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Electrical conductivity of a warm neutron star crust in magnetic fields
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We study the electrical conductivity of finite-temperature crust of a warm compact star which may be formed
in the aftermath of a supernova explosion or a binary neutron star merger as well as when a cold neutron star is
heated by accretion of material from a companion. We focus on the temperature-density regime where plasma is
in the liquid state and, therefore, the conductivity is dominated by the electron scattering off correlated nuclei.
The dynamical screening of this interaction is implemented in terms of the polarization tensor computed in the
hard-thermal-loop effective field theory of QED plasma. The correlations of the background ionic component
are accounted for via a structure factor derived from Monte Carlo simulations of one-component plasma. With
this input we solve the Boltzmann kinetic equation in relaxation time approximation taking into account the
anisotropy of transport due to the magnetic field. The electrical conductivity tensor is studied numerically as
a function of temperature and density for carbon and iron nuclei as well as density-dependent composition of
zero-temperature dense matter in weak equilibrium with electrons. We also provide accurate fit formulas to
our numerical results as well as supplemental tables which can be used in dissipative magneto-hydrodynamics
simulations of warm compact stars.
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I. INTRODUCTION

Electrical conductivity of crustal matter in neutron stars
and interiors of white dwarfs plays a central role in the
astrophysical description of these compact stars. The spectrum
of problems where the conductivity of material is important in-
cludes magnetic field decay and internal heating, propagation
of plasma waves, various instabilities, etc. Transport in highly
compressed matter has been studied extensively in the cold
regime, i.e., for temperatures T � 1 MeV (1.16 × 1010 K),
which is relevant for neutron stars several minutes to hours
past their formation in a supernova event, as well as for
the interiors of white dwarfs. Initial studies of transport in
dense matter appropriate for white dwarf stars go back to the
work by Mestel and Hoyle [1] and Lee [2] in the 1950s, who
computed the thermal conductivity of the electron-ion plasma
in nonrelativistic electron regime, relevant for the radiative and
thermal transport in white dwarfs. The electrical conductivity
of ultracompressed matter, where electrons become relativistic
(at zero temperature this corresponds to density 106 g cm−3)
was computed by Abrikosov in 1963 [3] including the regime
where matter is solid. These initial estimates were followed by
a series of works in the 1960s and 1970s [4–12], among which
the variational study of Flowers and Itoh [13] provides the
most comprehensive account of transport in the solid and liquid
regimes of crustal matter, as well as of the neutron drip regime,
where free neutrons contribute to the thermal conductivity
and shear viscosity of matter. An alternative formulation in
terms of Coulomb logarithm and a detailed comparison of
results of various authors was given in Ref. [14]. The regime
where ions form a liquid was studied in Ref. [15], where it
was shown that the screening of electron-ion interactions can
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lead to substantial corrections in this case. These studies were
further improved and extended in Refs. [16–25], which cover
a broad range of densities and compositions appropriate for
matter in white dwarfs and crusts of neutron stars in the case of
strongly degenerate electrons and spherical nuclei. The special
case of nonspherical nuclei (pasta phase) at the base of
a neutron star crust, which may have very low electrical
resistivity, is discussed in Ref. [26]. The implementation of
the transport coefficients of dense matter in the dissipative
magneto-hydrodynamics (MHD) equations was discussed and
the associated transport coefficients in strong magnetic fields
were computed for the crust of a cold neutron star in the
presence of magnetic fields by a number of authors [16,20].
We confine our attention to nonquantizing fields in this work,
i.e., fields below the critical field B � 1014 G above which
the Landau quantization of electron trajectories becomes
important [27].

The early computations of conductivity of cold neutron
star matter described above were motivated by the studies of
magnetic field decay in neutron star interiors. Recent resistive
MHD simulations of magnetized neutron stars in general
relativity [28–30], including binary magnetized neutron stars
mergers and hypermassive neutron stars formed in the post-
merger phase [31] require as an input the conductivity of warm
(heated) crustal matter. In this regime the plasma forms a
liquid state of correlated ions and ionized electrons at nonzero
temperature and in nonzero magnetic field. Such matter is also
expected in protoneutron stars newly formed in the aftermath
of supernova explosion as well as in the crusts of neutron stars
accreting material from a companion.

In this work we start addressing the necessary input
for resistive MHD simulations of such matter, specifically
its electrical conductivity. In this regime electrons are the
most mobile charge carriers and the key mechanism of the
electrical conduction is the electron scattering off the ions.
There are important statistical corrections to the free-space
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scattering rate: following earlier calculations we incorporate
structure factors of one-component plasma (we do not consider
mixture here); in addition we include dynamical screening of
exchanged photons which accounts for a frequency dependent
scattering rate. The photon self-energy is computed within the
hard-thermal-loop (HTL) effective field theory approach to
polarization tensor.

The paper is organized as follows. Section II discusses
the phase diagram of electron-ion plasma in the regimes of
interest for neutron stars and white dwarfs. In Sec. III we
derive the electrical conductivity tensor in magnetic field
starting from the linearized Boltzmann equation for electrons.
Section IV computes the matrix elements for electron-ion
scattering including the screening of the interaction in the
HTL approximation. We also discuss the input structure factor
of ions (one-component plasma). In Sec. V we present the
numerical results for the electrical conductivity in the density,
temperature, and B-field regimes of interest. Our results are
summarized in Sec. VI. Appendix A gives the details of
the derivation of the relaxation time used in the main text
and some numerical results. We describe the computations of
polarization tensor in Appendix B.

We use the natural (Gaussian) units with � = c =
kB = ke = 1, e = √

α, α = 1/137, and the metric signature
(1,−1,−1,−1).

II. PHYSICAL CONDITIONS

Matter in the interiors of white dwarfs and in the neutron
star crusts is in a plasma state—the ions are fully ionized
while free electrons are the most mobile carriers of charge.
Electron density is related to the ion charge Z by charge
conservation ne = Zni , where ni is the number density of
nuclei. Electrons to a good accuracy form noninteracting
gas which becomes degenerate below the Fermi temperature
TF = εF − m, where the Fermi energy εF = (p2

F + m2)1/2,
the electron Fermi momentum is given by pF = (3π2ne)1/3

and m is the electron mass. The state of ions with mass number
A and charge Z is controlled by the value of the Coulomb
plasma parameter

� = e2Z2

T ai

� 22.73
Z2

T6

(
ρ6

A

)1/3

, (1)

where e is the elementary charge, T is the temperature, ai =
(4πni/3)−1/3 is the radius of the spherical volume per ion,
T6 is the temperature in units 106 K, and ρ6 is the density
in units of 106 g cm−3. If � � 1 or, equivalently T � TC ≡
Z2e2/ai , ions form weakly coupled Boltzmann gas. In the
regime � � 1 ions are strongly coupled and form a liquid
for values of � � �m � 160 and a lattice for � > �m. The
melting temperature of the lattice associated with �m is defined
as Tm = (Ze)2/�mai . For temperatures below the ion plasma
temperature

Tp =
(

4πZ2e2ni

M

)1/2

, (2)

where M is the ion mass, the quantization of oscillations of
the lattice becomes important. Figure 1 shows the temperature-
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FIG. 1. The temperature-density phase diagram of dense plasma
composed of iron 56Fe (a) and carbon 12C (b). The electron gas
degeneracy sets in below the Fermi temperature TF (short dashed
lines). The ionic component solidifies below the melting temperature
Tm (solid lines), while quantum effects become important below the
plasma temperature (dash-dotted lines). For temperatures above TC

(long dashed lines) the ionic component forms a Boltzmann gas. Note
that for 12C the quantum effects become important in the portion of
the phase diagram lying between the lines Tp(ρ) and Tm(ρ). The
present study does not cover the shaded portion of the phase diagram.

density phase diagram of the crustal material in the cases where
it is composed of iron 56Fe (upper panel) and carbon 12C (lower
panel). The general structure of the phase diagram for 56Fe
shares many common features with the phase diagram of 12C
however there is one important difference: as the temperature
is lowered the quantum effects become important for carbon
prior to solidification, whereas iron solidifies close to the
temperature where ionic quantum effects become important.
Except for hydrogen and perhaps helium both of which may
not solidify because of quantum zero point motions all heavier
elements Z > 2 solidify at low enough temperature. Figure 2
shows the same phase diagram in the case of density-dependent
crust composition adopted from Ref. [32] where nuclei are in
weak equilibrium with electrons at zero temperature.

