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Neutrons on a surface of liquid helium
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We investigate the possibility of ultracold neutron (UCN) storage in quantum states defined by the combined
potentials of the Earth’s gravity and the neutron optical repulsion by a horizontal surface of liquid helium.
We analyze the stability of the lowest quantum state, which is most susceptible to perturbations due to surface
excitations, against scattering by helium atoms in the vapor and by excitations of the liquid, comprised of ripplons,
phonons, and surfons. This is an unusual scattering problem since the kinetic energy of the neutron parallel to the
surface may be much greater than the binding energies perpendicular. The total scattering time of these UCNs at
0.7 K is found to exceed 1 h, and rapidly increases with decreasing temperature. Such low scattering rates should
enable high-precision measurements of the sequence of discrete energy levels, thus providing improved tests
of short-range gravity. The system might also be useful for neutron β-decay experiments. We also sketch new
experimental propositions for level population and trapping of ultracold neutrons above a flat horizontal mirror.
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I. INTRODUCTION

The slow neutron plays an important role in low-energy
particle physics as both an object in itself, in investigations
of the properties of free neutrons, and as a tool to explore
its interactions with known or hypothetical fields with high
precision [1–3]. A particular class of experiments employs
neutrons with energy lower than the neutron optical potential
of typical materials, i.e., up to or order 300 neV. These so-
called ultracold neutrons (UCNs) can be imprisoned for many
hundreds of seconds in well-designed “neutron bottles”. By
virtue of the neutron magnetic moment of 60 neV/T, magnetic
trapping is feasible, and also the gravitational interaction
(100 neV per meter rise) can play a role in UCN storage and
manipulation [4,5]. UCNs have found various applications,
such as notably the longstanding search for a nonvanishing
electric dipole moment of the neutron for detection of a new
mechanism of CP violation [6–9], and measurements of the
neutron lifetime as input for calculations of weak reaction rates
in big-bang nucleosynthesis and stellar fusion [10,11], and for
the determination of the weak axial-vector and vector coupling
constants of the nucleon.

Discrete energy levels of UCNs in the Earth’s gravitational
field were proposed by Lushikov and Frank in 1978 [12], and
demonstrated experimentally in the past decade [13–15]. A
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precise determination of the energies of these states, with
characteristic sizes of several tens of micrometers, is an
interesting tool for tests of various new scenarios of particle
physics. Deviations from the Newtonian law of gravity at small
distances can, for instance, be interpreted as a signal of large
extra dimensions at the sub-millimeter scale [16,17] or as
a hint for dark-energy “chameleon” fields [18,19]. A recent
development, called gravity resonance spectroscopy (GRS),
where transitions between levels are induced by vibrating
the mirror, has paved a way towards sensitive tests of such
scenarios [20]. An alternative, and competing, method will
employ oscillating magnetic field gradients [21,22]. The GRS
experiment described in Ref. [19] has already set stringent
limits on chameleons (note, however, a strong atomic-physics
competitor [23]). It has also constrained axion-like particles,
improving the result of an analysis of the nonresonant gravity
experiment described in Ref. [24]. A method not relying on
spatial quantum states of the neutron employs spin precession
of trapped UCNs close to a heavy mirror [25–27]. While
this currently provides still higher sensitivity than previous
GRS experiments, large gains may be expected from an
adaptation of Ramsey’s molecular beam technique of separated
oscillatory fields to GRS [28]. Such a set-up has been proposed
also for the search of a nonzero neutron charge [29].

All current experiments on gravitational quantum states of
the neutron employ highly polished quartz mirrors. These are
expensive, limited to sizes of several tens of centimeters, and
they have to be horizontally levelled by some active means. In
this respect, using a liquid surface as a mirror might initiate
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FIG. 1. Schematic representation of the vertical potential and the
first two states of a neutron above a horizontal mirror of liquid helium.

a qualitatively new approach. The present article provides a
theoretical investigation of the possibility to store UCNs in the
lowest gravitational energy states on the liquid helium surface,
by analysis of scattering by helium atoms in the gas phase and
by various excitations in both the bulk and at the surface of
the liquid helium. Obviously, a long storage time-constant is a
necessary condition for conducting experiments using a mirror
made of this quantum liquid. A separate section sketches some
experimental concepts addressing issues arising in real studies
employing those neutrons, notably population, trapping, and
detection.

Properties of neutrons on the liquid helium surface are,
in several respects, similar to those of electrons. The two-
dimensional electron gas on a surface of dielectric media has
been a wide subject of research for many decades (for reviews
see, e.g., [30–32]). In contrast to the gravitational force in the
neutron case, the electrons are attracted to the boundary by the
electric image forces through which they become localized
in the direction perpendicular to the surface. The surface
of superfluid helium has no solid defects (like impurities,
dislocations, etc.) and offers a unique opportunity to create
an extremely pure 2D electron gas. The mobility of electrons
in this gas usually exceeds by more than thousand times that
of electrons in 2D quantum wells in heterostructures. The
system thus simulates a solid-state 2D quantum well without
disorder. Many fundamental properties of a 2D electron gas
have been studied with the help of electrons on the surface
of liquid helium. Various electronic quantum objects can be
experimentally realized there, such as quantum dots [33],
1D electron wires [34], quantum rings [35], and so on. The
electrons on the liquid helium surface may also serve for an
experimental realization of a set of quantum bits with very
long decoherence times [36]. If neutrons can be made to
rest in surface states with sufficient densities we can hope
for comparable studies using neutrons rather than electrons,
investigations of excitations or structural decorations of the
liquid surface detected by neutron scattering, and possible new
states of quantum matter.

Without thermal excitations and above a flat helium surface
such discrete neutron states can be easily described, as
summarized in Sec. II and illustrated in Fig. 1. In Secs. III–V
we consider the stability of a neutron in a bound surface
state against various scattering processes. Note that we deal
here with a rather unfamiliar scattering problem in that the
kinetic energy of the neutron parallel to the surface may be

many orders of magnitude greater than the binding energies
in the perpendicular direction. We calculate the temperature-
dependent scattering rates wvap and wrip due to 4He atoms in
the vapour above the surface and due to waves on the helium
surface, called ripplons. Neutron scattering by other possible
excitations, e.g., phonons and surfons, is also analyzed.

II. NEUTRONS ABOVE A FLAT HELIUM SURFACE

We consider a plane boundary between superfluid 4He
(situated at vertical coordinate z < 0) and its saturated vapor
(z > 0). The interaction of a neutron with a 4He atom
with nuclear coordinate Ri can be expressed as a Fermi
pseudopotential given by

Vi(r) = Uδ(3)(r − Ri) ≡ 2π�
2aHe

m
δ(3)(r − Ri), (1)

where δ(3)(r) is the 3D Dirac δ function. Substituting the bound
coherent neutron scattering length aHe = 3.26 × 10−13 cm
of a 4He atom and the neutron mass m = 1.675 × 10−24 g,
one obtains the value U = 1.36 × 10−42 erg cm3. Neutron
propagation in the bulk (with particle density nHe ≈ 21.8 nm−3

of 4He atoms at T < 2.18 K) can be described by a constant
neutron optical potential given by the spatially averaged
pseudopotentials of many helium atoms in a volume �, i.e.,

V0 = �−1
∫

�

∑
i

Vi(r)d3r = UnHe ≈ 18.5 neV. (2)

Above the 4He surface, neglecting interactions with the helium
vapor discussed further below, the neutron is exposed to the
gravity potential V (z) = mgz, where g = 981 cm/s2. One can
easily solve the one-dimensional Schrödinger equation for a
neutron in this potential, sketched in Fig. 1. The corresponding
Hamiltonian is

Ĥ0 = −�
2�̂

2m
+ mgz + V0θ (−z), (3)

where �̂ = ∇2 is the Laplace operator, and θ (x) is the step
function [θ (x) = 1 for x > 0 and θ (x) = 0 for x � 0]. The x,
y and z coordinates separate in this equation, and the neutron
wave function is given by a product

ψ(r) = ψ‖(r||) ψ⊥(z), (4)

where r|| = (x,y) is the 2D coordinate vector along the surface,
while r = (x,y,z) stands for the 3D coordinate vector. In the
x-y plane, the neutron wave function is given by a normalized
plane wave,

