6.74)]. If only the
spatial extent of the weak density is significant, we can keep
only the leading-order structure term (viz., their n = 1 term) in
the form F W(q2) ∼= 1 − q2〈r2〉W/6, where 〈r2〉W is the mean-
square radius of the weak density. Inserting this approximation
into Eq. (A6) leads to

〈r〉BB
(2)

∼= − 4

π

∫ ∞

0

dq

q2

[(
1 − q2

6
〈r2〉W

)
Fch(q

2) − 1

]

=− 4

π

∫ ∞

0

dq

q2
[Fch(q

2)−1] + 2〈r2〉W

3π

∫ ∞

0
dq Fch(q

2),

(A11)

where the superscript BB on the moment refers to the authors
of Ref. [15]. The first term is just Eq. (A6) with F W = 1 and
equals 〈r〉ch. Inserting the definition of Fch into the second
term and performing the q integral produces π

2 〈 1
r
〉ch for that

integral. Our final result is

〈r〉BB
(2)

∼= 〈r〉ch + 〈r2〉W

〈
1
r

〉
ch

3
. (A12)

We can make the same approximation for 〈r〉r(2) in Eq. (A9),
which produces

〈r〉r−BB
(2)

∼= 2〈r2〉W

〈
1
r

〉
ch

3
. (A13)

How well these approximations work can be most easily
investigated using two identical distributions. For the uniform
distribution we have 〈r〉 = 3R/4, 〈r2〉 = 3R2/5, 〈1/r〉 =
3/(2R), and 〈r〉(2) = 36R/35. Equation (A12) then produces
〈r〉BB

(2) = R(3/4 + 3/10) and 〈r〉BB
(2) /〈r〉(2) = 49/48. For this

case the approximation is about 2% too large. The second
term in Eq. (A12) increases the Zemach moment 40%, which
is about the difference in the sizes of 〈r〉Ch

(2) and 〈r〉Ch in Tables I
and II. This also illustrates the substantial effect of how a
second density increases radial moments by smearing out the
distribution and how changing the extent of that second density
changes 〈r〉(2).

Using the moments calculated in Table V of Ref. [2] the very
different exponential distribution produces 〈r〉BB

(2) /〈r〉(2) =
8/7, which is about 14% too large, while the Gaussian
distribution produces results about 6% too large.
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