III. ELECTRICAL CONDUCTIVITY TENSOR

The kinetics of electrons is described by the Boltzmann
equation for electron distribution function

∂f

∂t
+ v

∂f

∂ r
− e(E + [v × H])

∂f

∂ p
= I [f ], (3)

where E and H are the electric and magnetic fields, v is the
electron velocity, e is the unit charge, and I [f ] is the collision
integral. In the relevant density and temperature regime
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FIG. 2. The temperature-density phase diagram of dense stellar
matter in the crust of a neutron star. Various phases are labeled in the
figure. The vertical arrows show the density at which the indicated
element first appears. The crust composition is taken from Ref. [32].
The shaded portion of the phase diagram indicates the regime which
is not covered by our study.

electron-ion collisions are responsible for the conductivity of
matter.1 The collision integral has the form

I = −(2π )4
∑
234

|M12→34|2δ(4)(p + p2 − p3 − p4)

× [f (1 − f3)g2 − f3(1 − f )g4], (4)

where f = f (p) and f3 = f (p3) are the distribution functions
of the incoming and outgoing electron, g2,4 = g(p2,4) is the
distribution function of the ion before and after collision; here
and below we use the short-hand notation:

∑
i = ∫

d pi/(2π )3.
We will assume that ions form a classical ensemble in
equilibrium, i.e., their distribution function g(p) is given by
the Maxwell-Boltzmann distribution

g(p) = ni

(
2π

MT

)3/2

e−βε, (5)

where ε = p2/2M , M is the ion mass, β = T −1 is the inverse
temperature, and ni is the number density of ions. We are
interested in perturbations that introduce small deviations
from equilibrium, in which case the Boltzmann equation can
be linearized. We thus consider small perturbation around
the equilibrium Fermi-Dirac distribution function of electrons
given by

f 0(ε) = 1

eβ(ε−μ) + 1
, (6)

1Here we neglect the possible contribution from positrons, which
can be sizable only in the very low density and high temperature
matter.

where ε =
√

p2 + m2 and μ is the chemical potential and write

f = f 0 + δf, δf = −φ
∂f 0

∂ε
, (7)

where δf � f0 is a small perturbation. In the case of electrical
conduction we can keep only the last term on the left-hand side
of Eq. (3). We substitute for the electron distribution function
(7) in Eq. (3) and take into account the identities

∂f 0

∂ p
= v

∂f 0

∂ε
,

∂f 0

∂ε
= −βf 0(1 − f 0), (8)

which follow directly from Eq. (6). To linear order in
perturbation φ the Boltzmann equation reads

ev · E
∂f 0

∂ε
− e[v × H]

∂f 0

∂ε

∂φ

∂ p
= −I [f ], (9)

where the collision integral in the same approximation is given
by

I [f ] = −(2π )4β
∑
234

|M12→34|2δ(4)(p + p2 − p3 − p4)

× f 0
(
1 − f 0

3

)
g2(φ − φ3). (10)

The electric field appears in the drift term of linearized
Boltzmann equation (9) at O(1), whereas the term involving
magnetic field at order O(φ), because [v × H](∂f 0/∂ p) ∝
[v × H]v = 0. We next specify the form of the function φ in
the case of conduction as

φ = p · �(ε), (11)

which after substitution in Eqs. (9) and (10) gives

ev · [E + (� × H)] = −� · pτ−1(ε), (12)

where the relaxation time is defined by

τ−1(ε) = (2π )−5
∫

dωdq
∫

d p2|M12→34|2 q · p
p2

×δ(ε − ε3 − ω)δ(ε2 − ε4 + ω)g2
1 − f 0

3

1 − f 0
. (13)

In transforming the linearized collision integral we introduced
a dummy integration over energy and momentum transfers,
i.e., ω = ε − ε3 and q = p − p3. It remains to express the
vector � describing the perturbation in terms of physical fields.
Its most general decomposition is given by

� = αe + βh + γ [e × h], (14)

where h ≡ H/H and e ≡ E/E and the coefficients α, β,
γ are functions of the electron energy. Substituting Eq. (14)
in Eq. (12) one finds that α = −eEτ/ε(1 + ω2

cτ
2), β/α =

(ωcτ )2(e · h) and γ /α = −ωcτ , where ωc = eHε−1 is the
cyclotron frequency. As a result, the most general form of
the perturbation is given by

φ = − eτ

1 + (ωcτ )2
vi[δij − ωcτεijkhk + (ωcτ )2hihj ]Ej , (15)
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where the Latin indices label the components of Cartesian
coordinates. The electrical current is defined in terms of
perturbation φ as

ji = 2
∫

d p
(2π )3

eviφ
∂f 0

∂ε
(16)

and, at the same time, it is related to the conductivity tensor
σij by

ji = σijEj . (17)

Substituting Eq. (15) in Eq. (16) and combining it with Eq. (17)
we find for the conductivity tensor:

σij = δijσ0 − εijmhmσ1 + hihjσ2, (18)

where

σn = e2β

3π2

∫ ∞

m

dε
p3

ε

τ (ωcτ )n

1 + (ωcτ )2
f 0(1 − f 0), n = 0,1,2.

(19)

The conductivity tensor has a simple form when the magnetic
field is along the z direction:

σ̂ =
⎛
⎝σ0 −σ1 0

σ1 σ0 0
0 0 σ

⎞
⎠. (20)

Finally, note that in the absence of magnetic field j = σ E
with

σ = e2β

3π2

∫ ∞

m

dε
p3

ε
τf 0(1 − f 0) = σ0 + σ2. (21)

IV. COLLISION INTEGRAL

We now turn to the evaluation of the collision integral,
or equivalently the relaxation time, assuming that for tem-
peratures and densities of interest relativistic electrons are
scattered by correlated nuclei. In free space this process is
described by the well-known Mott scattering by a Coulomb
center. We use the standard QED methods to compute the
transition probability, but include in addition the screening of
the interaction by the medium in terms of polarization tensor.

A. Scattering matrix elements and relaxation time

The scattering amplitude for electron scattering off a
nucleus characterized by its charge Z is given by (see Fig. 3
and Appendix B for details)

M12→34 = − J0J
′
0

q2 + �′
L

+ J t J ′
t

q2 − ω2 + �T

= −ML + MT ,

(22)

where

Jμ = −e∗ūs3 (p3)γ μus(p), (23)

J ′μ = Ze∗v′μ = Ze∗(1, p′/M), (24)

e∗ = √
4πe, and J t ,J ′

t are the components of the currents
transversal to q ( p1 ≡ p, p2 ≡ p′). The screening of the

FIG. 3. Feynman diagram describing the scattering of electron of
charge e∗ = √

4πe off a nucleus of charge e∗Z (left and right straight
arrows, respectively) via exchange of photon (wavy line). The photon
self-energy is given by the polarization tensor �μν shown by the
closed loop. Dots stand for QED vertices.

interaction is taken into account in terms of the longitudinal
�L(ω,q) and transverse �T (ω,q) components of polarization
tensor, with �′

L(ω,q) ≡ �L(ω,q)/(1 − ω2/q2).
The form of the matrix element (22) includes thus the

dynamical screening of the electron-ion interaction due to
the exchange of transverse photons. Such separation has been
employed previously in the treatment of transport of unpaired
[33] and superconducting ultrarelativistic quark matter [34].

Standard QED diagrammatic rules can be applied to
compute the transition probability from the diagram shown
in Fig. 3. The square of the scattering matrix element can be
written as

|M12→34|2 = |ML|2 + |MT |2 − 2ReMLM∗
T , (25)

where

|ML|2 = J0J
∗
0 J ′

0J
′∗
0

|q2 + �′
L|2 , (26)

|MT |2 = JiJ
∗
k J ′

t iJ
′∗
tk

|q2 − ω2 + �T |2 , (27)

MLM∗
T = J0J

∗
i J ′

0J
′∗
t i

(q2 + �′
L)(q2 − ω2 + �∗

T )
, (28)

i.e., the scattering probability is split into longitudinal, trans-
verse, and interference contributions. The scattering probabil-
ity per unit volume is obtained after averaging the scattering
amplitude (25) over initial spins of electrons, summing over
final spins, and multiplying with the structure factor of ions
S(q) and the square of nuclear form factor F 2(q):

∑
ss3

|M12→34|2 = Z2e∗4

ε(ε − ω)
S(q)F 2(q)

{
ε(2ε − ω) − p · q

|q2 + �′
L|2

+2( pt · p′
t )

2 + (p′
t )

2(−εω + p · q)

M2|q2 − ω2 + �T |2

− 2(2ε − ω)( pt · p′
t )

MRe[(q2 + �′
L)(q2 − ω2 + �∗

T )]

}
.

(29)

Substituting the transition probability in the expression for
the relaxation time (13), carrying our the integrations (see
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Appendix A for details) we finally obtain

τ−1(ε) = πZ2e4ni

εp3

∫ ε−m

−∞
dωe−ω/2T f 0(ε − ω)

f 0(ε)

×
∫ q+

q−
dq(q2 − ω2 + 2εω)S(q)F 2(q)

1√
2πθ

× e−ω2/2q2θ2
e−q2/8MT

{
(2ε − ω)2 − q2

|q2 + �′
L|2

+ θ2 (q2 − ω2)[(2ε − ω)2 + q2] − 4m2q2

q2|q2 − ω2 + �T |2
}
,

(30)

where θ ≡ √
T/M , q± = |±p +

√
p2 − (2ωε − ω2)|, and

ε =
√

p2 + m2 for noninteracting electrons. The contributions
of longitudinal and transverse photons in Eq. (30) separate
(first and second terms in the braces). The dynamical screening
effects contained in the transverse contribution are parametri-
cally suppressed by the factor T/M at low temperatures and
for heavy nuclei. This contribution is clearly important in the
cases where electron-electron (e-e) scattering contributes to
the collision integral. This is the case, for example, when ions
form a solid lattice and, therefore, Umklapp e-e processes are
allowed, or in the case of thermal conduction and shear stresses
when the e-e collisions contribute to the dissipation.

Finally, to account for the finite size of the nuclei, we use
the simple expression for the nuclear form factor [18]

F (q) = −3
qrc cos(qrc) − sin(qrc)

(qrc)3
, (31)

where rc is the charge radius of the nucleus given by rc =
1.15 A1/3 fm (see Appendix A for numerical results).