ψ‖(r||) = S−1/2 exp(ip||r||/�), (5)

where S is the He surface area, and p|| is the 2D neutron
momentum along the surface. At z < 0 one can neglect the
weak gravitational potential in Eq. (3) as compared to the much
stronger potential V0. The z-dependent part of the neutron wave
function in this region is then approximately given by

ψ⊥(z) = ψ⊥(0) exp(κz) (z < 0, E⊥ < V0), (6)

where κ = ik⊥ = √
2m(V0 − E⊥)/�, and E⊥ is the neutron ki-

netic energy along the z axis. For E⊥ � V0, κ0 ≡ √
2mV0/� ≈
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2.4 × 105 cm−1, i.e., the neutron penetration depth into the
liquid helium is κ−1

0 ≈ 33 nm. For z > 0, the neutron wave
function is given by

ψ⊥(z) = C Ai[(z − E⊥/mg)/z0] (z > 0), (7)

where C is a normalization coefficient, Ai(x) is the Airy
function, and z0 ≡ (�2/2m2g)

1/3 = 5.87 μm is a characteristic
length scale of the neutron wave function in low energy states.
For z > E⊥/mg the wave function given in Eq. (7) decreases
exponentially. For E⊥ < V0 the eigenvalues of the quantized
energy spectrum are given by the boundary condition at z = 0,
i.e.,

ψ ′
⊥(0)

ψ⊥(0)
= κ =

√
2m(V0 − E⊥)

�
= Ai′(−u)

z0Ai(−u)
, (8)

where u ≡ E⊥/mgz0 and primes denote derivatives.
Equation (8) at finite V0 can be solved only numerically.
A characteristic scale of separations between lowest energy
levels is given by mgz0 = (�2mg2/2)

1/3 = 0.6 peV. In the
limit V0 → ∞ the energy levels are given by

En = mgz0αn+1, n = 0,1, . . . , (9)

where −αn+1 are the zeros of the Airy function. The lowest
ones are given by α1 = 2.338,α2 = 4.088, α3 = 5.521, α4 =
6.787. For n � 1,

αn ≈ (3πn/2)2/3 − (π2/96n)1/3. (10)

At finite V0, Eq. (8) gives the following values
of αHe

n+1 = En/mgz0: αHe
1 = 2.332, αHe

2 = 4.082, αHe
3 =

5.515, αHe
4 = 6.781. They differ by less than 0.3% from

αn obtained at V0 → ∞. The neutron wave functions above
the liquid He are also very close to those for V0 → ∞,
except for a region near z = 0, where they acquire small finite
values ψ⊥n(0) = Cn Ai(−αHe

n+1). The first three normalization
coefficients are C0 ≈ 59 cm−1/2, C1 ≈ 51.3 cm−1/2, C2 ≈
47.8 cm−1/2, which gives ψ⊥0(0) ≈ 0.236 cm−1/2, ψ⊥1(0) ≈
−0.231 cm−1/2, ψ⊥2(0) ≈ 0.23 cm−1/2. These values enter
the neutron scattering rate by ripplons and will be used
below.

III. SCATTERING OF NEUTRONS IN SURFACE STATES
BY HELIUM VAPOR

4He vapor atoms can be considered as point-like im-
purities with interaction potential given by Eq. (1). The
corresponding matrix element of the neutron scattering by
He vapor atom is given by (see Appendix A for its standard
derivation)

|Tif |2 ≈ U 2 (2π�)3δ(3)(�Ptot)/V, (11)

where the three-dimensional Dirac delta function δ(3)(�Ptot)
ensures the conservation of the total momentum Ptot.
The helium vapor approximately obeys the Boltzmann

distribution1

NP = exp

(
μ − EHe

kBT

)
, (12)

where kB = 1.38 × 10−16 erg/K is the Boltzmann constant,
μ = −7.17 K × kB is the chemical potential of liquid 4He
(evaporation energy of a 4He atom) for T → 0, and EHe =
P2/2M is the kinetic energy of a 4He atom with momentum P
and atomic mass M = 6.7 × 10−24 g.

We take the initial neutron state on the lowest energy level
along the z axis and with momentum p|| = {px,py} parallel to
the helium surface, corresponding to the total neutron energy

K = p2
||/2m + E0. (13)

In typical experiments with UCNs, K ≈ p2
||/2m ∼ 10−7 eV �

E0 ∼ 10−12 eV. The typical initial momentum P of a He
atom is larger than the neutron momentum by more than an
order of magnitude, because its average kinetic energy ĒHe =
(3/2)kBT ∼ 10−4 eV is by about three orders of magnitude
larger than the UCN energy K . Below [Eq. (17)] we will see
that, as p|| → 0, the neutron-He scattering rate wvap remains
finite, and we can neglect p||/P � 1 in the calculation of
this rate.

The scattering rate of a neutron with initial in-plane
momentum p|| by a He atom with initial momentum P is given
by the Fermi’s golden rule [37]:

wP = 2π

�

∫
d3P′

(2π�)3

∫
V d3p′

(2π�)3
|Tif |2δ(ε − ε′). (14)

Here ε ≈ P 2/2M and ε′ = P ′2/2M + (p − p′)2
/2m are the

initial and final total energies of He-atom and neutron. We
now substitute Eq. (11) into Eq. (14). The integration over
p′ cancels δ(3)(�Ptot) in Eq. (11), where �Ptot ≈ P − P′ − p′.
After the integration over the angle φ between P and P′ we
obtain

wP =
∫

P ′2dP ′

2π�4

mU 2

PP ′

× θ

[
2PP ′ −

∣∣∣∣P 2

(
1 − m

M

)
+ P ′2

(
1 + m

M

)∣∣∣∣
]
. (15)

Since M ≈ 4m, Eq. (15) simplifies to

wP ≈
∫

P ′2dP ′

2π�4

mU 2

PP ′ θ [8PP ′ − 3P 2 − 5P ′2]. (16)

The integrand is nonzero when 3/5 < P ′/P < 1, thus defining
the range of integration in Eq. (16), i.e.,

wP =
∫ P

3P/5

P ′dP ′

2π�4

mU 2

P
= U 2Pm

2π�4

8

25
. (17)

Finally, to obtain the total scattering rate as a function of
temperature one has to integrate Eq. (17) over the initial He-
atom momentum P, weighted with the distribution function

1Since the chemical potential of liquid helium |μ| � kBT , the
Boltzmann distribution of He vapor almost coincides with the
Bose-Einstein distribution.
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FIG. 2. The calculated total scattering rate (solid line) of UCNs on
the liquid helium surface in inverse hours. The dotted and dashed lines
give the contributions due to helium vapor and ripplons, respectively.

NP of He vapor given by Eq. (12):

wvap(T ) =
∫

d3PNP

(2π�)3
wP = (MkBT )2

(π�)3

8mU 2

50�4
eμ/kBT . (18)

After substitution of Eq. (1) this gives the value of the neutron
scattering rate by He vapor as function of temperature:

wvap(T ) = 9.44 s−1 × (T [K])2 × exp

(−7.17

T [K]

)
. (19)

Lowering the temperature this scattering rate decreases faster
than exponentially, as illustrated in Figs. 2 and 3 at T > 0.7 K.
Numerical values wvap(1 K) ≈ 0.007 s−1 = (138 s)−1 and
wvap(T = 0.8 K) ≈ 7.74 × 10−4 s−1 = (21.53 min)−1 show,
that the break-even with neutron decay is reached slightly
above 0.8 K.

FIG. 3. The logarithm with base 10 of the calculated total
scattering rate of UCNs on the liquid helium surface.

