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Role of nuclear physics in oscillations of magnetars
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Strong magnetic fields have important effects on the crustal properties of magnetars. Here we study the
magnetoelastic oscillations of magnetars, taking into consideration the effect of strong magnetic fields on
the crustal composition (magnetized crust). We calculate global magnetoelastic (GME) modes as well as
modes confined to the crust (CME) only. The ideal magnetohydrodynamics is adopted for the calculation of
magnetoelastic oscillations of magnetars with dipole magnetic fields. The perturbation equations obtained in
general relativity using Cowling approximation are exploited here for the study of magnetoelastic oscillations.
Furthermore, deformations due to magnetic fields and rotations are neglected in the construction of equilibrium
models for magnetars. The composition of the crust directly affects its shear modulus, which we calculate using
three different nucleon-nucleon interactions: SLy4, SkM, and Sk272. The shear modulus of the crust is found to
be enhanced in strong magnetic fields �1017 G for all those Skyrme interactions. It is noted that the shear modulus
of the crust for the SLy4 interaction is much higher than those of the SkM and Sk272 interactions in presence of
magnetic fields or not. Though we do not find any appreciable change in frequencies of fundamental GME and
CME modes with and without magnetized crusts, frequencies of first overtones of CME modes are significantly
affected in strong magnetic fields �1017 G. However, this feature is not observed in frequencies of first overtones
of GME modes. As in earlier studies, it is also noted that the effects of crusts on frequencies of both types of
magnetoelastic modes disappear when the magnetic field reaches the critical field (B > 4 × 1015 G). Frequencies
of GME and CME modes calculated with magnetized crusts based on all three nucleon-nucleon interactions,
stellar models and magnetic fields, are compared with frequencies of observed quasiperiodic oscillations (QPOs)
in SGR 1806-20 and SGR1900+14. As in earlier studies, this comparison indicates that GME modes are essential
to explain all the frequencies, as CME modes can explain only the higher frequencies.
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I. INTRODUCTION

Soft gamma repeaters (SGRs) are characterized by their
sporadic and short bursts of soft gamma rays. Luminosities
in these bursts could reach as high as ∼1041 ergs s−1. There
are about 14 SGRs known observationally [1]. Evidence of
stronger emissions of gamma rays from SGRs was observed in
several cases. These events are known as giant flares, in which
luminosities are ∼1044–1046 ergs s−1. So far three cases of
giant flares were reported, and those are SGR 0526-66, SGR
1900+14, and SGR 1806-20 [2–6]. In giant flares, the early
part of the spectrum was dominated by a hard flash of shorter
duration followed by a softer decaying tail of a few hundreds
of seconds.

SGRs are very good candidates for magnetars, which
are neutron stars with very high surface magnetic fields
∼1015 G [7–9]. Giant flares might be caused by the evolving
magnetic field and its stress on the crust of magnetars. It
was argued that starquakes associated with giant flares could
excite global seismic oscillations (GSOs) [8]. Torsional shear
modes of magnetars with lower excitation energies would be
easily excited. In this case, oscillations are restored by the
Coulomb forces of crustal ions. Furthermore, the torsional
shear modes have longer damping times. These findings
implied that QPOs might be shear modes of magnetars [8].
Quasiperiodic oscillations were found in the decaying tail of
giant flares of SGR 1806-20 and SGR 1900+14. Detected

frequencies for SGR 1806-20 are 18, 26, 29, 92.5, 150, 626.5,
and 1837 Hz [4,10,11], whereas for SGR 1900+14 detected
frequencies are 28, 53.5, 84, and 155 Hz [12]. Huppenkothen
et al. [13–15] recently analyzed short bursts of some SGRs
and found QPOs with frequencies 93 and 127 Hz in SGR
J1550-5418 [13] and 57 Hz in SGR 1806-20 [14].

It was noted from earlier theoretical models of QPOs that
the observed frequencies, in particular higher frequencies,
could be explained reasonably well using pure shear modes
as well as CME modes [5,8,16–21]. On the other hand, lower
frequencies of observed QPOs might be connected to Alfvén
modes of the fluid core. This makes the study of the oscillations
of magnetar crusts more difficult. There were attempts to ex-
plain frequencies of QPOs using Alfvén oscillations of the fluid
core without considering a crust [19,22–24]. Levin [22,25]
first pointed out that the strong magnetic fields of magnetars
should couple the Alfvén oscillations of fluid core with the
oscillations in the solid crust. After that many authors studied
the problem in detail [26–30]. The magnetohydrodynamics
(MHD) coupling between the crust and core causes pure crustal
modes to decay by emitting Alfvén waves into the core. It was
argued that CME modes might appear in GSOs and explain
frequencies of observed QPOs for not very strong magnetic
fields despite all these complex problems [31]. But global
modes are expected to couple to the Alfvén continuum in
the core and lead to the damping of the modes. Simulations
to simplified models show [22,26] that CME oscillations are
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efficiently damped in the Alfvén continuum as the crust reacts
to the motion of the core. Consequently long-lived QPOs can
be generated at special points of the continuum (turning points
and edges of continuum).