B. Recovering limiting cases

As shown in Appendix A when the ionic component of the
plasma is considered at zero temperature and nuclear recoil
can be neglected the relaxation time takes a simpler form

τ−1(ε) = πZ2e4ni

ε p3

∫ 2p

0
dqq3S(q)F 2(q)

4ε2 − q2

|q2 + �′
L|2 . (32)

Consider now two limiting cases with respect to the tempera-
ture of the electronic component of the plasma, the degenerate
limit, i.e., T � TF and the nondegenerate limit, i.e., T � TF .
In the zero-temperature limit Eqs. (19)–(21) simplify via the
substitution ∂f 0/∂ε = −βf 0(1 − f 0) → −δ(ε − εF ), i.e.,

σn = e2

3π2

p3
F

εF

τF

(ωcF τF )n

1 + (ωcF τF )2
(33)

and

σ = nee
2τF

εF

, σ0 = σ

1 + (ωcF τF )2
, σ1 = (ωcF τF )σ0,

(34)

where we used the expression for the electron Fermi mo-
mentum pF = (3π2ne)1/3 and defined the relaxation time
and cyclotron frequency at the Fermi energy, τ−1

F ≡ τ−1(εF )
and ωcF = eB/εF (here and below we set B = H which

corresponds to permeability of matter being unity). The first
equation in Eq. (34) is the well-known Drude formula. From
Eq. (32) we find in the low-temperature limit

τ−1
F = 4Ze4εF

3π

∫ 2pF

0
dq q3 S(q)F 2(q)

|q2 + �′
L|2

(
1 − q2

4ε2
F

)
, (35)

where we used the charge neutrality condition ne = Zni .
Neglecting the screening (�′

L → 0) and the nuclear form
factor [F (q) → 1] we obtain from Eq. (35)

τ−1
F = 4Ze4εF

3π

∫ 2pF

0

dq

q

(
1 − q2

4ε2
F

)
S(q), (36)

which coincides with Eqs. (9) and (11) of Ref. [15].
In the limit of nondegenerate electrons f 0 � 1 and,

therefore,

σn � e2

3π2T

∫ ∞

m

p2dp
p2

ε2

τ (ωcτ )n

1 + (ωcτ )2
f 0

= nee
2

3T

〈
v2 τ (ωcτ )n

1 + (ωcτ )2

〉
, (37)

where the quantities in the brackets are taken at some average
energy ε̄ ∼ T , which can be identified with the average thermal
energy of a particle (electron) in the Boltzmann limit. We
recall that the average of an energy-dependent quantity F (ε)
is defined as

〈F (ε)〉 = 2

ne

∫
d p

(2π )3
F (ε)f 0(ε), (38)

where a factor 2 arises from spin of electrons. In Eq. (37) we
can further replace v2/3T → 1/ε̄, consequently

σ � nee
2τ̄

ε̄
, σ0 � σ

1 + (ω̄cτ̄ )2
, σ1 � ω̄cτ̄σ

1 + (ω̄cτ̄ )2
, (39)

where ω̄c = eB/ε̄, τ̄ = τ (ε̄). Thus, the formulas in both
strongly degenerate and nondegenerate regimes have the same
form, but different characteristic energy scale, which is εF

in the degenerate regime and ε̄ � 3T in the nondegenerate,
ultrarelativistic regime. In the case where T ∼ m we use
ε̄ = 3T/2 +

√
(3T/2)2 + m2, which arises from the condition

v̄2ε̄ = 3T , where v̄ is the mean velocity.

C. Ion structure factor

For the numerical computations we need to specify the
ion structure function S(q). We assume that only one sort of
ions exists at a given density, so that the structure factor of
one-component plasma (OCP) can be used. These has been
extensively computed using various numerical methods. We
adopt the Monte Carlo results of Galam and Hansen [35]
for Coulomb OCP provided in tabular form for � � 2 and
set a two-dimension spline function in the space spanned by
the magnitude of the momentum transfer q and the plasma
parameter �. For small momentum transfers, qai < 1, we use
the formulas (A1) and (A2) of Ref. [17].

In the low-� regime (� � 2), not covered by the Monte
Carlo results, we use the analytical (leading order) expressions
for Coulomb OCP by Tamashiro et al. [36] derived using
density functional methods. The dependence of the resulting
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FIG. 4. Dependence of the structure factor of one-component
plasma on the magnitude of momentum transfer q in units of
inverse ai . For � � 2 the structure factor is taken from Monte
Carlo calculations of Galam and Hansen [35]. For � < 2 we obtain
the structure factor from the analytical expressions provided by
Tamashiro et al. [36].

structure factors on the dimensionless parameter aiq, where
ai is the ion-sphere radius as defined after Eq. (1), is shown in
Fig. 4 for various values of the plasma parameter �. Note
that these correlation functions were derived for classical
plasma, therefore the quantum aspects of motion of 12C in
the temperature regime Tp � T � Tm are not accounted for.
It is seen that the structure factor universally suppresses the
contribution from small-q scattering. The suppression sets in
for larger q at larger values of �. The large-q asymptotics is
independent of � as S(q) → 1. The major difference arises for
intermediate values of q where the structure factor oscillates
and the amplitude of oscillations increases with the value of �
parameter. In addition to structure factor the scattering matrix
is folded with the nuclear form factor, which accounts for the
finite-size of individual nucleus. Its effect on the scattering
matrix is small and is discussed in some detail in Appendix A.

D. Polarization tensor

The screening of longitudinal and transverse interactions
is determined by the corresponding components of the photon
polarization tensor. The expression (30) is exact with respect to
the form of the polarization tensor. We will use an approxima-
tion to Eq. (30) derived within the HTL effective field theory
of QED [37,38] in Appendix B; see also the related work
on astrophysical relativistic, dense gases of Refs. [39–41].
Our computations, outlined in detail in Appendix B, are carried
out at nonzero temperature and density and include the mass
of leptons (electrons and positrons); formally, we require the
four-momentum of the photon to be small compared with
the four-momentum of the fermions in the loop. For the

longitudinal and transversal components of the polarization
tensor we find

�L(q,ω) = (1 − x2)
∫ ∞

0
dpF(ε)

[
1 − x

2v
log

x + v

x − v

]
,

(40)

�T (q,ω) = 1

2

∫ ∞

0
dpF(ε)

[
x2 + (v2 − x2)

x

2v
log

x + v

x − v

]
,

(41)

where x = ω/q and v = ∂ε/∂p = p/ε is the particle velocity
and

F(ε) ≡ −4e2

π
p2

[
∂f +(ε)

∂ε
+ ∂f −(ε)

∂ε

]
. (42)

In the degenerate or ultrarelativistic limits the velocity has a
constant value v̄ and Eqs. (40) and (41) can be written as

�L = q2
D(1 − x2)

[
1 − x

2v̄
log

x + v̄

x − v̄

]
, (43)

�T = 1

2
q2

D

[
x2 + (v̄2 − x2)

x

2v̄
log

x + v̄

x − v̄

]
, (44)

where v̄ = vF in the degenerate and v̄ = 1 in the ultrarela-
tivistic limits, respectively, and the Debye wave number qD is
given by radial part of the phase-space integral

q2
D =

∫ ∞

0
dpF(ε). (45)

Dropping the contribution of antiparticles we find in the
limiting cases of highly degenerate and nondegenerate matter

q2
D � 4e2

{
pF εF /π, T � TF ,
π ne /T , T � TF ,

(46)

where in the last line we introduced the electron number
density (f 0 ≡ f +)

ne = 2
∫

d p
(2π )3

f 0(ε). (47)

Equations (43) and (44) coincide with Eqs. (8) and (9) of
Ref. [40], if we take into account the first line of Eq. (46) and
substitute e2 → e2/4π in our equations. Note that Eqs. (43)
and (44) can be also applied in the general case, if v̄ is defined
as the characteristic velocity of electrons.

At temperatures of interest it is more economical to
use low x � 1 expansions for the polarization tensor (see
Appendix A); we keep the next-to-leading in x terms and find

�′
L(q,ω) = q2

Dχl, �T (q,ω) = q2
Dχt , (48)

where the susceptibilities to order O(x2) are given by

Reχl(q,ω) = 1 − x2

v̄2
, Imχl(q,ω) = −πx

2v̄
, (49)

Reχt (q,ω) = x2, Imχt (q,ω) = π

4
xv̄. (50)

Because the terms containing v̄ are small as well as electrons
are ultrarelativistic in the most of the regime of interest we
approximate v̄ = 1 in our numerical calculations.
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FIG. 5. Dependence of three components of the electrical conduc-
tivity tensor on density for various values of temperature indicated
in the plot and B12 = 1 (B12 ≡ B/1012 G). (a)–(c) show the
conductivities for 56Fe, (d)–(f) the same for 12C.

V. RESULTS

Numerically the electrical conductivity is evaluated using
the relaxation time Eq. (30) in the most general case with
the ion structure factor given in Fig. 4 and polarization tensor
given by Eqs. (48)–(50). With this relaxation time we evaluate
the components of the conductivity tensor using Eq. (19). We
recall that for large magnetic fields the tensor structure of the
conductivity is important, while in the limit of negligible fields
only the single quantity σ = σ0 + σ2 is relevant, see Eq. (21).

A. Low-field limit

We start our analysis of the numerical results with the
density, temperature, and composition dependence of con-
ductivity σ in low magnetic fields given by Eq. (21). We
relegate to the next section the discussion of the σ0 and σ1

components, which is straightforward after we clarified the
basic features of σ . We will also first study the cases of 56Fe
and 12C and later on consider density-dependent composition
of crustal matter in Sec. V C. The upper panels of Fig. 5
show σ as a function of density for various temperatures
and magnetic field B12 = 1; here and below we use the
units B12 = B/1012 G to characterize the magnetic field.
The temperature values range from the nondegenerate regime
(T = 10 MeV) to the degenerate regime (T = 0.1 MeV)
where the case T = 1 MeV is representative for transition
from nondegenerate to degenerate regime, which occurs at
around log10ρ � 8 g cm−3 for both 56Fe and 12C nuclei (see
Fig. 1). In each case σ shows a power-law dependence on
density σ ∝ ρα; in the degenerate regime α � 0.4 for 56Fe and
α � 0.45 for 12C. In the nondegenerate regime the increase is
less steep with α � 0.1 for both 56Fe and 12C.