IV. SCATTERING FROM SURFACE WAVES

A. General information about ripplons

A quantum of a surface wave (ripplon) with momentum q
induces a surface deformation along the z axis, given by

ξ (r‖,t) = ξ0q sin(qr‖ − ωqt). (20)

The dispersion relation of surface waves is given by [30,38]

ω2
q = α

ρ
(q2 + �2)q tanh(qd), (21)

where α ≈ 0.354 dyn/cm is the surface tension coefficient of
superfluid 4He, ρ ≈ 0.145 g/cm3 is its mass density, d is the
depth of the helium bath above a horizontal bottom wall, and
�2 = (g + f )ρ/α with an additional force f ∝ d−4 due to the
van der Waals attraction of helium to the bottom wall. The
ripplon amplitude ξ0q in Eq. (20), normalized to one ripplon
per surface area S, is given by2

ξ0q =
(

�q tanh(qd)

2S ρωq

)1/2

. (22)

For a helium bath (in fact already for a thick helium film),
� = √

gρ/α ≈ 20 cm−1. The thermal ripplons with energy
�ωq ≈ kB × 0.5 K have the wave number q ≈ 1.2 nm−1, for
which holds q � � and qd � 1. Then the dispersion relation
of ripplons is just the dispersion of capillary waves:

ωq ≈
√

α/ρq3/2, (23)

and their amplitude

ξ0q ≈
(

�

2S
√

ραq

)1/2

. (24)

At large wave vector q � 10 nm−1 the ripplon spectrum
softens [40] as compared to Eq. (23), but we do not reach this
limit because the thermal ripplons at temperature T < 1 K
have smaller q.

B. Interaction Hamiltonian

To determine the influence of a periodic surface deforma-
tion on the neutron quantum state on the surface we have to
separate two limits. The first, adiabatic limit occurs when the
surface oscillates so slowly that the neutron wave function
adjusts to the instantaneous surface profile. The interaction
potential in this limit is found in Appendix B, see Eq. (B8),
and can be rewritten as

Ĥint = ξ (r‖,t)
{[

(p̂‖ + p̂q)2 − p̂2
‖

2m
− �ωq

]
∂

∂z
+ mg

}
, (25)

where p̂‖ = −i�∇‖ and p̂q = �q are the momentum operators
of the neutron and ripplon along the surface, respectively. This
interaction term generalizes Eq. (7) of Ref. [28], because it

2Equation (22) can be obtained [30,39] by equating the energy of a
classical surface wave with the wave number q and amplitude ξ0q on
the area S, given in §12, 25, 62 of Ref. [38], to the energy �ωq of one
ripplon.
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does not exclude coordinate-dependent surface perturbations.
The expression in the square brackets in Eq. (25) is just the
transfer of the total (neutron+ripplon) kinetic energy to the
final neutron kinetic energy along the z axis.

The opposite, antiadiabatic or diabatic limit occurs when
the surface oscillates much faster than the characteristic
frequency of the out-of-plane neutron motion, so that the
neutron wave function does not adjust to the instantaneous
surface profile. In this limit a surface wave affects the neutrons
by creating an additional time- and coordinate-dependent
periodic potential

Vr (r‖,z) =
{

V0 at 0 < z < ξ (r‖,t) for ξ (r‖,t) > 0

−V0 at ξ (r‖,t) < z < 0 for ξ (r‖,t) < 0
.

(26)
The ripplon amplitude, given by Eqs. (22) or (24), for any
reasonable value of S is much less than the atomic scale and,
even more, than the typical scale of the neutron wave function,
given by κ−1

0 ≈ 33 nm at z < 0. Therefore, the potential in
Eq. (26) can be approximated by

Vr (r) ≡ Vr (r‖,z) ≈ V0ξ (r‖,t)δ(z). (27)

C. Crossover between adiabatic and diabatic
limits and matrix elements

The adiabatic-diabatic crossover, corresponding to a change
of the ripplon-neutron interaction Hamiltonian from Eq. (26)
to Eq. (25), must take place when the ripplon frequency
ωq and the wave vector q decrease. However, the estimate
of the crossover frequency ωqc and the description of the
system in the crossover regime is not a trivial problem. A
similar problem occurs in other condensed-matter systems and
requires a special theoretical study (see, e.g., Refs. [41–45]).

One may, naively, define the crossover as the region
where the ripplon frequency becomes comparable to the
quasiclassical bouncing frequency of a neutron in the ground
level in z direction, i.e., when the ratio �ωq/E0 ∼ 1, where E0

given by Eq. (9). This corresponds to the ripplon frequency

ωqc ∼ E0/� = 915 s−1, (28)

and to the wave number qc ≈ (ω2
qcρ/α)

1/3 = 70 cm−1 > �.
However, such an estimate of the adiabatic-diabatic crossover
has an important drawback: it does not depend on the value
V0 of the neutron potential of the helium mirror. Generally,
we expect that for V0 → 0 and for nonzero q and ωq one can
always apply Eq. (26), and for V0 → ∞ one can always apply
Eq. (25), which contradicts Eq. (28). The classical definition of
the adiabatic-diabatic crossover, given by Eqs. (C5) and (C6)
in Appendix C, has the same drawback.

A rigorous analysis of the adiabatic-diabatic crossover
should be based on the solution of the Schrödinger equation for
a neutron in the time-dependent potential given by Eqs. (B1)
and (B2). One may approximately determine the criterion of
adiabatic-diabatic crossover from the variational principle to
minimize the neutron energy. This approach would be strict for
a time-independent potential, while for a potential periodic in
time it is approximate. The lowest-level out-of-plane neutron
wave function adjusts to minimize the neutron energy. In

the adiabatic limit the energy loss/gain is the kinetic and
gravitational energy from Eq. (25), while in the diabatic
limit it is the potential energy from Eq. (26). The first-order
correction �(1)En to the neutron energy is given by the
diagonal matrix elements of these two interaction potentials. If
these diagonal matrix elements are nonzero, their comparison
gives the crossover frequency. If these matrix elements vanish
in the first order in ξ , one needs to calculate and compare the
second-order corrections, which also include the nondiagonal
matrix elements.

Since
∫ ∞
−∞ dzψ∗

⊥0(z)∂ψ⊥0(z)/∂z = 0, and also
∫

ξ (r‖,t)
d2r|| = 0, the first-order (in ξ ) diagonal matrix element of
the adiabatic Hamiltonian in Eq. (25) vanishes. So does the
diagonal matrix element of the diabatic Hamiltonian in Eq. (26)
in the first order in ξ , if p|| �= �q. Hence, to calculate the
crossover frequency one needs to calculate the second-order
energy corrections, which do not vanish. These corrections are
determined, in particular (but not only), by the matrix elements
of the neutron-ripplon interaction potentials in Eqs. (25)
and (26). Therefore, for an estimate of the position (ripplon
frequency) of the adiabatic-diabatic crossover the comparison
of the matrix elements, given below, is more accurate than just
the comparison of ripplon frequency with E0/�.

A rough estimate of the crossover between the diabatic
and adiabatic limits is given by the ripplon frequency when
two interaction Hamiltonians, given by Eqs. (26) and (25),
become of the same order of magnitude. More precisely,
we compare their matrix elements for the neutron transitions
between lowest energy levels of their motion in z direction.
Thus defined, the adiabatic-diabatic crossover depends on V0

and meets other general requirements, such as the adiabatic
limit for ωq,q → 0. The matrix element Tif of the diabatic
interaction potential in Eq. (27) for the transitions between two
neutron states with initial wave function ψ⊥(z) and final wave
function ψ ′

⊥(z), written explicitly in Eqs. (4)–(7), is given by

Tif =
∫

d3r
S

ψ⊥(z)ψ ′∗
⊥ (z) exp

(
ir||

p|| − p′
‖

�

)
V0ξ (r‖)δ(z).