Several groups also studied the effect of neutron superfluid-
ity and/or proton superconductivity of the crust and/or core on
the calculated frequencies of magnetars [32–34]. It was noted
that neutron superfluidity enhanced fundamental frequencies
of magnetoelastic oscillations. On the other hand, it was argued
that proton superconductivity could be destroyed in magnetic
fields >5 × 1016 G [35].

Nuclear physics of crusts plays an important role on the
magnetoelastic modes of magnetars. In particular, the effects
of the nuclear symmetry energy on the CME frequencies were
investigated recently [21]. It may be worth noting here that
CME mode frequencies are sensitive to the shear modulus of
neutron star crusts. Furthermore, the shear modulus strongly
depends on the composition of neutron star crusts. In earlier
studies of magnetoelastic modes the effect of magnetic field
on the composition of the crust was not considered. Surface
magnetic fields as large as ∼1015 G have been reported in
magnetars. Further, indirect estimates using the scalar virial
theorem does not exclude internal magnetic fields up to 1018.
Such large magnetic fields in magnetars may influence the
ground state properties of neutron star crusts. Recently, we
have investigated the influence of Landau quantization of
electrons on the compositions and equations of state (EoS)
of outer and inner crusts and obtained appreciable changes
in those properties when the magnetic field is very strong
(B � 1017G) [36,37]. This, in turn, might influence the shear
modulus of crusts and thereby magnetoelastic frequencies of
magnetars. This motivates us to study these mode oscilla-
tions of magnetars using magnetized crusts. We define the
crust to be magnetized (nonmagnetized) when the effect of
magnetic field on the crustal composition is considered (not
considered).

We organize the paper in the following way. We describe
models for calculating oscillation modes, shear modulus, and
compositions and EoS of magnetized crusts in Sec. II. Results
of this calculation are discussed in Sec. III. Section IV gives
the summary and conclusions.

II. FORMALISM

QPOs were investigated in Newtonian gravity [8,16,38,39]
as well as general relativity [17,19,31,40,41] with and without
magnetic fields. In many of those calculations, the magnetized
crust was decoupled from the fluid core. But the magnetic field
strongly couples the crust to the core and we need to calculate
magnetoelastic modes.

Here we first study the effects of magnetized crusts
on the magnetoelastic modes confined to the crust (CME)
only, by considering a free slip between the crust and the
core. Next, we calculate the global magnetoelastic (GME)
modes where coupling between the crust and the core has
been considered. Mode frequencies are calculated following
the model of Refs. [17,41,42]. The spherically symmetric
general relativistic model of Sotani et al. [42] adopted in

this calculation is a simplified one compared with the state-
of-the-art general relativistic magnetohydrodynamical (MHD)
model [29]. Furthermore, we do not consider the coupling to
the Alfvén continuum within the framework of this study, as
the aim of this work primarily is to investigate the influence of
magnetized crusts on QPOs.

It is well known that a strong magnetic field breaks
the spherical symmetry of a neutron star due to anisotropy
of the energy momentum tensor [43]. Hence the isotropic
Tolman-Oppenheimer-Volkoff (TOV) equations are no longer
applicable for computing the mass-radius relations for polar
magnetic fields ∼1017 G.

Ideally for large magnetic fields, one must then calculate
the neutron star structure using the anisotropic stress-energy
tensor and solving equations for hydrostatic equilibrium [44].
Although this approximation is reasonable for magnetic fields
<1017 G, the deviations from spherical symmetry become
non-negligible for higher fields. However, the aim of this work
is to study the relative changes in the mode frequencies due to
magnetic fields. For this reason, we neglect the deformation
of the neutron star and assume it to be spherically symmetric.
The metric used to determine equilibrium stellar models has
the form

ds2 = −e2�dt2 + e2�dr2 + r2(dθ2 + sin2 θ dφ2). (1)

The equilibrium models are obtained by solving the Tolman-
Oppenheimer-Volkoff (TOV) equation with a perfect fluid
EoS.