0.1 1 10

20

21

22

23

16

18

20

22

lo
g 10

σ 
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]
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T [MeV]
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(d) σ
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FIG. 6. The temperature dependence of three components of
the electrical conductivity tensor for B12 = 1 and three values
of density—log10 ρ = 10 (solid lines), log10 ρ = 8 (dashed lines),
log10 ρ = 6 (dash-dotted lines) in units [g cm−3]. (a)–(c) show the
conductivities for 56Fe, (d)–(f) the same for 12C. The dots represent
the results obtained with Eqs. (34) and (39).

This behavior can be traced back to the different density
and temperature dependence of the relaxation time in these
regimes. The conductivity depends in both regimes on the
ratio τ (ε)/ε and is proportional to ne, see Eqs. (34) and (39).
For any fixed temperature and density, the ratio τ (ε)/ε scales
approximately as ε. In the degenerate regime ε is the Fermi
energy, therefore, ε ∝ ρ1/3, while in the nondegenerate regime
ε̄ ∝ T independent of density. Apart from these differences,
τ−1 ∝ ni which guarantees that the relaxation time decreases
with density in both cases. These factors combined lead to
slower increase of conductivity in the nondegenerate regime
as compared to the degenerate one. Note that ωcτ scales as
τ/ε in both cases (see Appendix A for further details).

The main difference between the values of σ for different
nuclei characterized by their mass number A and charge
Z is due to the scaling τ−1 ∼ Z2ni ∼ Z2/A ∼ Z; for not
very heavy elements Z/A � 0.5, see Eq. (30). Therefore, we
find for the ratio of conductivities of 12C to 56Fe: σC/σFe �
τC/τFe � ZFe/ZC � 4.3, which is consistent with the results
shown in Fig. 5.

Let us turn to the temperature dependence of the conduc-
tivity. The most prominent effect seen in the temperature
dependence of σ , shown in Fig. 6, is the existence of a
minimum as a function of temperature. The dotted lines
in the low-temperature regime correspond to the formula
(34) and extend to the point where T � TF . We see that
the Drude formula works very well for T � 0.1TF and we
find a good agreement between our conductivities and those
in Refs. [15,24]. The dotted lines in the high-temperature
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FIG. 7. Dependence of conductivity on the scaled temperature for
various densities. The minimum of the conductivity occurs roughly
at T � T ∗.

regime correspond to the formula (39). As we see from the
plots, Eq. (39) gives the correct qualitative behavior of the
electrical conductivity at high temperatures, but quantitatively
underestimates it by about 20%. The minimum in σ arises
at about the transition from the degenerate to nondegenerate
regime and is identified empirically with T ∗ ≡ 0.3TF . (This
approximately corresponds to the requirement that the Fermi
energy becomes equal to the thermal energy of a nondegenerate
gas). We show in Fig. 7 the dependence of σ on appropriately
scaled temperature for a number of densities for 12C (the results
are similar also in the case of 56Fe). We also show the density
dependence of the conductivity at the minimum in Fig. 5. The
conductivity decreases with temperature at low temperatures,
when the electrons are degenerate. This decrease arises
solely from the temperature dependence of the correlation
function S(q). In the case S(q) = 1 the relaxation time is
nearly temperature independent, whereas in full calculation
it decreases with temperature, as expected (see Appendix A
for numerical illustrations). Indeed, as seen from Fig. 4, with
increasing temperature and, consequently, decreasing � small
momentum transfer scattering becomes more important which
increases the effective cross section.

In the nondegenerate regime the temperature dependence of
τ changes, because τ̄ ∝ ε̄2, therefore conductivity σ ∝ τ̄ /ε̄ ∝
T , as suggested in Ref. [13] (the exact calculations give σ ∝
T β with β � 0.7–0.8).

In the degenerate regime the temperature dependence of
σ (or τ ) is stronger for lighter elements, because for the
given density and temperature the parameter � is smaller
for lighter elements (� ∼ Z2/A1/3, �Fe/�C � 11), and the
S(q; �) varies faster for small values of �, see Fig. 4.

B. Strong fields

For strong magnetic fields the tensor structure of the
conductivity becomes important and we need to discuss the
remaining components of this tensor given by Eqs. (34) and
(39). These components depend strongly on the value of
“anisotropy parameter” ωcτ . Assuming density independent
values of the magnetic fields, we find that the parameter ωcτ
decreases as a function of density because of the decrease of
relaxation time in any regime, see Fig. 14 of Appendix A. Note
that in the degenerate case ωc decreases as well because of its
inverse dependence on the energy of electrons. It is seen that at
high densities ωcτ � 1 (isotropic region) and σ0 � σ . At low
densities ωcτ � 1 (strongly anisotropic region) and we have

σ0 � σ

(ωcτ )2
�

(
nee

B

)2

σ−1 � σ. (51)

As ωcτ decreases with the density, σ0 increases with density
much faster than σ : σ0 ∝ ρβ , β � 1.5 in the degenerate and
β � 1.9 in the nondegenerate regime. At low densities σ0 is
smaller than σ by several orders of magnitude, the exact value
being dependent on magnetic field.

We see from Eq. (51) that for a given density σ0 ∼ σ−1,
therefore σ0 shows a reversed temperature dependence at
low densities. It increases in the degenerate regime, de-
creases in the nondegenerate regime, see Fig. 6, and has a
maximum at temperature T ∗. The reversed behavior applies
also to the Z-dependence, i.e., σ0 ∼ τ−1 ∼ Z, therefore σ0

is smaller for lighter elements. The curves corresponding
to different temperatures in Fig. 5 intersect when ωcτ � 1
at high density (ρ � 109 g cm−3) as a consequence of
transition from anisotropic to isotropic conduction (see also
Fig. 14). In addition, there are also intersections related to
the transition from degenerate (high-density) to nondegenerate
(low-density) regime, as already discussed in the case of σ .

For σ1 component we have

σ1 � σωcτ � B

nee
σ 2, ωcτ � 1, (52)

σ1 � σ

ωcτ
� nee

B
, ωcτ � 1. (53)

At low densities (ωcτ � 1) σ1 is proportional to the density
and depends neither on temperature, nor on the type of nuclei,
see Eq. (53). At high densities σ1 becomes a decreasing
function of density because of the additional factor ωcτ in
Eq. (52), the decrease being faster at higher temperatures, see
Fig. 5. We find the scaling σ1 ∝ ρ−γ , γ � 0.2 in the degenerate
and γ � 0.7 in the nondegenerate regime. As a function of
density σ1 has a maximum at ωcτ � 1, where σ0 � σ1 � σ/2.
In isotropic region σ1 depends on the temperature through the
scaling σ1 ∼ σ 2 and has a minimum at T ∗. Because σ1 ∼ Z2,
it is larger for 12C as compared to 56Fe by more than an order
of magnitude. As τ is larger for light elements, the anisotropic
region for these elements is larger, and the maximum of σ1

versus density is shifted to higher densities and its value
increases, as can be seen from Figs. 5 and 8. Note that in
both isotropic and strongly anisotropic cases σ1 � σ . Figures
8 and 9 show the dependence of σ0 and σ1 on the magnetic
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FIG. 8. Dependence of σ0 [(a) and (c)] and σ1 [(b) and (d)]
components of the conductivity tensor on density for various values
of the B-field. (a) and (b) show these components for 56Fe, (c) and
(d) the same for 12C. The temperature is fixed at T = 1 MeV.

field. As ωc ∝ B, the density region where the conductivity is
anisotropic becomes larger with the increase of magnetic field,
and the maximum of σ1 as a function of density is shifted to
higher densities (see Fig. 8).

For low magnetic fields σ0 � σ (Fig. 9). With increasing
magnetic field σ0 decreases and for ωcτ � 1 we find that σ0 ∝
B−2, see Eq. (51). For ωcτ � 1 and ωcτ � 1 cases we have
σ1 ∝ B and σ1 ∼ B−1, respectively, see Eqs. (52) and (53),
therefore σ1 should have a maximum as a function of magnetic
field. As seen from Fig. 9, the maximum of σ1 occurs where
σ0 begins to drop (ωcτ � 1). This maximum shifts to lower
magnetic fields with the decrease of density and charge Z. For
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FIG. 9. Dependence of σ0 (upper panels) and σ1 (lower panels)
components of the conductivity tensor on the magnetic field for 56Fe
(left panels) and 12C (right panels) at six values of density—log10 ρ =
11, log10 ρ = 10, log10 ρ = 9, log10 ρ = 8, log10 ρ = 7, log10 ρ = 6
(from top to bottom). The temperature is fixed at T = 1 MeV.
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FIG. 10. The ratio σ0/σ as a function of scaled temperature T/T ∗

at various densities log10ρ = 9 (solid lines), log10ρ = 8 (dashed
lines), log10ρ = 7 (dash-dotted lines), and log10ρ = 6 (double-dash-
dotted lines) and for three values of magnetic field B12 = 1 [(a) and
(d)], B12 = 10 [(b) and (e)], and B12 = 100 [(c) and (f)]. (a)—(c)
show the ratio for 56Fe, (d)–(f) the same for 12C.

B = 1012 G the crust is anisotropic at densities ρ < 109 g cm−3

for 56Fe and ρ < 1010 g cm−3 for 12C. For magnetic fields
B � 1013 G the outer crust is almost completely anisotropic.