The integral over z cancels δ(z), while after substituting
Eq. (20) the integration over r|| gives (2π�)2δ(2)(�ptot||), where
�ptot|| = �q + p|| − p′

‖ is the change of the total in-plane mo-
mentum of the ripplon+neutron system. As a result we obtain

Tif = V||V0,n . (29)

The factor

V|| = S−1(2π�)2δ(2)(�ptot||) (30)

is due to the in-plane part ψ‖(r||) of the neutron wave function,
given by Eq. (5), and

V0,n = V0ξ0qψ
∗
⊥0(0)ψ⊥n(0) (31)

comes from its out-of-plane part ψ⊥(z). The squared modulus
of the matrix element in Eq. (29) follows as

|Tif |2 = (2π�)2δ(2)(�ptot||)
S

∣∣ψ⊥(0)ψ ′∗
⊥ (0)V0ξ0q

∣∣2
, (32)

where we again have used Eq. (A6).
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The matrix elements of the adiabatic interaction potential
in Eq. (25) for ξ (r‖,t) given by Eq. (20) are

Ĥk,n = V||ξ0q(Ek − En)Qk,n, (33)

where V|| is again given by Eq. (30), and

Qk,n =
∫ ∞

0
dzψ∗

⊥k(z)
dψ∗

⊥n(z)

dz
. (34)

The first values of Qk,n are quoted in Table I of Ref. [28],
e.g., Q0,1 = 0.09742 μm−1, Q0,2 = −0.05355 μm−1, Q0,3 =
0.03831 μm−1, Q0,4 = −0.0304 μm−1. Substituting these
values we obtain for the first levels the ratio V0,n/Ĥ0,n ≈ 1
at

ωqc ≈ 103 s−1. (35)

By chance, the adiabatic-diabatic crossover condition, defined
as V0,n ∼ Ĥ0,n, is close to the value quoted in Eq. (28).

Below, we consider the neutron-ripplon interaction in the
diabatic limit, corresponding to the ripplon frequency ωq >
ωqc and the interaction potential given by Eq. (27), because it
deals with much larger phase space of ripplons and because, as
we will see later, the main contribution to the neutron-ripplon
scattering rate comes from the ripplons with energy �ωq ∼
V0 � �ωqc, which corresponds to the far diabatic limit. Thus
the final result is not sensitive to the value of the crossover
frequency. Naturally our discussion of the crossover between
adiabatic and diabatic limit is simplified and restricted to the
lowest order. While this is an interesting general question,
which clearly merits further discussion, we will not pursue
the issue further here, as we shall only work in the diabatic
limit. We remark that in discussions of the effects of driven
oscillations of the interface of solid substrates, the opposite,
adiabatic, limit is used as it is appropriate because of the large
amplitudes and very low frequencies.

D. Absorption of ripplons

The scattering rate wrip of a neutron with initial in-plane
momentum p|| on ripplons is determined by two processes:
the absorption and the emission of a ripplon with wave vector
q and energy �ωq ,

wrip = wabs + wem. (36)

Since for typical 4He temperatures kBT is much larger than
the initial neutron energy K , the populations of ripplon states
within the relevant energy range are Nq � 1 or even Nq � 1.
The phase volume of an absorbed ripplon is much larger than
that of an emitted ripplon, because the energy of the latter is
limited to the initial kinetic energy of the neutron, K � kBT .
Hence, one could expect that the ripplon-neutron scattering
rate is dominated by ripplon absorption, so that wrip ≈ wabs.
However, because of a low-energy divergence of wrip (see
below), the emission of low-energy ripplons with energies
�ωqc < �ωq � K may also be important, and we therefore
consider both these processes.

The absorption scattering rate wabs of a neutron with initial
in-plane momentum p|| in the discrete vertical level with

energy E0 is given by the Fermi’s golden rule,

wabs = 2π

�

∫
NqSd2pq

(2π�)2

∫
Sd2p′

‖
(2π�)2

∑
n

|Tif |2δ(ε − ε′),

(37)
where pq ≡ �q is the ripplon momentum, and p′

‖ = p‖ + pq

and n are the in-plane momentum and out-of-plane quantum
number of the final neutron state, respectively:

Nq = [exp(�ωq/kBT ) − 1]−1 (38)

is the Bose distribution function of ripplons with energy �ωq

and with zero chemical potential. The matrix element |Tif | is
given by Eq. (32) and the initial total energy by

ε = �ωq + p2
‖/2m + E0. (39)

The final energy ε′ = p′2
‖ /2m + En, after using the in-plane

momentum conservation expressed by the δ function in
Eq. (32), can be rewritten as

ε′ = p2
‖ + p2

q + 2pqp‖ cos φ

2m
+ En, (40)

where φ is the angle between p‖ and pq . The integration over
the component p′

‖ of the final neutron momentum parallel to
the surface cancels the δ function in Eq. (32). After substitution
of Eqs. (32), (39), and (40) to Eq. (37) we obtain

wabs =
∫

NqSpqdpqdφ

2π�3

∑
n

∣∣ψ⊥0(0)ψ∗
⊥n(0)V0ξ0q

∣∣2

×δ

(
�ωq − �En − p2

q + 2pqp‖ cos φ

2m

)
, (41)

where �En = En − E0 ≈ En is the change of the out-of-plane
neutron energy after the ripplon absorption. The integration
over φ cancels the δ function in Eq. (41) and gives

wabs =
∫ ∞

0

NqSpqdpq

π�3

∑
n

∣∣ψ⊥0(0)ψ∗
⊥n(0)V0ξ0q

∣∣2√
a2 − (b − �En)2

, (42)

where a ≡ p‖pq/m and b ≡ �ωq − p2
q/2m.3 We estimate this

integral in Appendix D. This calculation gives an upper bound
of wabs [see Eqs. (D11), (D17), and (D21)]:

w
up
abs ≈ wup

> + wup
< + w

up
� ≈ 7 × 10−5 × T [K] s−1. (43)

This corresponds to a mean neutron scattering time due to
ripplon absorption of τrip > 4 h even at T = 1 K.

E. Emission of ripplons

The rate of emission of a ripplon by a surface-state neutron
with momentum p‖ is again given by Fermi’s golden rule
in Eq. (37), but now p′ = p‖ − pq , the initial total energy is

3The integrand in Eq. (42) is real at b − a � �En � b + a.

The quantity b > a at p‖ < m
√

αq/ρ − �q/2, which for p2
‖/2m =

100 neV corresponds to q > p2
‖ρ/m2α ≈ 8 × 104 cm−1 and �ωq >

23 neV.
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ε ≈ p2
‖/2m, and the final total energy is

ε′ = p2
‖ + p2

q − 2pqp‖ cos φ

2m
+ En + �ωq.

The replacement Nq → Nq + 1 in Eq. (37) is not important,
because for ripplon emission Nq > K/kBT � 1. The matrix
element is given by Eq. (32). The integration over p′ and over
the angle φ between p‖ and pq is similar to that in Eq. (41)
and gives for the rate wem of ripplon emission

wem =
∫ pmax

em

0

SNqpqdpq

π�3

∑
n

∣∣ψ⊥(0)ψ ′∗
⊥ (0)V0ξ0q

∣∣2√
a2 − (b1 + �En)2

, (44)

where a ≡ p‖pq/m as in the previous subsection, and b1 =
�ωq + p2

q/2m. The integrand is real when 0 � �En ≈ En �
a − b1. This can be satisfied when a − b1 > 0, which for
p2

‖/2m = 100 neV gives pq < pmax
em = �qmax

em with qmax
em ≈

6.5 × 104 cm−1. The maximum value of a − b1 is ∼3 neV �
V0 = 18.5 neV. Hence, for the emission of ripplons, En � V0,
and we may use Eqs. (9), (10), and (D18). In addition, instead
of three intervals of parameters for the ripplon absorption, we
only need to consider one interval. Substituting Eqs. (23), (24)
and an upper bound of |ψ ′

⊥(0)|2 � |ψ⊥0(0)|2 to Eq. (44), also
changing the variable according to Eq. (D18), we obtain an
upper bound w

up
em for wem:

wup
em ≈

∫
kBT dpq

π2�2αpq

∣∣ψ2
⊥0(0)V0

∣∣2

g
√

2m

∫ a−b1

0

√
EndEn√

a2 − (b1 + En)2
.

(45)

This integral resembles the one in Eq. (D19): the only differ-
ence is the sign of En in the denominator and, consequently, a
different upper integration limit. We may give an upper bound
to this integral over En by replacing

√
En by its maximum

value
√

a − b1 in the integrand and by replacing the lower
limit by −b1, which gives

wup
em ≈

∫ pmax
em

0

kBT dpq

π�2αpq

∣∣ψ2
⊥0(0)V0

∣∣2

2g
√

2m

√
p‖pq

m
− �ωq − p2

q

2m
.