Here we consider an axisymmetric poloidal magnetic
field generated by four-current Jμ = (0,0,0,J�) and expand
the four-potential into vector spherical harmonics as Aμ =
a�m

(r) sin θ ∂θP�m
(cos θ ).

The perturbed equations are obtained by linearizing the
equations of motion of the fluid and the magnetic induction
equation [17,41]. Torsional modes are incompressible and
do not result in any appreciable density perturbation in
equilibrium stars. Consequently, one may adopt the relativistic
Cowling approximation and neglect metric perturbations
δgμν = 0 [45]. We consider axial type perturbation in the
four-velocity and the relevant perturbed matter quantity is the
φ component of the perturbed four-velocity ∂uφ [17]:

∂uφ = e−�∂tY(t,r)
1

sin θ
∂θPl(cos θ ), (2)

where ∂t and ∂θ correspond to partial derivatives with respect to
time and θ , respectively, Pl(cos θ ) is the Legendre polynomial
of order l, and Y(t,r) is the angular displacement of the matter.
It is to be noted that the radial and angular variations of
azimuthal displacement of stellar matter lead to shears of the
crystal lattice in neutron star crusts which are described by the
shear tensor Sμν [40]. Further, the shear stress tensor is given
by Tμν = −2μSμν , where μ is the isotropic shear modulus.
The linearized equations of motion includes the contribution
of δTμν [17].
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Assuming a harmonic time dependence for Y(t,r) = eiωtY(r) and neglecting � ± 2 terms, one obtains the eigenvalue equation
for the mode frequency [17],[

μ + (1 + 2λ1)
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πr4

]
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+ �′ − �′

)
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′
1

2
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)
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1 + a′′
1 ]

}
Y = 0, (3)

where λ = �(� + 1) and λ1 = −�(� + 1)/(2� − 1)(2� + 3).
Equation (3) reduces to the nonmagnetic case when we put
a1 = 0 [17]. Sotani et al. [20] showed that the � ± 2 truncation
worked well for oscillations confined to the crust only. The
eigenvalue equation for modes confined to the crust was solved
using a two-dimensional numerical method where � ± 2 terms
were not truncated [20]. It was demonstrated that results
were unaffected whether � ± 2 terms were truncated or not.
With suitable choice of new variables, Eq. (3) results in a
system of first order ordinary differential equations [17]. For
magnertoelastic modes confined to the crust, we impose a
zero traction boundary condition at the interface between
the core and the crust as well as the zero torque condition
at the surface [17,31]. These conditions imply Y ′ = 0 at
the surface (r = R) of the star and the interface (r = Rc)
of the crust and core. For the GME modes the boundary
condition at the surface is the same as CME modes [17,29].
The other boundary condition is the regularity at the center
(Y ∼ r�−1). Finally, we estimate eigenfrequencies by solving
two first-order differential equations.

The knowledge of the shear modulus of magnetized crusts
is an important input in the eigenvalue equation [Eq. (3)]
for the CME mode calculation. Here we adopt the following
expression of the shear modulus at zero temperature [46,47]:

μ = 0.1194
ni(Ze)2

a
, (4)

where a = [3/(4πni)]1/3, Z is the atomic number of a nucleus,
and ni is the ion density. This form of the shear modulus was
obtained by assuming a bcc lattice and performing directional
averages [48]. Further the dependence of the shear modulus
on temperature was also investigated with the Monte Carlo
sampling technique by Strohmayer et al. [47]. The composition
and equation of state of neutron star crusts are essential
ingredients for the calculation of the shear modulus, as is
evident from Eq. (4).

Now we describe the ground state properties in outer and
inner crusts in the presence of strong magnetic fields. The outer
crust is composed of nuclei immersed in a uniform background
of a noninteracting electron gas. Neutrons start coming out of
nuclei when the neutron drip point is reached. This is the begin-
ning of the inner crust where nuclei are placed both in free neu-
trons as well as electrons. To minimize the Coulomb energy,
nuclei are arranged in a bcc lattice in neutron star crusts [49].

The ground state properties of matter of the inner crust is
described using the Thomas-Fermi model [36]. The spherical

cell that contains neutrons and protons does not define a
nucleus. We adopt the procedure of Bonche, Levit, and
Vautherin to subtract the free neutron gas of the cell and obtain
the nucleus [50–52].