We now turn to the study of combined effects of temperature
and magnetic field, i.e., how the anisotropy induced by the
magnetic field is affected by the temperature. To characterize
the anisotropy we consider the ratio σ0/σ , which is shown
in Fig. 10 as a function of dimensionless ratio T/T ∗ for
various densities and magnetic fields. We see that all curves
have a maximum at T = T ∗ independent of density, magnetic
field, and type of nuclei. At this maximum the anisotropy is
smallest. As σ0/σ ∝ σ−2, see Eq. (51), it increases with the
temperature in the degenerate regime. In the nondegenerate
regime σ increases with temperature, therefore σ0/σ decreases
approximately as T −3/2. At very high temperatures the crust
becomes strongly anisotropic.

From Eqs. (34) and (39) we can obtain a simple relation
between the three components of the conductivity tensor

f (ρ,T ) ≡ σ0

σ

[
1 +

(
σ1

σ0

)2]
= 1. (54)

At temperatures close to the Fermi temperature Eqs. (34) and
(39) break down, however, according to Fig. 11 the relation
(54) is satisfied quite well in the whole crust. While Fig. 11
shows the case for 56Fe, we have verified that similar results
hold for 12C and composition dependent crust and are weakly
dependent on the magnitude of the magnetic field 1 � B12 �
100.
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FIG. 11. The function f (ρ,T ) for 56Fe at magnetic field B12 = 1.

C. Density-dependent composition

We now turn to the case where the composition of
matter depends on the density. We will assume that the
composition does not depend strongly on the temperature in
the range of temperatures studied here (T � 10 MeV) and will
proceed with composition derived for T = 0. The conservation
of baryon number, electric charge and the condition of
β-equilibrium uniquely determines the energetically most
preferable state of matter for any given model of nuclear
forces in the density range of interest 106 � ρ � ρdrip, where
ρdrip � 4 × 1011 g cm−3 is the neutron drip density.

The laboratory information on nuclear masses can be used
as an input to eliminate the uncertainties related to the nuclear
Hamiltonian [42], therefore various studies of the composition
of the crusts predict nearly identical sequences of nuclei as a
function of density.

In our calculations we adopted the nuclear sequence shown
in Fig. 2 taken from Ref. [32], which predicts matter composed
of iron below the density log10ρ � 7 which is followed by a
sequence of nuclei with charges in the range 28 � Z � 36.
This composition can be compared to the initial studies
of nuclear sequences below neutron drip density [43,44]
(displayed in Table 2.1 of Ref. [44]) and a more recent study
based on improved data and theory [45]. These deviate from
the composition adopted here only marginally.

To assess the differences that arise from the replacement of,
for example, iron nuclei studied above by density-dependent
composition recall that for nuclei with mass number A and
charge Z the relaxation time scales as τ−1 ∝ Z2ni ∝ Z2/A.
Because τ ∝ ε2, in the degenerate regime there will be
additional density dependence in the conductivity arising from
the factor τ/ε ∝ n

1/3
e . For the conductivity in the degenerate

regime we find the scaling

σ ∝ neτF

εF

∝
(

Z

A

)1/3

Z−1. (55)

In the nondegenerate regime

σ ∝ neτ̄

ε̄
∝ Z−1. (56)

To give a few numerical examples, we quote the ratio R
of conductivities of elements present in density-dependent
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FIG. 12. Dependence of three components of the electrical
conductivity tensor on density and temperature for B12 = 1 and
composition taken from Ref. [32].

matter composition to that of iron:R[62Ni] = 0.92,R[64Ni] =
0.91, R[86Kr] = 0.70, R[84Se] = 0.73, R[82Ge] = 0.77,
R[80Zn] = 0.81, R[80Ni] = 0.85 in the degenerate regime
and R[62Ni] = R[64Ni] = 0.93, R[86Kr] = 0.72, R[84Se] =
0.76, R[82Ge] = 0.81, R[80Zn] = 0.87, R[80Ni] = 0.93 in
the nondegenerate regime. The discrepancies between these
estimates based on the scalings (55) and (56) and our numerical
results are smaller than 5% and arise from the additional
dependence of the relaxation time on Z and A via the
structure factor and the Debye momentum. We conclude that
the composition dependent results differ from those found for
iron by a factor �1.4.

The three components of the conductivity tensor in the case
of density-dependent composition are shown in Fig. 12 and,
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according to the arguments above, show all the basic features
already discussed in the case of 56Fe.

D. Fit formulas for the electrical conductivity tensor

We have performed fits to the first component of the
conductivity tensor using the formula

σ fit = CZ−1T a
F

(
T

TF

)−b(
T

TF

+ d

)b+c

, (57)

where C = 1.5 × 1022 s−1, T , TF are in MeV units and σ fit

is in s−1. The density dependence of σ fit arises from its
dependence on the Fermi temperature, which in general has the
form TF = 0.511[

√
1 + (Zρ6/A)2/3 − 1]. For ultrarelativistic

electrons this simplifies to TF = 0.511(Zρ6/A)1/3 � 0.4ρ
1/3
6 ,

where to obtain the second relation we assumed for simplicity
Z/A � 0.5. Substituting this into Eq. (57) we obtain a fit
formula with explicit dependence on density

σ fit = C ′Z−1ρ
(a+b)/3
6 T −b

(
Tρ

−1/3
6 + d ′)b+c

, (58)

where C ′ = 0.4a−cC and d ′ = 0.4d.
The fit parameters a,b,c,d depend on the ionic structure of

the material. The maximal relative error of the fit formula
is defined as γ = 100|σ fit − σ |/σ . The values of fitting
coefficients in various cases are as follows:

(i) Matter composed of 12C, γ � 8%,

a = 0.919, b = 0.372, c = 0.813, d = 0.491.

(59)

(ii) Matter composed of 56Fe, γ � 10%,

a = 0.931, b = 0.149, c = 0.850, d = 0.832.

(60)

(iii) β-equilibrium composition, γ � 10%,

a = 0.935, b = 0.126, c = 0.852, d = 0.863.

(61)

The form of Eq. (57) provides the correct temperature and
density dependence of the conductivity in the limiting cases
of strongly degenerate and nondegenerate electrons. For the
first case T � TF and σ ∝ T a+b

F T −b. In the nondegenerate
limit T � TF and σ ∝ T a−c

F T c. As to the explicit density
dependence in these limits, one finds that σ ∝ ρ(a+b)/3T −b

when T � TF and σ ∝ ρ(a−c)/3T c when T � TF assuming
ultrarelativistic limit. Averaging the fit parameters we finally
quote the rough scaling of the conductivity in the limiting
cases: σ ∝ ρ1/3T −1/3 for 12C and σ ∝ ρ1/3T −1/7 in the other
cases in the degenerate regime and σ ∝ ρ1/30T 4/5 in the
nondegenerate regime.

For the other two components of the conductivity tensor the
following formulas can be used

σ fit
0 = σ ′

1 + δ2σ ′2 , σ ′ = σ fit

(
TF

εF

)g

, (62)

σ fit
1 = δσ ′′2

1 + δ2σ ′′2 , σ ′′ = σ fit

(
1 + T

TF

)h

, (63)

where δ = B(neec)−1 in cgs units with c being the speed of
light, g = 0.16, and

h[12C] = 0.075, h[56Fe] = 0.025, h[comp.] = 0.045,

where the last number refers to β-equilibrium composition.
The relative error of Eq. (62) is γ � 11% for 12C and γ �

13% for 56Fe and β-equilibrium composition. The relative
error of Eq. (63) is γ � 12% for 12C and γ � 15% for 56Fe and
β-equilibrium composition at temperatures T > 0.15 MeV.

VI. CONCLUSIONS

Motivated by recent advances in numerical simulations of
astrophysical phenomena such as mergers of neutron star bi-
naries within the resistive MHD framework we have computed
here the conductivity of warm matter (109 � T � 1011K) at
densities corresponding to the outer crusts of neutron stars and
interiors of white dwarfs. Our results apply to arbitrary tem-
peratures above the solidification temperature of matter and
cover the transition from the degenerate to the non-degenerate
regimes. In this liquid plasma regime the conductivity is
dominated by the electrons which scatter off the correlated
nuclei via screened electromagnetic force. The correlations
in the plasma in the liquid state are included in terms of ion
structure function extracted from the data on Monte Carlo
simulations of one-component plasma (OCP). A key feature of
our computation is the inclusion of the dynamical screening of
photon exchange and inelastic processes, which we show to be
small in the temperature-density regime considered. The use of
OCP structure factor implies that our results should be applied
with caution in the case where matter is composed of mixture
of nuclei, in which case the interspecies correlations are not
accounted for. We have implemented the HTL QED polariza-
tion susceptibilities in the low-frequency limit combined with
non-zero-temperature screening Debye length, which should
be a good approximation where the inelastic processes are
suppressed by the large mass of nuclei. A further simplifying
approximation that went into our formalism, which is well
justified by the MHD regime of astrophysical studies, is the
assumption of weakly non-equilibrium state of the plasma.
This allowed us to express the solution of the Boltzmann
kinetic equation in relaxation time approximation.

We find that the conductivity as a function of the temper-
ature shows a minimum around 0.3TF almost independent
of the density and composition of matter, which arises
as a result of the transition from the degenerate regime
(T � TF ) to the nondegenerate regime (T � TF ). Thus,
the conductivity decreases with increasing temperature in
the degenerate regime up to the point 0.3TF ; further increase
in the temperature leads to a power-law increase in the
conductivity as the system enters the non-degenerate regime.
We further find that at fixed temperature the conductivity
always increases with density, but the slope of the increase
is weaker in the non-degenerate regime.