This integral converges. Neglecting p2
q/2m � �ωq and chang-

ing the integration variable to
√

pq we finally obtain

wup
em ≈ kBT

π�2α

∣∣ψ2
⊥0(0)V0

∣∣2

g
√

2m

2

3

(
p‖
m

)3/2
√

ρ�

α
. (46)

The rate of ripplon emission depends on the initial neutron
momentum p‖. At K = p2

‖/2m = 100 neV Eq. (46) gives

wup
em ≈ 2 × 10−5 s−1 × T [K]. (47)

Combining Eqs. (43) and (47) we obtain an upper bound for the
total scattering rate of a surface neutron in the lowest energy
level E0 by ripplons:

wup
rip = w

up
abs + wup

em ≈ 9 × 10−5 s−1 × T [K]. (48)

This rate corresponds to a mean neutron scattering time due to
the ripplons of τrip > 3 h even at T = 1 K.

V. OTHER NEUTRON SCATTERING PROCESSES

The scattering of ultracold neutrons inside superfluid he-
lium by bulk phonons has been studied in Ref. [46]. There, two
main processes were identified: (i) one-phonon absorption and
(ii) one-phonon absorption combined with emission of another
phonon due to the cubic term in the phonon Hamiltonian. The
second process was found to dominate at low temperature,
resulting in a total scattering time of about τph0 = 100 s for
a neutron propagating through liquid 4He at T = 1 K. In our
case both scattering processes are weakened by the factor∫ 0

−∞
ψ2

⊥(z)dz = ψ2
⊥(0)/2κ ≈ 1.16 × 10−7,

because only a small part of the neutron wave function pene-
trates into the liquid helium. Hence, for helium temperatures
below 1 K, the neutron scattering time constant due to bulk
phonons, τph ≈ τph02κ/ψ2

⊥(0) � 109 s, is extremely long and
can safely be ignored.

Recently, another type of surface excitation was proposed
semiphenomenologically [47]. These excitations, called sur-
fons, can be considered as 4He atoms in a quasistation-
ary discrete quantum energy level above the liquid 4He
surface [47–49], which is somewhat similar to Andreev
states [50] of 3He atoms above liquid 4He. Surfons may
affect surface electrons [51,52], but so far they received
neither direct experimental confirmation, nor substantiation
from the numerical calculations [53] of excitations inside
liquid 4He. As compared to the vapor-neutron interaction,
the surfon-neutron interaction contains an additional small
factor ∼z0ψ

2
⊥(0) ∼ 3 × 10−5 due to the small overlap of the

neutron and the surfon wave functions. In addition, at low
temperature, T � 0.6 K, the neutron scattering on surfons
becomes suppressed exponentially, because of the finite surfon
activation energy �s0 ≈ kB × 2 K [48], while the ripplons
are gapless. Therefore, at any temperature the contribution to
neutron scattering rate wsur from surfons is much less than the
scattering rate either on He vapor or on ripplons, as can be
checked by direct calculation (see Ref. [54] for details):

wsur � (MkBT )3/2a2
He

�2m

∣∣ψ2
⊥0(0)

∣∣√1.6 π

5
exp

(−�s0

kBT

)

≈ 4 × 10−8 exp

(−�s0

kBT

)
× T 3/2[K] s−1. (49)

Hence, the total scattering rate wtot of UCNs on the liquid
helium surface is determined by the helium vapor at high
temperatures T � 0.65 K, and by ripplons at low temperatures
T � 0.65 K. It is plotted as function of temperature in Figs. 2
and 3.

VI. SKETCHES OF EXPERIMENTAL
IMPLEMENTATIONS, SUMMARY, AND DISCUSSION

The main motivation for the theoretical work presented
in this paper is the perspective to perform a high-precision
study of the level scheme of the neutron in the gravitational
potential above a large liquid mirror. This gives access to
short-range, gravitation-like interactions between the neutron
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and the mirror currently investigated with comparatively
small solid mirrors. In this section we sketch some of the
experimental techniques to be developed to take full advantage
of a large liquid surface for advancing this study. The system
might also serve for detection of tiny energy transfers due
to helium-intrinsic or external perturbations. The practical
implementation is in line with current work on new UCN
sources at the ILL [55–57] which involves cooling many liters
of ultrapure, superfluid helium below 0.7 K. This development
had been started at the TU Munich [58,59] and builds on
theoretical work by Golub and Pendlebury on superthermal
UCN production via down-scattering of cold neutrons in
superfluid helium [60,61].

An important point to be addressed concerns the population
and detection of the neutron quantum states above a superfluid-
helium mirror (called the “lake” in what follows), noting that
one has to confine the liquid and cope with a meniscus at
the border of the container. In the traditional “flow-through”
scheme of current experiments the neutrons enter a mirror
table with an absorbing ceiling from one side and are detected
on the other side. For a liquid mirror, neutrons will then have
to enter and exit the lake through a thin, weakly absorbing
foil with low (or negative) neutron optical potential. As an
alternative method we propose to take advantage of magnetic
field gradients for deceleration of neutrons approaching the
horizontal mirror located at z = 0. Neutrons with magnetic
moment μn in a magnetic field with modulus B have a potential
energy of ±|μn|B, with sign depending on the spin state with
respect to the field direction. The upper (lower) sign refers to
those neutrons which become repelled (attracted) by a positive
gradient of magnetic field modulus. They are correspondingly
called low-field (high-field) seekers. Note recent experimental
demonstrations of trapped high-field seeking UCNs [62,63].
A magnetic field modulus B(z) = Cz, for instance with
constant gradient C > mg/|μn| ≈ 1.66 T/m overcompensates
gravitation for the high-field seeking neutrons. Those with
vertical kinetic energy E⊥ = (|μn|C − mg)h at height h will
thus be slowed down completely when arriving at the mirror.
This situation is analog to a neutron rising in the earth’s
gravitational field to its apogee. If, alternatively, we want to
decelerate the low-field seeking neutrons, the gradient has to
be inverted, and hence the strongest field needs to be located
at the surface. While the neutron is close to the lowest point
of its trajectory, the magnetic field gradient nearby the mirror
needs to be switched off. A vertical, straight neutron guide
ending closely above the mirror will limit the spatial region
where the fields need to be provided. Quantum states may be
prepared using a circular absorber with a central hole for the
neutron-feeding pipe and mounted with variable distance of
some tens of μm above the lake. An obvious benefit of the
magnetic population method is a possible neutron detection
acceptance angle over the full range of 2π .

Compared with a flow-through experiment, the sensitivity
of the energy state determination may be drastically improved
using lateral UCN trapping prior to detection, ideally for many
hundreds of seconds. A multipolar magnetic field, much wider
than the system described in Ref. [64] and oriented vertically,
may keep low-field seeking neutrons away from the liquid
meniscus at the container wall without modification of the

vertical neutron state. To populate the lake with high-field
seeking neutrons, their spin has to be flipped after arrival at
the surface and prior to their arrival in the region of strong
multipolar field. This can be done using standard magnetic
resonance techniques. Neutrons can still be detected through
the side walls of the helium container, requiring switching-off
of the magnetic fields (or a spin flip to turn the trapped low-field
seeking neutrons into high-field seekers to accelerate them
through gaps in the magnetic fence). Alternatively, we may
let them rise back to the entrance of the neutron guide by
switching on again the magnetic field gradient used for lake
population.