For neutron star crusts in strongly quantising magnetic
fields we showed earlier that the Landau quantization of elec-
trons strongly influenced ground state properties of neutron
star crusts in strong magnetic fields ∼1017 G [36,37]. Energy
and number densities of electrons are affected by the phase
space modifications due to Landau quantization of electrons.
It is to be noted that protons are only influenced by magnetic
fields through the charge neutrality condition.

III. RESULTS AND DISCUSSIONS

We already investigated the composition and EoS of
ground state matter in neutron star crusts in strong magnetic
fields [36,37]. We noted that the electron number density
in the outer crust was enhanced compared with the field-
free case when a few Landau levels were populated for
magnetic fields >4.414 × 1016 G [36]. It was observed that this
enhancement grew stronger when only the zeroth Landau level
was populated at a magnetic field strength of 4.414 × 1017 G.
Consequently, we found modifications in the sequence of
equilibrium nuclei which was obtained by minimizing the
Gibbs free energy per nucleon. It was noted that some new
nuclei such as 88

38Sr and 128
46 Pd appeared and some nuclei

such as 66Ni and 78Ni disappeared in a magnetic field of
B = 4.414 × 1016 G [36] when we compared this with the
zero field case. It was further observed that the neutron drip
point was shifted to higher density in presence of a strong
magnetic field with respect to the field-free case [36]. We also
performed the calculation of the inner crust using the SLy4
and SkM nucleon-nucleon interactions [37]. In this case too,
we calculated the equilibrium nucleus at each density point.
Like the outer crust in strong magnetic fields, the electron
number density was enhanced due to the electron population
in the zero Landau level for magnetic fields �1017 G which,
in turn, led to a large proton fraction because of charge
neutrality. For magnetic fields >1017 G, equilibrium nuclei
with larger mass and atomic numbers were found to exist in
the crust [37]. The free energy per nucleon of the nuclear
system was reduced in magnetic fields compared with the
corresponding case without a magnetic field. Furthermore, it
was noted that higher symmetry energy in the subsaturation
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TABLE I. Saturation nuclear matter properties of different
Skyrme nucleon-nucleon interactions used in this work such as
saturation density (ρ0), binding energy (BE), incompressibility (K),
symmetry energy (J ) and its slope coefficient (L)

Parameter set ρ0 BE K J L

(fm−3) (MeV) (MeV) (MeV) (MeV)

SLy4 0.16 15.97 229.91 32.00 45.94
SkM 0.16 15.77 216.61 30.75 49.34
Sk272 0.155 16.28 271.51 37.40 91.67

regime for the SLy4 interaction resulted in nuclei with larger
mass and atomic numbers than those of the SkM interaction.

In this paper, we perform calculations of shear modulus
and magnetoelastic mode frequencies using the SLy4, SkM,
and Sk272 nucleon-nucleon interactions. Saturation nuclear
matter properties of those interactions are listed in Table I. It is
evident from the table that those nucleon-nucleon interactions
differ in the symmetry energy and its slope coefficient from one
interaction to the other. It is to be seen how the behavior of the
symmetry energy and its slope coefficient in the subsaturation
density would impact the compositions of magnetized crusts,
its shear modulus, and finally magnetoelastic modes.

We calculate the shear modulus using Eq. (4) and the above
mentioned models of magnetized crusts. Figure 1 displays the
shear modulus as a function of mass density for three nucleon-
nucleon interactions of Table I with and without magnetic
fields. Here we have shown results for B∗ = B/Bc = 104

where Bc = 4.414 × 1013 G, where B denotes the magnetic
field strength at the pole. When the field strength is <1017 G,
the shear modulus does not show any appreciable change from
that of the zero field because of large numbers of Landau levels
are populated in this case. As the field strength is increased,
less numbers of Landau levels are populated. For B∗ = 104,
i.e., 4.414 × 1017 G, the shear modulus is enhanced due to
the population of all electrons in the zeroth Landau level.
In all three cases, the shear modulus increases with mass
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FIG. 1. Shear modulus as a function of mass density for a neutron
star of 1.4M� with magnetic fields B∗ = 0 and B∗ = 104 and Skyrme
nucleon-nucleon interactions of Table I.