We have further extracted the components of the con-
ductivity tensor in the entire density and temperature range
for nonquantizing fields 1010 � B � 1014 G. Because the
product of relaxation time and cyclotron frequency is a
decreasing function of density in the complete temperature
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range, low-density matter features anisotropic conductivity at
lower magnetic fields. For example, the component of the
conductivity transverse to the field σ0 → σ in the high density
limit, but is substantially suppressed at low densities. This
underlines the importance of proper inclusion of anisotropy
of conductivity in astrophysical studies of dilute magnetized
matter even at relatively low magnetic fields.

Our results can be implemented in numerical studies in
terms of fit formulas (57)–(63). An alternative is to use plain
text tables of conductivities, see Supplemental Material [46].

Finally, our results show that the conductivity depends
weakly on the composition of matter. For example, the
conductivity of matter composed of heavy elements with
26 � Z � 36 in β-equilibrium with electrons differs from the
conductivity of matter composed of 56Fe at the same density
and temperature by a factor �1.4. It would be interesting,
however, to study the conductivity of warm multicomponent
matter which is composed of nuclei in statistical equilibrium,
in which case composition may become an important factor.
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APPENDIX A: EVALUATING THE RELAXATION TIME

The purpose of this Appendix is to give the details of the
transition from the relaxation time (13) to Eq. (30). We start
by defining several angles by the relations p · q = pq cos α,
pt · p′

t = ptp
′
t cos φ, and q · p′ = qp′ cos ϑ , where pt , p′

t are
the components of p, p′ transversal to q. Writing the second
δ-function in Eq. (13) as δ(ε2 − ε4 + ω) = (M/p′q)δ(cos ϑ −
x0), where x0 = (2ωM − q2)/2p′q, we find

τ−1(ε) = (2π )−5M

p

∫
dωdq cos αδ(ε − ε3 − ω)

1 − f 0
3

1 − f 0

∫ ∞

0
dp′p′g(p′)S(q)F 2(q)I�, (A1)

where

I� =
∫

d(cos ϑ)dφ
Z2e∗4

2εε3

[
2ε2 − εω − pq cos α

|q2 + �′
L|2 + p′2 sin2 ϑ[2(p cos φ)2 sin2 α + (−εω + qp cos α)]

M2|q2 − ω2 + �T |2

− 2

M

(2ε − ω)(pp′ sin α sin ϑ cos φ)

Re(q2 + �′
L)(q2 − ω2 + �∗

T )

]
δ(cos ϑ − x0), (A2)

and we substituted the expression for the matrix element (29). After integration over the angle φ we obtain

I� = π
Z2e∗4

ε(ε − ω)

[
2ε2 − εω − pq cos α

|q2 + �′
L|2 + p′2(1 − x2

0

)p2 sin2 α + qp cos α − εω

M2|q2 − ω2 + �T |2
]
θ (1 − |x0|). (A3)

The step-function θ defines the minimum value p′
min = |2ωM − q2|/2q for the integration over this variable. We substitute Eq.

(A3) in Eq. (A1), implement the integration bound on p′ and find

τ−1(ε) = (2π )−5πM

p

Z2e∗4

ε

∫
dωdq

S(q)F 2(q) cos α

(ε − ω)
δ(ε − ε3 − ω)

1 − f 0
3

1 − f 0

×
∫ ∞

p′
min

dp′p′g(p′)
[

2ε2 − εω − pq cos α

|q2 + �′
L|2 + p′2(1 − x2

0

)p2 sin2 α + qp cos α − εω

M2|q2 − ω2 + �T |2
]
. (A4)

The remaining δ function is written as δ(ε − ε3 − ω) = [(ε − ω)/pq]δ(cos α − y0)ϑ(ε − ω), where y0 = (q2 − ω2 + 2εω)/2pq.
In the next step we integrate over p′ to obtain

τ−1(ε) = M2

8(2π )3p3β

Z2e∗4

ε

∫ ε

−∞
dω

1 − f (ε − ω)

1 − f 0(ε)

∫ ∞

0
dqS(q)F 2(q)g(p′

min)(q2 − ω2 + 2εω)

×θ (1 − |y0|)
[

(2ε − ω)2 − q2

|q2 + �′
L|2 + 1

βMq2

(q2 − ω2)[(2ε − ω)2 + q2] − 4q2m2

|q2 − ω2 + �T |2
]
. (A5)
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Finally the θ -function puts some limitations on the integration region over q, specifically q− � q � q+, where q± = | ±√
ε2 − m2 +

√
(ε − ω)2 − m2|. Note also that to have a real q we need ω � ε − m. Implementing these limits we obtain

τ−1(ε) = M2T

8(2π )3p3

Z2e∗4

ε

∫ ε−m

−∞
dω

1 − f 0(ε − ω)

1 − f 0(ε)

∫ q+

q−
dqS(q)F 2(q)g(p′

min)(q2 − ω2 + 2εω)

×
[

(2ε − ω)2 − q2

|q2 + �′
L|2 + T

Mq2

(q2 − ω2)[(2ε − ω)2 + q2] − 4q2m2

|q2 − ω2 + �T |2
]
. (A6)

Finally we write Eq. (5) as

g(p′
min) = ni

(
2π

MT

)3/2

e−x2/2θ2
eω/2T e−q2/8MT , (A7)

where x = ω/q and θ = √
T/M and substitute in Eq. (A6) to

obtain Eq. (30) of the main text.
In our numerical calculations the temperature varies in the

range 0.1 � T � 10 MeV and the masses of the nuclei lie in
the range from 104 MeV to 105 MeV. Therefore the parameter
θ changes in the range 10−3 < θ < 3 × 10−2 � 1. As a result
one can expect that the dynamical part of the scattering
amplitude should be suppressed compared with the static part
by several orders of magnitude. Numerical calculations show
that the contribution of the dynamical part is smaller than
0.15% for 12C and 0.04% for 56Fe and have the order of θ2, as
expected. Due to the exponent e−x2/2θ2

of the expression (A7)
only small values of x (|x| < θ ) contribute significantly to
the integral (30). Therefore, the effective phase volume of the
double integration in Eq. (30) reduces to the triangle limited
by the lines

ω = ±θq, q+(ε,ω) = 2p − ωv−1 ≈ 2p. (A8)

as illustrated in Fig. 13. It seen from this figure that the effective
width of ω variable is given by ω0 = 2pθ .

In Eq. (30) we can take the limit where the ionic component
of the plasma is at zero temperature (the temperature of the
electronic component is arbitrary so far). Then, because

lim
θ→0

1

θ
√

2π
e−x2/2θ2 = δ(x), (A9)

we obtain

τ−1(ε) = πZ2e4ni

εp3

∫ 2p

0
dqq3S(q)F 2(q)

×e−q2/8MT 4ε2 − q2

|q2 + �′
L|2 , (A10)

where we took into account the fact that for ω = 0 the
limits on momentum transfer reduce to q− = 0 and q+ = 2p.
Neglecting also the nuclear recoil (which amounts to replacing
the exponential factor e−q2/8MT by unity) we obtain the
well-known expression of the relaxation time (32).

Note that the nuclear recoil factor e−q2/8MT can be impor-
tant at very low temperatures and high densities for light nuclei,
where it can reduce the scattering amplitude significantly. For
example, in the extreme case T = 0.01 MeV and log10 ρ = 11
and 12C we find that the relative error could be larger than a
factor of 2. Therefore, Eq. (A10) is a better approximation

than Eq. (32) in the static limit ω → 0. However, in the main
density-temperature range we consider the nuclear recoil and
the dynamical screening introduce only small corrections and
do not change the general behavior of the conductivity. The
deviations between Eqs. (32) and (30) are smaller than 12%
for 12C and 5% for 56Fe.

It can be shown that at densities ρ < 1011 g cm−3 the effect
of nuclear form factor is small as well. Indeed, for the heaviest
nucleus that we consider (86Kr) rc � 0.025 MeV−1 and the
maximal value of the parameter is qrc � 0.5. For small qrc we
can use the approximate formula obtained from Eq. (31)

F 2(q) ≈ 1 − 0.2(qrc)2, (A11)

therefore the maximal correction for 86Kr is 5%, which is
consistent with numerical results. The corrections are smaller
than 4% for 56Fe and 2% for 12C.

Finally we provide in Figs. 14 and 15 numerical values of
the relaxation time for a number of cases of interest. We stress
that τ is energy-dependent and is evaluated in the degenerate
case at the Fermi energy and in the nondegenerate case at ε̄ �
3T , which is the thermal energy of ultrarelativistic electrons.
In Fig. 14 we show the dependence of the relaxation time

0
ω

0

q

ω
 =

 ε
 - 

m

-ω0 ω0

q = 2p

q = p

q
- (ε,ω) q -

(ε,ω)

q
+ (ε,ω)

ω = θ q

θθ

ω = − θ q

FIG. 13. The integration region in Eq. (30) in the plane (ω,q)
(light shaded area) bounded by the functions q±(ε). The major
contribution to the integral comes from the triangle bound by the
lines ω = ±θq with the narrow opening angle 2θ (dark shaded area).
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FIG. 14. The relaxation time [(a) and (c)] and dimensionless
product ωcτ [(b) and (d)] as functions of density. The temperature
is fixed at T = 0.1 MeV in (a) and (b) (degenerate regime) and at
T = 10 MeV in (c) and (d) (nondegenerate regime). The magnetic
field is fixed at B12 = 1.