Next, we discuss a possible further improvement of the
lake population technique sketched above. Note first that in
a straight guide most of the neutrons will perform many
reflections on their way to the lake. Even a small nonspec-
ularity in the reflection may then become an issue. Much
better conditions can be provided using a nonimaging neutron
optical device proposed by Hickerson and Filippone [65]. They
describe a compound parabolic concentrator (CPC) for neu-
trons rising from a Lambertian horizontal disk source upwards
against the gravitational field. Its neutron-optical properties are
based on the “neutron fountain” [66] valid for constant force
fields along the symmetry axis of a parabolic reflecting surface.
Using the aforementioned constant magnetic field gradient for
lake population, neutrons will approach the surface with a
constant deceleration a = C/m − g. We may thus apply the
CPC inverted in space with the neutron source (an aperture
with radius R) located at height h above the lake (replacing
the straight neutron guide of the scheme discussed before).
According to the formulas given in Ref. [65], neutrons starting
there at time t = 0 and with speed v0 will, after a time
T = vR/a (where vR =

√
v2

0 + 2aR) and with typically fewer
than two reflections, arrive within a narrow band of heights
0 � z < R above the horizontal mirror. The spread of total
kinetic energy within the ensemble of UCNs is then only
�E ≈ maR/3 and independent of v0. After switching off the
field gradient, the neutrons close to the mirror will thus move
with much reduced velocities compared to the traditional beam
method. Hence even without lateral trapping, state population
via a CPC will increase the time during which the neutron
interacts with the mirror and lead to a corresponding gain
in accuracy. A CPC will be most beneficial at a pulsed UCN
source, preferably in combination with a rebunching technique
as demonstrated in Ref. [67], which therefore works best in
combination with UCN trapping. We note that the very low
lateral neutron velocities allow for quite modest magnetic
trapping fields, which makes it easy to provide large openings
for neutron detection in the magnetic fence. Obviously, a CPC
might also be used for a sufficiently large conventional mirror.

Further investigations are needed to clarify possibilities
of neutron manipulation in the presence of a liquid surface.
An interesting question is if one can induce transitions,
in a controllable way, between levels by vibration of the
helium surface. Further possibilities to create a flat mirror
of large surface should be investigated as well, such as
“Fomblin” oil (a fluorinated, organic compound with low
neutron absorption, already tested as part of an optical system
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for a new measurement of neutron charge [68]), or liquid or
solid neon.

To summarize the theoretical work presented in this
paper, we have calculated the temperature-dependent rates
of scattering of neutrons propagating in low gravitationally
bound states above a neutron optical mirror of superfluid
helium. Below about 0.8 K the scattering rate becomes smaller
than the neutron β-decay rate. This finding is encouraging for
using such a system in studies of the quantum states sketched
in Fig. 1. The effect that dominates down to about 0.65 K
is scattering by vapor atoms, whereas at lower temperatures
interactions with ripplons take over, as was shown in Figs. 2
and 3. Other processes such as neutron interaction with bulk
phonons or with surfons turned out to be negligibly small.

The reason why the neutron-ripplon scattering becomes
dominant at lowest temperatures is the linear temperature
dependence of this effect [see Eq. (48)]. Since at 0.6 K
the scattering rate is already 50 times smaller than the
neutron decay rate, it will be completely insignificant for
precision studies of the level scheme. When considering
neutron lifetime measurements using the storage of UCNs by
the neutron optical potential of liquid helium [69,70], however,
the scattering rate cannot be neglected. What is helpful is
that the main contribution to the scattering rate is due to the
low-energy part of the ripplon spectrum, where the dominant
energy transfers will be only a few peV. Such transfers are
usually insufficient to cause a neutron to penetrate through the
liquid helium and thus leave the system. At 0.6 K, therefore,
the mean escape time of a UCN with initial kinetic energy
K < V0 could be longer than the neutron β-decay lifetime
by several orders of magnitude. For highest reliability the
neutron spectrum should be prepared with a gap between its
upper cut-off and V0. It should also be noted that the value
V0 = 18.5 neV for superfluid helium is small compared to
�100 neV for conventional materials used for neutron bottles.
Counting statistics might therefore become a limiting issue.
Nonetheless, a neutron lifetime measurement employing a
trap involving a horizontal surface of superfluid helium seems
an interesting complement to projects employing magnetic
neutron traps. While these possess typical trapping potentials
for low-field-seeking neutrons in the range (50–120) neV and
completely avoid wall collisions of truly trapped neutrons,
other systematic effects such as marginally trapped neutrons
and depolarization need to be carefully addressed [71–78]. We
note Refs. [79,80] for recent reviews and discussion of the
neutron lifetime problem.
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APPENDIX A: MATRIX ELEMENTS
OF THE INTERACTION BETWEEN

A NEUTRON AND HE VAPOR ATOM

The initial neutron wave function is given by Eqs. (4), (5),
and (7). Since the typical neutron out-of-plane kinetic energy

after scattering by a He atom of the vapor is much larger than
E0, and mostly even larger than V0 given in Eq. (2), the final
neutron wave function is close to the three-dimensional plane
wave with momentum p′, normalized to one particle in the
whole volume V :

ψ ′ = exp(ip′r/�)/
√

V . (A1)

The initial He-atom wave function is � = exp (iPr/�), and
the final He wave function is � ′ = exp (iP′r/�). The matrix
element of the interaction potential (1) is given by

Tif =
∫

d3r ψ⊥0(z)ψ‖(r||)ψ ′(r)

×
∫

d3R exp

(
i(P − P′)R

�

)
U δ(3)(r − R)

= U

∫
d3R√
SV

ψ⊥0(zHe) exp

(
i�PtotR

�

)
, (A2)

where �Ptot ≈ P − P′ + p|| − p′ is the change of total mo-
mentum, R is the coordinate of the He nucleus, and ψ⊥0(z) =
C0 Ai[(z − E0/mg)/z0] according to Eq. (7). Introducing
ũ ≡ z/z0 and performing the integration over d2R‖ in Eq. (A2)
using the identity∫

d2R‖ exp(i�Ptot‖R‖/�) = (2π�)2δ(2)(�Ptot||), (A3)

one can rewrite Tif as

Tif = U (2π�)2δ(2)(�Ptot||)√
SV/z0

I, (A4)

where the remaining integral is

I ≡ 1.4261
∫ ∞

0
dũ Ai(ũ − α1) exp

(
i�pz ũ

�/z0

)
.

We calculate this integral approximately by replacing the
normalized Airy function f (ũ) ≡ 1.4261Ai(ũ − α1) by a
simpler form, also normalized, that is a close approximation,
i.e., f (ũ) ≈ exp [−(ũ − ũ0)2/2]/π1/4, where ũ0 ≈ 1.5. Then,

I =
∫ ∞

0
dũ f (ũ) exp

(
i�pz ũ

�/z0

)

≈ π1/4
√

2 exp

[
i�pz ũ0

�/z0
− 1

2

(
�pz

�/z0

)2]
. (A5)

Below we need only the square of the absolute value of the
matrix element Tif . The square of the δ function in |Tif |2
should be treated as

[(2π�)2δ(2)(�Ptot||)]2 = S(2π�)2δ(2)(�Ptot||), (A6)

because it comes from the extra integration over the coordinate
ri||:

∫
d2ri‖ = S. Indeed, substituting Eq. (A3) to the left-hand

side of Eq. (A6) we obtain

(2π�)2δ(2)(�Ptot||)
∫

d2ri‖ exp

(
i�Ptot‖ri‖

�

)

= (2π�)2δ(2)(�Ptot||)
∫

d2ri‖ = S(2π�)2δ(2)(�Ptot||).
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Substituting Eq. (A5) to Eq. (A4) and using Eq. (A6), we obtain

|Tif |2 ≈ U 2 (2π�)3δ(2)(�Ptot||)
V

√
π�/z0

exp

[
−

(
�pz

�/z0

)2]
.

Since �/z0 � P , using the identity

δ(x) = lim
ε→0

[
1

ε
√

π
exp

(
− x2

ε2

)]
,

we obtain Eq. (11) for |Tif |2.

APPENDIX B: DERIVATION OF THE NEUTRON-RIPPLON
INTERACTION IN THE ADIABATIC APPROXIMATION

The Schrödinger equation for a neutron is given by

Ĥψ(r,t) = i�∂ψ(r,t)/∂t, (B1)

where the Hamiltonian

Ĥ = K̂ + V̂ = −�
2�̂

2m
+ mgz + V0θ [−z + ξ (r‖,t)] (B2)

contains the neutron kinetic energy K̂ = −�
2�̂/2m and the

potential energy V̂ = mgz + V0θ [−z + ξ (r‖,t)]. The latter
contains the effects of the Earth’s gravitational field and the
potential wall due to the liquid helium, as shown in Fig. 1.
The difference from Eq. (3) is that the liquid helium has now a
time- and space-periodic boundary ξ (r‖,t) given by Eq. (20).
The difference between Eq. (B2) and Eq. (4) from Ref. [28] is
that the surface has now a periodic spatial dependence.