density well before the crust-core interface. It is observed
from Fig. 1 that the shear modulus is highest for the SLy4
nucleon-nucleon interaction whereas it is the lowest for the
Sk272 interaction. This can be understood by noting that the
symmetry energy at subsaturation densities is highest for the
SLy4 interaction. In this density regime, the symmetry energy
decreases from its value at the saturation density according
to the slope coefficient (L). As the SLy4 interaction has the
lowest value of L (see Table I), it has the highest value
of the symmetry energy among all three nucleon-nucleon
interactions. Higher symmetry energy leads to higher proton
fraction and consequently higher electron fraction due to the
charge neutrality. Therefore, higher symmetry energy implies
higher shear modulus, as is evident from Eq. (4). The shear
modulus and shear speed vs = (μ/ρ)1/2 are extrapolated to
the zero value at the crust-core interface for magnetized
as well as nonmagnetized crusts. At densities close to the
crust-core boundary, nuclei can take various nonspherical
shapes collectively known as nuclear pasta [53–55]. As the
detailed nature of this pasta phase is not fully settled and there
is no calculation of the shear modulus of this phase yet, and as
the shear modulus should vanish at the crust-core boundary, we
extrapolate the shear modulus and shear speed vs = (μ/ρ)1/2

to the zero value at the crust-core interface for magnetized as
well as nonmagnetized crusts. This approach is similar to that
of Ref. [31] where an arbitrary fit was used so that the shear
modulus smoothly decreases to zero at the crust-core interface,
in the absence of magnetic fields. We generate profiles of the
shear modulus as a function of radial distance in a neutron
star for calculating frequencies of magnetoelastic modes. The
shear modulus profiles along with the profiles of energy density
and pressure are obtained by solving the TOV equation. In this
context, we construct the EoS of dense nuclear matter in strong
magnetic fields in the neutron star core using a relativistic
mean field model with the GM1 parameter set as described in
Refs. [56–58]. This EoS of dense nuclear matter is matched
with the EoS of the crust and used in the TOV equation.

A. CME modes

First we study the magnetoelastic modes confined to the
crust only. We investigate the dependence of these mode
frequencies on the compositions and the shear modulus of
magnetized crusts. Earlier all calculations were performed
using nonmagnetic neutron star crusts. Here we exploit models
of nonmagnetic as well as magnetic crusts which were already
described in this section. We consider CME modes of a neutron
star of mass 1.4M�. Frequencies of fundamental (n = 0,
� = 2) CME modes are plotted with magnetic fields in Fig. 2
for all three nucleon-nucleon interactions. Here n gives the
number of radial nodes in the eigenfunction Y(r), in the crust.
It is observed that in each case the frequency increases very
slowly with magnetic field for B∗ < 100. But for B∗ > 100
the frequency increases linearly with magnetic fields. This
behavior was also observed in earlier studies [17,42]. The
frequencies corresponding to the SLy4 interaction for B∗ <
100 are almost two times higher than those of the SkM and
Sk272 interactions. This is the direct consequence of the higher
value of shear modulus for the SLy4 interaction than the other
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FIG. 2. Frequency of fundamental (n = 0, � = 2) CME mode for
a neutron star of 1.4M� is shown as a function of magnetic field
B∗ = B/Bc where Bc = 4.414 × 1013 G. Results of our calculations
using the SLy4, SkM, and Sk272 nucleon-nucleon interactions are
shown here.

two interactions. However, there are no differences between
our results with and without magnetized crusts. This shows
that the increase in shear modulus due to magnetic field is too
small to change the fundamental modes even for very high
fields (�1017 G).

Figure 3 shows frequencies of CME modes corresponding
to n = 0 plotted as a function of � values for a 1.4M� neutron
star, magnetic field B∗ = 104, and all three nucleon-nucleon
interactions. Furthermore, we calculate frequencies using
the nonmagnetic as well as magnetic crusts. In all cases
frequency increases with higher � values. For higher values
of �, frequencies with magnetic crusts are found to be slightly
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FIG. 3. Fundamental frequencies (n = 0) of CME modes are
plotted as a function of � values with and without magnetic crusts
of a 1.4M� neutron star based on the SLy4, SkM, and Sk272
nucleon-nucleon interactions for B∗ = 104.

TABLE II. Radius and crust thickness for all three interactions at
B∗ = 0 and B∗ = 104

Set B = 0 B∗ = 104

R (km) �R/R R (km) �R/R

SLy4 13.972 0.096 13.987 0.100
SkM 13.875 0.086 13.892 0.088
Sk272 13.910 0.089 13.927 0.092

smaller than those of nonmagnetic crusts, i.e., when the effect
of magnetic field on the crustal composition is neglected.
This is true for all three nucleon-nucleon interactions used
in this calculation. The small decrease in frequencies in case
of magnetized crusts is due to increase of radius (R) of the star
for B∗ = 104, as is evident from Table II because fundamental
frequencies are inversely proportional to R.