and the factor ωcτ on density for two values of temperature.
It is seen that in the degenerate regime (T = 0.1 MeV) the
slope of decrease in the relaxation time is smaller than in the
case of nondegenerate regime. It is also seen that the factor
ωcτ makes a crossover from being much larger than unity at
small densities to being much smaller at high densities. This
indicates that in low-density matter the effects of anisotropy
are much more important than in the high-density matter. In
fact, in the nondegenerate case the low-density matter has
highly anisotropic conductivity with, for example, ωcτ ∼ 103

for B12 = 1.
Figure 15 shows the temperature dependence of the re-

laxation time for several densities. Our results agree well with

-19

-18

lo
g 10

τ 
[s

]

0.01 0.1
T / TF

-18

-17

-19

-18

-17

-16

1 10

-18

-17

-16

56Fe

12C (b)

56Fe

12C (d)

)c()a(

FIG. 15. The relaxation time as a function on dimensionless ratio
T/TF for three values of density: log10 ρ = 10 (solid lines), log10 ρ =
8 (dashed lines), log10 ρ = 6 (dash-dotted lines) for 56Fe [(a) and (c)]
and 12C [(b) and (d)]. (a) and (b) correspond to the degenerate and (c)
and (d) to the nondegenerate regime. We show the effect of setting
S(q) = 1 for log10 ρ = 10 by short-dashed lines. The open circles
reproduce the results of Ref. [15].

those of Nandkumar and Pethick [15] in the degenerate regime.
It is seen that τ decreases as a function of temperature in the
degenerate regime for T � T ∗ and increases in the nondegen-
erate regime T � T ∗, which makes clear the existence of the
minimum at T ∗ = 0.3TF in the conductivity. The temperature
decrease in the degenerate regime is caused almost entirely by
the structure factor S(q) (see Fig. 15). In the nondegenerate
regime the temperature dependence of τ is dominated by the
energy increase of electrons with temperature and the role of
S(q) is less important, see Fig. 15. This is due to the fact
that when T � TF , i.e., electrons are nondegenerate, the ionic
component forms a Boltzmann gas for composition consisting
of 56Fe and 12C nuclei (see Fig. 1).

APPENDIX B: POLARIZATION TENSOR

In this Appendix we outline the derivation of the polariza-
tion tensor and the variant of the HTL effective field theory that
underlies our computation. Most of the HTL computation are
carried out in the ultrarelativistic (massless) limit; here we keep
the particle mass nonzero and implement HTL approximation
by requiring that the external photon four-momenta are small
compared to the fermionic four-momenta within the fermionic
loop.

The full photon propagator Dμν can be found from the
Dyson equation

[D−1]μν = [
D−1

0

]
μν

− �μν, (B1)

where D
μν
0 = gμν/Q2 is the free photon propagator with Q2 =

ω2 − q2. �μν is the photon polarization tensor and can be
decomposed into transverse and longitudinal modes

�μν = �T P T
μν + �LP L

μν. (B2)

We work in the plasma rest frame where the projectors P T
μν

and P L
μν have the following components:

P T
00 = 0, P T

0i = 0, P T
ij = −δij + qiqj /q

2, (B3)

P L
00 = −q2/Q2, P L

0i = −ωqi/Q
2, P L

ij = − ω2

Q2

qiqj

q2
.

(B4)

They satisfy the relations

P T
μαP T αν = P T ν

μ , P L
μαP Lαν = P Lν

μ , P T
μαP Lαν = 0.

(B5)

From Eqs. (B1)–(B5) it is easy to find the full photon
propagator

Dμν = 1

Q2

[
gμν + �T

Q2 − �T

P T μν + �L

Q2 − �L

P Lμν

]
.

(B6)

Using Eq. (B6) and the current conservation law qμJμ =
ωJ0 + qiJi = 0 we can express the scattering amplitude via
two scalar functions �L and �T :

M = JμDμνJ ′
ν = − J0J

′
0

q2 + �′
L

+ J t J ′
t

q2 − ω2 + �T

, (B7)
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where we introduced transversal currents Jti = Jj (δij − qiqj /q
2) and �′

L = −�Lq2/Q2 = �L/(1 − x2) and x = ω/q. The
one-loop diagram in the imaginary-time Matsubara formalism is given by

�μν(q,ωn) = e∗2
∫

d p
(2π )3

T
∑
m

Tr[γμS( p,ωm)γνS( p − q,ωm − ωn)], (B8)

where S( p,ωn) is free electron-positron propagator and the sum goes over fermionic (odd) Matsubara frequencies ωm =
(2m + 1)πT − iμ [ωn = 2nπT is a bosonic (even) Matsubara frequency]. The propagator S( p,ωn) is given by

S( p,ωm) = i
∑
±

�±
p γ0

iωn − E±
p

, (B9)

where �±
p are the projection operators onto positive and negative energy states

�±
p = /p± + m

2E±
p

γ0, p± = (E±
p , p) = (±Ep, p). (B10)

Substitution of Eq. (B9) into Eq. (B8) gives

�μν(q,ωn) = −e∗2
∫

d p
(2π )3

∑
±±

T
∑
m

Tr[γμ�±
p γ0γν�

±
p−qγ0]

(iωm − E±
p )(iωm − iωn − E±

p−q)
. (B11)

The trace is evaluated using standard field theory methods after substituting therein the projectors (B10):

Tr[γμ�±
p γ0γν�

±
p−qγ0] = p±

μ p′±
ν + p±

ν p′±
μ − gμν[(p±p′±) − m2]

E±
p E±

p′
, p′ = p − q. (B12)

The summation over the Matsubara frequencies gives

T
∑
m

1

(iωm − E±
p )(iωm − iωn − E±

p−q)
= f +(E±

p ) − f +(E±
p−q)

E±
p − E±

p−q − iωn

, (B13)

where f ±(E) = [eβ(E∓μ) + 1]−1 (note that in the main text we use f 0 instead of f +). Substituting Eqs. (B12) and (B13) into
Eq. (B11) we obtain

�μν(q,ωn) = −e∗2
∫

d p
(2π )3

∑
±±

p±
μ p′±

ν + p±
ν p′±

μ − gμν[(p±p′±) − m2]

E±
p E±

p′

f +(E±
p ) − f +(E±

p−q)

E±
p − E±

p−q − iωn

. (B14)

Consider the spatial components of Eq. (B14)

�ij = −e∗2
∫

d p
(2π )3

{
pip

′
j + pjp

′
i − δij (m2 − EpEp−q + p · p′)

EpEp−q

[
f +(Ep) − f +(Ep−q)

Ep − Ep−q − iωn

+ f +(−Ep) − f +(−Ep−q)

−Ep + Ep−q − iωn

]

−pip
′
j + pjp

′
i − δij (m2 + EpEp−q + p · p′)

EpEp−q

[
f +(Ep) − f +(−Ep−q)

Ep + Ep−q − iωn

+ f +(−Ep) − f +(Ep−q)

−Ep − Ep−q − iωn

]}
. (B15)

The part of the polarization tensor ∝δij gives

�
(1)
ij (q,ωn) = −e∗2δij

∫
d p

(2π )3

{
−m2 − EpEp−q + p · p′

EpEp−q

[
f +(Ep) − f +(Ep−q)

Ep − Ep−q − iωn

+ f +(−Ep) − f +(−Ep−q)

−Ep + Ep−q − iωn

]

+m2 + EpEp−q + p · p′

EpEp−q

[
f +(Ep) − f +(−Ep−q)

Ep + Ep−q − iωn

+ f +(−Ep) − f +(Ep−q)

−Ep − Ep−q − iωn

]}
. (B16)

In the spirit of the HTL approximation we next put q = 0 in the prefactors multiplying the occupation numbers, use the relation
f +(−E) = 1 − f −(E) and drop the vacuum contributions ∝1 to obtain

�
(1)
ij (q,ωn) = −2e∗2δij

∫
d p

(2π )3

[
f +(Ep) + f −(Ep)

Ep

]
. (B17)
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In the remaining part of the polarization tensor we set (pip
′
j + pjp

′
i)/(EpEp−q) � 2pipj/E

2
p to find

�
(2)
ij (q,ωn) = −2e∗2

∫
d p

(2π )3

pipj

E2
p

{[
f +(Ep) − f +(Ep−q)

Ep − Ep−q − iωn

+ f +(−Ep) − f +(−Ep−q)

−Ep + Ep−q − iωn

]

−
[
f +(Ep) − f +(−Ep−q)

Ep + Ep−q − iωn

+ f +(−Ep) − f +(Ep−q)

−Ep − Ep−q − iωn

]}
. (B18)

We further approximate

Ep−q = Ep − ( p · q)

Ep

, (B19)

f +(Ep) − f +(Ep−q) = ( p · q)

Ep

∂f +(Ep)

∂Ep

, (B20)

f +(−Ep) − f +(−Ep−q) = − ( p · q)

Ep

∂f −(Ep)

∂Ep

, (B21)

and drop the vacuum terms to obtain

�
(2)
ij (q,ωn) = −2e∗2

∫
d p

(2π )3

pipj

E2
p

{[
∂f +(Ep)

∂Ep

+ ∂f −(Ep)

∂Ep

]

+ iωEp

( p · q) − iωnEp

[
∂f +(Ep)

∂Ep

+ ∂f −(Ep)

∂Ep

]
− f +(Ep) + f −(Ep)

Ep

}
. (B22)

Now we add Eq. (B17) to this to obtain

�ij (q,ωn) = −2e∗2
∫

p2dp

2π2

∫
d�

4π

{
δij

[
f +(Ep) + f −(Ep)

Ep

]
− pipj

E2
p

[
f +(Ep) + f −(Ep)

Ep

]

+ pipj

E2
p

[
∂f +(Ep)

∂Ep

+ ∂f −(Ep)

∂Ep

]
− pipj

E2
p

iωEp

iωnEp − ( p · q)

[
∂f +(Ep)

∂Ep

+ ∂f −(Ep)