The adiabatic adjustment of the neutron wave function to
the new surface profile means that the neutron wave function,
in first approximation, adiabatically shifts in z direction by
the length ξ (r‖,t): ψ(r,t) → ψ̃(r + ξ (r‖,t) ẑ,t), where ẑ is the
unitary vector in z direction. This shift can be written via the
translation (z-shift) operator

T̂z(ξ ) = exp[ξ (r‖,t)∂/∂z] = exp[iξ (r‖,t)pz/�].

Its action on the wave function is

T̂z(ξ )ψ⊥(z) = ψ⊥(z + ξ ).

We also define a new wave function

ψ̃(r + ξ ẑ,t) = ψ(r,t) = T̂z(ξ )ψ̃(r,t),

which after substitution into Eq. (B1) gives a new Schrödinger
equation for ψ̃(r,t):

Ĥ T̂z(ξ )ψ̃(r,t) = i�∂(T̂z(ξ )ψ̃(r,t))/∂t. (B3)

The action of the shift operator on the potential energy function
V (r) is given by

V (r)T̂z(ξ ) = T̂z(ξ )V (r − ξ (r‖,t) ẑ), (B4)

while for the commutator with kinetic-energy operator K̂ =
−�

2�̂/2m we have

K̂T̂z(ξ ) − T̂z(ξ )K̂ = −�
2

m
(∇2eξ (r‖,t)∂/∂z − eξ (r‖,t)∂/∂z∇2)

= 2p̂‖p̂q + p̂2
q

2m
ξ (r‖,t)

∂

∂z

= (p̂‖ + p̂q)2 − p̂2
‖

2m
ξ (r‖,t)

∂

∂z
, (B5)

where p̂‖ = −i�∇‖ and p̂q = �q are the neutron and the
ripplon momentum operators along the surface, respectively.
The time-dependence of ξ (r‖,t) also gives an additional term
on the right-hand side of Eq. (B3):

i�
∂

∂t
(T̂zψ̃(r,t)) = i�

T̂z∂ψ̃(r,t)
∂t

+ i�
∂T̂z

∂t
ψ̃(r,t)

= i�
T̂z∂ψ̃(r,t)

∂t
+ �ωqξ (r‖,t)

∂

∂z
T̂zψ̃(r,t).

(B6)

Combining Eqs. (B3) and (B6) we obtain a new Schrödinger
equation,

T̂z{Ĥ0 + Ĥint − i�∂/∂t}ψ̃(r,t) = 0, (B7)

where Ĥ0 is given by Eq. (3) and the interaction term is given
by

Ĥint = ξ (r‖,t)
{[

2p̂‖p̂q + p̂2
q

2m
− �ωq

]
∂

∂z
+ mg

}
. (B8)

APPENDIX C: CROSSOVER BETWEEN ADIABATIC
AND DIABATIC LIMITS IN CLASSICAL PHYSICS

For a classical particle above the surface in the limit
V0 → ∞ the crossover between diabatic and adiabatic limits
occurs when the maximal acceleration of the helium surface
∂2ξq/∂t2 = ω2

qξq , due to its oscillatory motion, becomes equal
to the free fall acceleration g,

ω2
qcξq = g. (C1)

The classical amplitude ξq of the surface oscillations with wave
vector q differs from ξ0q in Eq. (24) by the square root of the
Bose distribution function Nq given by Eq. (38):4

ξq = √
Nqξ0q ≈ ξ0q

√
kBT/�ωq. (C2)

In addition, ξ0q in Eq. (24) depends on the surface S, which
must be defined. In the formulas for the neutron scattering rate
by ripplons this surface-dependence is unphysical and does
not occur explicitly, because the S dependence of the ripplon
amplitude in Eq. (24) is compensated by the S dependence of
the ripplon density of states (see below). Similarly, the total
mean square amplitude of thermal surface oscillations at any
point r‖ is given by the sum over all q vectors,

〈ξ 2(r‖)〉 =
∑

q

ξ 2
q =

∫
Nqξ

2
0q

Sd2q
(2π )2

,

and the surface area S drops out. More generally, if we are
interested in the surface waves with the wave number q in some
interval �qx�qy , then we sum all ripplon modes in the phase
volume S�qx�qy , and the surface area S again drops out from
the total 〈ξ 2〉. In the estimate (C1) for the adiabatic-diabatic

4The thermally excited ripplons are not coherent, therefore the
population factor Nq increases the mean energy of the surface wave
by Nq times, not the amplitude of thermal ripplons, which is increased
only by

√
Nq times.
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crossover the surface S is defined by the area Sn of the neutron
wave function along the surface, which corresponds to the
momentum smearing �qx�qy ∼ S−1

n .
For a lower estimate of the classical crossover frequency

ωqc, we take the minimal possible S given by the square of the
wave length: Smin ≈ (2π/q)2. Then, substituting it to Eq. (24),
we have

ξmax
0q ≈

(
�q2

8π2 √
ραq

)1/2

= q3/4

2π

(
�/2√
ρα

)1/2

. (C3)

For q = 1 μm−1 = 104 cm−1 this formula gives ξmax
0q ≈ 7 ×

10−5 nm, which is much less than q−1. The corresponding

ξmax
q ≈ ξmax

0q

√
kBT

�ωq

= 1

2π

(
kBT

2α

)1/2

≈ 0.02 nm
√

T [K]

(C4)
is also much less than q−1, and we can apply the usual
surface wave description. Substituting Smin ≈ (2π/q)2 to
Eqs. (24), (C1), and (38) gives

g = ω3/2
qc

(
kBT q3/2

2(2π )2 √
ρα

)1/2

,

which, using Eq. (23), gives the lowest estimate for the
crossover frequency

ωqc =

√√√√2πg

√
2 α

kBT
≈ 6.6 × 105 s−1

(T [K])1/4
. (C5)

This frequency corresponds to the neutron energy (at T = 1 K)
�ωqc ≈ 7 × 10−22 erg ≈ 0.44 neV > E0 and to

qc = 0.56 μm−1 > �. (C6)

Hence, in the diabatic limit q > qc, and we can always use the
ripplon dispersion given by Eq. (23).

Another condition of the classical adiabatic limit is that
the curvature of the surface ∇2ξ = q2ξmax

q is less than the
curvature of the neutron trajectory due to the parabolic
free-fall motion ∂2z/∂r2

‖ = g/v2
‖ , where v‖ is the neutron

velocity along the surface. Taking a UCN kinetic energy of
K‖ = 100 neV, corresponding to v2

‖ = 2K‖/m = 19 m2/s2,
we can check that the condition q2ξmax

q < g/v2
‖ is fulfilled at

q = qc = 0.56 μm−1. Hence, the condition ωq < ωqc given
by Eq. (C5) ensures the classical adiabatic limit.

APPENDIX D: CALCULATIONS FOR THE NEUTRON
SCATTERING RATE DUE TO RIPPLON ABSORPTION

In this section we evaluate the integral in Eq. (41) or (42),
which gives the neutron scattering rate by ripplons. The
integration over pq and n in Eq. (41) can be separated
into several regions, given by different limits of the ratio
pq/p‖ and of the difference �En − V0. For �En < V0 the
final neutron vertical state belongs to a discrete energy
spectrum, approximately given by Eq. (9). For �En > V0 the
final neutron vertical state belongs to the continuous energy
spectrum and can approximately be taken as a plane wave.

In the region pq � p‖ the initial neutron kinetic energy
is negligible and, for the majority of the scattering events,
the change of the neutron out-of-plane kinetic energy �En >
V0. The integral in Eq. (41) is evaluated in this limit in
Appendix D1 below.

In the region of small ripplon momentum, pq � p‖, studied
in Appendix D2, the angle φ between the initial neutron and
ripplon momenta is important for the out-of-plane energy
transfer �En, and the scattering rate depends on the initial
neutron momentum p‖. Depending on the sign of the difference
�En − V0, this region is split into two. For �En < V0 the final
neutron state belongs to the discrete spectrum and is described
by the formulas in Sec. II. For �En > V0 the final vertical
neutron state belongs to the continuous spectrum and can be
approximated by Eqs. (D2) and (D3).