We continue our investigation on frequencies of first
overtones (n = 1) of CME modes in the presence of magnetic
fields. Frequencies of first overtones are shown as a function of
� values for a neutron star of 1.4M�, magnetic field B∗ = 104,
and all nucleon-nucleon interactions of Table I in Fig. 4. It
is observed that the frequencies obtained with magnetized
crusts are significantly suppressed compared with those of
nonmagnetized crusts for each nucleon-nucleon interaction
and for all values of �. This is understood if we remember
the fact that the radius of a star is sensitive to the crustal EoS.
Since strong magnetic fields (�1017G) change the composition
as well as EoS of the crust, the stellar radius as well as crustal
thickness also get affected. In Table II, we have shown the
radius (R) and the ratio of the crust thickness (�R) to the
radius of a neutron star for B∗ = 0 and B∗ = 104, for all
three nuclear interactions. From the table we see that the
value of �R/R is larger for B∗ = 104 than for B = 0. It

 40000

 45000

 50000

 55000

 60000

2 3 4 5 6 7 8 9  10

f (
H

z)

l

n=1
B*=104

M=1.4 MO•

SLy4, non-magnetic
SLy4, magnetic

SkM, non-magnetic
SkM, magnetic

Sk272, non-magnetic
Sk272, magnetic

FIG. 4. Frequencies of first overtones (n = 1) of CME modes are
shown as a function of � values with and without magnetic crusts of
a 1.4M� neutron star based on the SLy4, SkM, and Sk272 nucleon-
nucleon interactions for B∗ = 104.
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� = 2,3,4 are plotted as a function of neutron star mass for a magnetic
field B = 8 × 1014 G using magnetized crusts based on the SLy4,
SkM, and Sk272 nucleon-nucleon interactions.

was noted that the ratio of the crust thickness to the radius
of a neutron star is inversely proportional to the frequencies
of overtones [17]. This explains why overtone frequencies are
smaller for magnetized crusts with B∗ = 104, even though the
shear moduli are little larger for this case than that of B∗ = 0.
The effects of nucleon-nucleon interactions are evident from
the figure, where the results of the SkM lie at the top and those
of the SLy4 are at the bottom. This can also be understood
from Table II if we note that the ratio (�R/R) is the highest
for the SLy4 interaction and lowest for the SkM interaction.

The dependence of frequencies of the fundamental mode
and higher harmonics on neutron star masses is demonstrated
in Fig. 5 for the SLy4, SkM, and Sk272 nucleon-nucleon
interactions. Here the frequencies corresponding to n = 0 and
� = 2,3,4 are shown as a function of neutron star masses for
a magnetic field B = 8 × 1014 G. For all cases, frequencies of
CME modes decrease with increasing mass, whereas higher �
values lead to higher frequencies. It is observed from Fig. 5
that frequencies corresponding to (non)magnetic crusts based
on the SLy4 nucleon-nucleon interaction are much higher than
those of other two nucleon-nucleon interactions. When the
calculated frequencies are compared with the frequencies of
observed QPOs, the latter might put a strong constraint on the
EoS if masses of neutron stars are known accurately.

Next, we compare the calculated frequencies of CME
modes with frequencies of observed QPOs. These comparisons
are shown in Tables III and IV. Here we have also included
QPO of 57 Hz found recently by Huppenkothen et al. [14]
in the short bursts of SGR 1806-20. For SGR1806-20, our
results in Table III are obtained using the magnetized crusts of
1.3M�, 1.4M�, and 1.7M� neutron stars based on the SLy4,
SkM, and Sk272 nucleon-nucleon interactions, respectively,
and magnetic field B = 8 × 1014 G. It is noted that calculated
frequencies below 93 Hz for each nucleon-nucleon interaction
cannot explain the observed frequencies, whereas our results
above 93 Hz are in very good agreement with observed
QPO frequencies [4,10,11]. Similarly, for SGR 1900+14 we

TABLE III. Frequencies of CME modes calculated using mag-
netized crusts based on the SLy4, SkM, and Sk272 nucleon-nucleon
interactions are compared with observed QPO frequencies of SGR
1806-20 [4,10,11,14]. The magnetic field used in this calculation is
B = 8 × 1014 G. Here f , n, and � represent frequency, radial node,
and angular node, respectively