∂Ep

]}
. (B23)

In the first three terms in Eq. (B23) the angular and radial integrals separate. For the angular part we have∫
d�

4π

pipj

p2
= δij

3
. (B24)

By partial integration we find∫
dε

p3

ε

d

dε
[f +(ε) + f −(ε)] = −3

∫
[f +(ε) + f −(ε)]

(
1 − p2

3ε2

)
pdε (B25)

which implies that the sum of these terms vanishes. For the remainder we find

�ij (q,ω) = 4e2

π

∫
p2dp

[
∂f +(Ep)

∂Ep

+ ∂f −(Ep)

∂Ep

]
v2

∫
d�

4π
ninj

ω

ω + iδ − v(n · q)
, (B26)

where v = (∂Ep/∂p) = p/Ep and in the last term we have performed the analytical continuation iωn → ω + iδ. The spatial
part of the polarization tensor can be decomposed as

�ij (q,ω) = P T
ij �T (q,ω) + P L

ij �L(q,ω). (B27)

Contracting Eq. (B27) with δij and using Eqs. (B3) and (B4) we find

2�T (q,ω) + ω2

ω2 − q2
�L(q,ω) =

(
−4e2

π

)∫
p2dp

[
∂f +(Ep)

∂Ep

+ ∂f −(Ep)

∂Ep

]
v2Lv(q,ω), (B28)

where

Lv(q,ω) ≡
∫

d�

4π

ω

ω + iδ − v(n · q)
= x

2v
log

x + v

x − v
, x ≡ ω/q. (B29)

Next contract Eq. (B27) with qiqj to find (note that qiqjP
T
ij = 0)

q2

ω2 − q2
�L(q,ω) =

(
−4e2

π

)∫
p2dp

[
∂f +(Ep)

∂Ep

+ ∂f −(Ep)

∂Ep

]
[Lv(q,ω) − 1]. (B30)

Using Eqs. (B28)–(B30) we obtain Eqs. (40) and (41) of the main text.

025805-16



ELECTRICAL CONDUCTIVITY OF A WARM NEUTRON . . . PHYSICAL REVIEW C 94, 025805 (2016)

[1] L. Mestel and F. Hoyle, On the thermal conductivity in dense
stars, Proc. Cambridge Philos. Soc. 46, 331 (1950).

[2] T. D. Lee, Hydrogen content and energy-productive mechanism
of white dwarfs, Astrophys. J. 111, 625 (1950).

[3] A. A. Abrikosov, The conductivity of strongly compressed
matter, Sov. Phys. JETP 18, 1399 (1964).

[4] W. B. Hubbard, Studies in stellar evolution. V. Transport
coefficients of degenerate stellar matter, Astrophys. J. 146, 858
(1966).

[5] M. Lampe, Transport coefficients of degenerate plasma,
Phys. Rev. 170, 306 (1968).

[6] L. Mestel and M. A. Ruderman, The energy content of a white
dwarf and its rate of cooling, MNRAS 136, 27 (1967).

[7] I. Iben, Jr., Electron conduction in red giants, Astrophys. J. 154,
557 (1968).

[8] M. Lampe, Transport theory of a partially degenerate plasma,
Phys. Rev. 174, 276 (1968).

[9] W. B. Hubbard and M. Lampe, Thermal conduction by
electrons in stellar matter, Astrophys. J. Suppl. Ser. 18, 297
(1969).

[10] A. B. Solinger, Electrical and thermal conductivity in a super-
dense lattice. I. High-temperature conductivity, Astrophys. J.
161, 553 (1970).

[11] V. Canuto, Electrical conductivity and conductive opac-
ity of a relativistic electron gas, Astrophys. J. 159, 641
(1970).

[12] A. Kovetz and G. Shaviv, The electrical and thermal conductiv-
ities of stellar degenerate matter, A&A 28, 315 (1973).

[13] E. Flowers and N. Itoh, Transport properties of dense matter,
Astrophys. J. 206, 218 (1976).

[14] D. G. Yakovlev and V. A. Urpin, Thermal and electrical
conductivity in white dwarfs and neutron stars, Soviet Ast. 24,
303 (1980).

[15] R. Nandkumar and C. J. Pethick, Transport coefficients of dense
matter in the liquid metal regime, MNRAS 209, 511 (1984).

[16] I. Easson and C. J. Pethick, Magnetohydrodynamics of neutron
star interiors, Astrophys. J. 227, 995 (1979).

[17] N. Itoh, S. Mitake, H. Iyetomi, and S. Ichimaru, Electrical and
thermal conductivities of dense matter in the liquid metal phase.
I - High-temperature results, Astrophys. J. 273, 774 (1983).

[18] N. Itoh, Y. Kohyama, N. Matsumoto, and M. Seki, Electrical and
thermal conductivities of dense matter in the crystalline lattice
phase, Astrophys. J. 285, 758 (1984).

[19] S. Mitake, S. Ichimaru, and N. Itoh, Electrical and thermal
conductivities of dense matter in the liquid metal phase. II -
Low-temperature quantum corrections, Astrophys. J. 277, 375
(1984).

[20] D. M. Sedrakyan and A. K. Avetisyan, Magneto-hydrodynamics
of plasma in the crust of a neutron star, Astrophys. 26, 295
(1987).

[21] N. Itoh and Y. Kohyama, Electrical and thermal conductivities
of dense matter in the crystalline lattice phase. II - Impurity
scattering, Astrophys. J. 404, 268 (1993).

[22] N. Itoh, H. Hayashi, and Y. Kohyama, Electrical and thermal
conductivities of dense matter in the crystalline lattice phase.
III. Inclusion of lower densities, Astrophys. J. 418, 405
(1993).

[23] D. A. Baiko, A. D. Kaminker, A. Y. Potekhin, and D. G.
Yakovlev, Ion Structure Factors and Electron Transport in Dense
Coulomb Plasmas, Phys. Rev. Lett. 81, 5556 (1998).

[24] A. Y. Potekhin, D. A. Baiko, P. Haensel, and D. G.
Yakovlev, Transport properties of degenerate electrons in
neutron star envelopes and white dwarf cores, A&A 346, 345
(1999).

[25] N. Itoh, S. Uchida, Y. Sakamoto, Y. Kohyama, and S. Nozawa,
The second born corrections to the electrical and thermal
conductivities of dense matter in the liquid metal phase,
Astrophys. J. 677, 495 (2008).

[26] C. J. Horowitz, D. K. Berry, C. M. Briggs, M. E. Caplan,
A. Cumming, and A. S. Schneider, Disordered Nuclear Pasta,
Magnetic Field Decay, and Crust Cooling in Neutron Stars, Phys.
Rev. Lett. 114, 031102 (2015).

[27] A. Y. Potekhin, Electron conduction in magnetized neutron star
envelopes, A&A 351, 787 (1999).

[28] C. Palenzuela, L. Lehner, O. Reula, and L. Rezzolla, Beyond
ideal MHD: Towards a more realistic modeling of relativistic
astrophysical plasmas, MNRAS 394, 1727 (2009).

[29] K. Dionysopoulou, D. Alic, C. Palenzuela, L. Rezzolla, and
B. Giacomazzo, General-relativistic resistive magnetohydrody-
namics in three dimensions: Formulation and tests, Phys. Rev.
D 88, 044020 (2013).

[30] C. Palenzuela, L. Lehner, S. L. Liebling, M. Ponce, M.
Anderson, D. Neilsen, and P. Motl, Linking electromagnetic
and gravitational radiation in coalescing binary neutron stars,
Phys. Rev. D 88, 043011 (2013).

[31] K. Dionysopoulou, D. Alic, and L. Rezzolla, General-relativistic
resistive-magnetohydrodynamic simulations of binary neutron
stars, Phys. Rev. D 92, 084064 (2015).

[32] J. M. Pearson, S. Goriely, and N. Chamel, Properties of the
outer crust of neutron stars from Hartree-Fock-Bogoliubov mass
models, Phys. Rev. C 83, 065810 (2011).

[33] H. Heiselberg and C. J. Pethick, Transport and relax-
ation in degenerate quark plasmas, Phys. Rev. D 48, 2916
(1993).

[34] M. G. Alford, H. Nishimura, and A. Sedrakian, Transport
coefficients of two-flavor superconducting quark matter, Phys.
Rev. C 90, 055205 (2014).

[35] S. Galam and J.-P. Hansen, Statistical mechanics of dense
ionized matter. VI. Electron screening corrections to the thermo-
dynamic properties of the one-component plasma, Phys. Rev. A
14, 816 (1976).

[36] M. N. Tamashiro, Y. Levin, and M. C. Barbosa, The one-
component plasma: A conceptual approach, Physica A 268, 24
(1999).

[37] E. Braaten and R. D. Pisarski, Soft amplitudes in hot
gauge theories: A general analysis, Nucl. Phys. B 337, 569
(1990).

[38] E. Braaten and R. D. Pisarski, Deducing hard thermal loops from
Ward identities, Nucl. Phys. B 339, 310 (1990).

[39] T. Altherr and U. Kraemmer, Gauge field theory methods for
ultra-degenerate and ultra-relativistic plasmas, Astropart. Phys.
1, 133 (1992).

[40] T. Altherr, E. Petitgirard, and T. D. R. Gaztelurrutia, Pho-
ton propagation in dense media, Astropart. Phys. 1, 289
(1993).

[41] T. Altherr, E. Petitgirard, and T. del Rı́o Gaztelurrutia, Axion
emission from red giants and white dwarfs, Astropart. Phys. 2,
175 (1994).

[42] R. N. Wolf, D. Beck, K. Blaum, C. Böhm, C. Borgmann, M.
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