Observed Calculated frequency (Hz)
frequency (Hz) SLy4 SkM Sk272

(1.3M�) (1.4M�) (1.7M�)

f n � f n � f n �

18 20.0 0 2 13.0 0 2 18.0 0 3
26 20.7 0 3 24.3 0 4
30 31.7 0 3 27.8 0 4 30.3 0 5
57 53.1 0 5 55.0 0 8 59.5 0 10
92.5 94.1 0 9 94.5 0 14 93.9 0 16
150 154.6 0 15 152.6 0 23 150.0 0 26
626 627.9 1 16 626.9 1 27 625.9 1 34
1838 1834.5 4 2 1836.3 4 2 1841.9 4 2

calculate CME mode frequencies using magnetized crusts of
1.7M�, 1.2M�, and 1.2M� neutron stars corresponding to
the SLy4, SkM, and Sk272 nucleon-nucleon interactions and
B = 4 × 1014 G. These results are shown in Table IV. Our cal-
culated frequencies for all three nucleon-nucleon interactions
are in agreement with the observed QPO frequencies of SGR
1900+14 [12].

B. GME modes

First we calculate pure Alfvén modes of a neutron star
of mass 1.4M�, by ignoring the presence of the solid crust.
In Fig. 6, we show the pure Alfvén mode corresponding to
n = 0, � = 2 as a function of magnetic field (B∗). Here, n
stands for the number of radial nodes in the eigenfunctions,
in the liquid core. We see that the frequency of this mode
increases linearly with magnetic field and become equal to
that of the CME modes above B∗ = 100. Next, we calculate
corresponding GME mode frequencies for various magnetic
fields, taking magnetic crusts into consideration. Magnetized
crusts used here are calculated with the SLy4, SkM, and
Sk272 nucleon-nucleon interactions. It is observed that at
low magnetic fields global mode frequencies have higher

TABLE IV. Same as Table III but for SGR 1900+14 [12]. The
magnetic field used in this calculation is B = 4 × 1014 G.

Observed Calculated frequency (Hz)
frequency (Hz) SLy4 SkM Sk272

(1.7M�) (1.2M�) (1.2M�)

f n � f n � f n �

28 28.4 0 3 28.3 0 4 26.6 0 4
54 56.7 0 6 55.8 0 8 52.5 0 8
84 84.2 0 9 82.7 0 12 83.8 0 13
155 156.4 0 17 155.2 0 23 157.1 0 25
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FIG. 6. Comparison of the GME frequencies with pure Alfvén
frequencies as well as CME frequencies is shown as a function of
magnetic field using the magnetized crusts based on the SLy4, SkM,
and Sk272 nucleon-nucleon interactions.

values compared to those of pure Alfvén modes. The GME
modes are found to be confined to the core for low magnetic
field strengths. This scenario is similar to the reflection of
GME modes at the crust-core interface as manifested in the
state-of-the-art model of Gabler et al. [29]. Consequently,
this leads to higher frequencies for GME modes compared
with those of pure Alfvén modes. But at higher magnetic
fields, GME mode frequencies merge with those of pure
Alfvén modes. This happens because at higher values of
fields (B � 4.14 × 1015) shear modulus becomes negligible
compared to the magnetic effect (μ � B2); in other words the
Alfvén velocity (B/

√
4πρ) becomes much larger compared

to the shear velocity (
√

μ/ρ). We also show the frequencies
of CME modes for comparison. It is also evident from Fig. 6
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FIG. 7. GME mode frequencies for n = 0 are shown as a function
of � values with and without magnetic crusts of a neutron star of
mass 1.4M� based on the SLy4, SkM, and Sk272 nucleon-nucleon
interactions for B∗ = 104.

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

2 3 4 5 6 7 8 9  10

f (
H

z)

l

n=1
B*=104

M=1.4 MO•

SLy4, non-magnetic
SLy4, magnetic

SkM, non-magnetic
SkM, magnetic

sk272, non-magnetic
sk272, magnetic
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that the effects of crusts on frequencies disappear at very high
magnetic fields B∗ > 100 and oscillations become magnetic
oscillations [59].

To see the effects of magnetic crusts on GME modes, we
calculate these modes with and without magnetic crusts based
on the SLy4, SkM, and Sk272 nucleon-nucleon interactions.
Figures 7 and 8 show results for modes with n = 0 and n = 1,
respectively as a function of � for a neutron star of mass 1.4M�
and magnetic field B∗ = 104. We can see there is no significant
change in frequencies if the crust is considered to be magnetic.
For fundamental modes in Fig. 7, there is no appreciable
change in frequencies with and without magnetic crusts.
Unlike Fig. 3 for CME modes, GME modes are insensitive
to the small change in R. In case of first overtones in Fig. 8,
we do not find any appreciable effects of crusts on frequencies

TABLE V. GME mode frequencies obtained using the magne-
tized crusts based on the SLy4, SkM, and Sk272 nucleon-nucleon
interactions are compared with observed frequencies in SGR 1806-20.
The magnetic field used in this calculation is B = 3.1 × 1015 G.

Observed Calculated frequency (Hz)
frequency (Hz) SLy4 SkM Sk272

(1.5M�) (1.4M�) (1.4M�)

f n � f n � f n �

18 17.8 0 3 18.2 0 3 18.1 0 3
26 26.1 0 6 26.1 0 6 25.8 0 6
30 30.7 0 8 30.7 0 8 30.4 0 8
57 57.8 1 7 57.1 1 6 56.7 1 6
92.5 93.0 4 2 91.6 2 8 94.5 2 9
150 150.0 6 4 150.9 4 10 150.3 6 3
626 624.3 30 6 626.4 28 6 628.6 27 9
1838 1837.3 96 5 1836.4 97 2 1835.8 87 10
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TABLE VI. Same as Table V but for the SGR 1900+14. The
magnetic field adopted here is B = 1.34 × 1015 G.

Observed Calculated frequency (Hz)
frequency (Hz) SLy4 SkM Sk272

(1.4M�) (1.3M�) (1.3M�)

f n � f n � f n �

28 28.0 1 6 28.4 1 6 28.0 1 5
54 54.7 3 8 54.7 3 7 53.6 2 11
84 84.7 7 5 84.1 6 6 84.4 5 8
155 155.6 16 3 154.7 14 4 154.5 11 9

because the magnetic field B∗ = 104 is so high that oscillations
become magnetic oscillations.

We also attempt to match the observed frequencies with
those of calculated GME modes. The results are shown in
Tables V and VI. For SGR1806-20, we compute frequencies
using the magnetized crusts of 1.5M�, 1.4M�, and 1.4M�
neutron stars based on the SLy4, SkM, and Sk272 nucleon-
nucleon interactions, respectively, and magnetic field B =
3.1 × 1015 G. These results are given by Table V. We find
that the calculated frequencies agree well with the lower and
higher frequencies of observed QPOs. However, it is noted
that large values of n are needed to fit higher frequencies. This
feature for higher frequencies was also obtained by Sotani
et al. [42]. On the other hand, we exploit magnetized crusts
of 1.4M�, 1.3M�, and 1.3M� neutron stars corresponding
to the SLy4, SkM, and Sk272 nucleon-nucleon interactions
and magnetic field B = 1.34 × 1015 G for SGR 1900+14.
The Table VI demonstrates that the calculated frequencies
are in good agreement with the observed frequencies of
SGR 1900+14. We do not find any appreciable effects of
nucleon-nucleon interactions in either table.

IV. SUMMARY AND CONCLUSIONS

We have estimated frequencies of global magnetoelastic
modes as well as magnetoelastic modes confined to the
crust only of magnetars assuming a dipole magnetic field
configuration. Frequencies are computed using our models
of magnetized crusts based on the SLy4, SkM, and Sk272
nucleon-nucleon interactions. Though the formalism used by
Sotani et al. [42] and in this calculation are same, magnetized
crusts are employed for the first time here. The shear modulus
of magnetized crusts is found to be enhanced in strong
magnetic fields ∼4.414 × 1017 G because electrons populate
the zeroth Landau level. It is observed that frequencies of the
fundamental (n = 0, � = 2) CME mode are not sensitive to this
enhancement in the shear modulus in strong magnetic fields.
On the other hand, frequencies of first overtones (n = 1) of
CME modes in the presence of strongly quantizing magnetic
fields are distinctly different from those of the field free
case. It is shown that that this is related to the the ratio
of the crust thickness to the radius of a magnetar. We have
found that, at B∗ = 104, the �R/R is increased by 2–4%,
which causes frequencies of overtones to decrease by 5–7%,
for the models we used here. For GME modes, the effects
of crusts disappear above a critical field (B > 4 × 1015 G)
and oscillations become magnetic oscillations. We have
compared frequencies of CME and GME modes calculated
using different stellar models, magnetic field strengths, and
magnetized crusts based on three nucleon-nucleon interactions
with frequencies of observed QPOs and conclude that the
agreement is reasonable for SGR 1900+14 in both cases.
However, the calculated frequencies of CME modes do not
match with lower frequencies of SGR 1806-20, but can explain
higher frequencies well. In the case of GME modes, we find
the opposite trends in fitting the frequencies of SGR 1806-20.
Finally, new results that we have obtained would be reproduced
even in a sophisticated MHD calculation.
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