1. Absorption of thermal (high-energy) ripplons

In this subsection we consider the region of large momenta
pq � p‖ = √

2Km contributing to the integral in Eq. (41).
The in-plane kinetic energy K of ultracold neutrons is, usually,
less than K∗ = 100 neV, which corresponds to a maximal
initial neutron wave number q∗ = p‖∗/� = 0.07 nm−1 and to
a maximal neutron velocity v‖∗ = √

2K/m = 4.4 m/s. For
q = q∗ the ripplon energy, according to Eq. (23), is given by

�ωq∗ ≡ �ωq(�q = p‖∗) ≈ 600 neV � V0,K∗, (D1)

and the ripplon velocity is vq∗ = 3ωq∗/2q∗ ≈ 20 m/s.5 If a
ripplon with such a high energy is absorbed, the final out-
of-plane neutron energy En ∼ �ωq is much higher than the
potential barrier V0 = 18.5 neV. It is then reasonable to take
the final out-of-plane neutron wave function as a plane wave,

ψ⊥n(z) ≈ exp(ip′
zz/�)/

√
Lz. (D2)

Accordingly, the neutron out-of-plane energy can be approxi-
mated by the free-particle quadratic dispersion

En ≈ p′2
z /2m, (D3)

where p′
z is the component of the final neutron momentum

perpendicular to the surface. The sum over out-of-plane
neutron wave number n in Eq. (41) then becomes an integral
over p′

z: ∑
n

→
∫

ρn(p′
z)dp

′
z, (D4)

where the one-dimensional neutron density of states is given
by6

ρn(p′
z) ≈ Lz/2π�. (D5)

5The typical thermal ripplon has even larger energy �ωq ∼ kBT ≈
0.5 K, corresponding to the wave number q ≈ 1.2 nm−1 and the
velocity vq ≡ ∂ωq/∂q ≈ 82 m/s.

6Equations (D2)–(D4) can also be applied for smaller En if
p′

z = p′
z(z) is understood as a quasiclassical coordinate-dependent

momentum; then in Eq. (D3) one should take its value at z = 0, and
ρn(p′

z) differs from Eq. (D5) and depends on the actual spectrum.
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For scattering by thermal ripplons with q > q∗ the initial
neutron energy K ≈ p2

‖/2m and momentum p‖ < pq can be
neglected. Eqs. (39) and (40) then simplify to

ε ≈ �ωq ; ε′ ≈ (
p2

q + p′2
z

)
/2m. (D6)

Using Eq. (22), we rewrite Eq. (41) as (the lower index “>”
means large ripplon energy):

w> =
∫ ∞

�q∗

�|ψ⊥0(0)V0|2
2
√

ραq

Nqpqdpq

2π�2

×
∫ ∞

0

dp′
z

�2
δ

(
�ωq − p2

q + p′2
z

2m

)

=
∫ ∞

q∗

|ψ⊥0(0)V0|2
2π�

√
ρα

mNq
√

qdq√
2m�ωq − �2q2

. (D7)

The square root in the denominator is real at
2m�ωq = 2m�

√
α/ρq3/2 > �

2q2, which gives q < 4q0 ≡
(2m/�)2α/ρ ≈ 2.5 nm−1 and corresponds to the ripplon
energy �ωq < �ωq max ≈ �(2m/�)3(α/ρ)2 = 2 × 10−16 erg ≈
kB × 1.5 K � kBT . Above this energy the simple absorption
of a ripplon by a UCN in a surface state is impossible
because of the conservation laws for energy and momentum.
Substituting Eqs. (23) and (38) to Eq. (D7), and introducing
the dimensionless variable ζ ≡ �ωq/kBT , for which q =
(ζkBT

√
ρ/α/�)2/3, we obtain

w> = |ψ⊥0(0)V0|2
√

mkBT

3π�2α
√

2

∫ ζmax

ζmin

ζ−1/2dζ (eζ − 1)−1√
1 − (ζ/ζmax)1/3

,

(D8)

where ζmin = �ωq∗/kBT is given by Eq. (D1) and ζmax =
�ωq max/kBT = (2m)3(α/�ρ)2/kBT ∼ 1. The integration in
Eq. (D8) diverges as ζ

−1/2
min at the lower limit, and the main

part of the integral comes from this divergence:

w> ≈ |ψ⊥0(0)V0|2
√

mkBT

3π�2α
√

2
√

ζmin

. (D9)

Substituting the cutoff ζmin = �ωq∗/kBT given by Eq. (D1)
and other numerical values to Eq. (D9), we obtain the
contribution to the neutron scattering rate from the high-energy
ripplons with �q > p‖∗:

w> ≈ 1.7 × 10−6 s−1 × T [K]. (D10)

At smaller ripplon energy, i.e., at �q < p‖∗, the integral in
Eq. (41) must be estimated without the approximation in
Eqs. (D2)–(D6). In the next subsection we show that Eq. (D9)
overestimates the integral in Eq. (41) for �q < p‖, especially
for �ωq � V0 where the infrared divergence disappears.

At K∗ → 0, when the cutoff given by q∗ = �/p‖∗ is
too small, the infrared divergence in Eq. (D9) must be cut
off at ζmin ≈ V0/kBT , because the approximation given by
Eqs. (D2)–(D5) is not valid for lower ripplon energies, for
which the neutron state after the absorption still belongs to
the discrete spectrum along the z axis. A rough estimate of
the absorption rate of high-energy ripplons with �ωq > V0

can be obtained for small initial neutron energies K < V0 by

substituting ζmin ≈ V0/kBT to Eq. (D9):

wup
> ≈ w>(ζmin ≈ V0/kBT ) ≈ 10−5 s−1 × T [K]. (D11)

This estimate gives a neutron mean scattering time 1/w
up
> ≈

27 h, which is much greater than the intrinsic neutron lifetime.

2. Upper bound of the absorption rate of low-energy ripplons

For kBT � �ωq the ripplon population is given by Nq ≈
kBT/�ωq . Substituting Eqs. (23) and (24) into Eq. (42) we
obtain

w< =
∫ pmax

0

kBT dp2
q

4 π�αp2
q

∑
n

|ψ⊥0(0)ψ∗
⊥n(0)V0|2√

a2 − (b − En)2
. (D12)

a. Transitions to a continuous neutron spectrum

In this subsection we consider the case of final neutron ener-
gies En > V0 above the potential barrier and thus belonging to
a continuous spectrum. We may then apply the approximation
given by Eqs. (D2)–(D5) and rewrite Eq. (D12) as

w< ≈
∫ pmax

pmin

kBT dp2
q

4π�αp2
q

|ψ⊥0(0)V0|2
2π�

I, (D13)

where the integral

I ≡
∫

dp′
z√

a2 − (b − p′2
z /2m)2

=
∫ a+b

V0

√
m/2EndEn√

a2 − (b − En)2
.

(D14)

For b > a we may give an upper bound to this integral:

I < Imax =
√

m√
2V0

∫ b+a

b−a

dEn√
a2 − (b − En)2

= π
√

m√
2V0

.

(D15)

The corresponding upper bound of Eq. (D13) is

wup
< ≈ kBT |ψ⊥0(0)V0|2

√
m

4π�2α
√

2V0
ln

(
pmax

pmin

)
. (D16)

The interval of integration V0 � En � b + a in Eq. (D14)
is nonzero for b + a ≈ �ωq + p‖pq/m > V0, which for
p2

‖/2m = 100 neV corresponds to q > qmin ≡ pmin/� ≈ 4 ×
104 cm−1. Substituting also ψ⊥0(0) ≈ 0.236 cm−1/2 and
pmax = p‖∗ into Eq. (D16), we obtain

wup
< ≈ 7.3 × 10−6 ln(q∗/qmin) × T [K] ≈ 2 × 10−5 × T [K].

(D17)

b. Transitions to the discrete neutron levels

In this subsection we consider the case of final neutron
energies in the interval 0 < �En � V0 below the potential
barrier and approximately given by Eqs. (9) and (10). Since
V0 � E0, the sum over n in Eq. (D12) still includes many
terms and can be approximated by an integration over n for
n � 1. Equations (9) and (10) give En ≈ mgz0(3πn/2)2/3,
which can be rewritten as

n ≈ 2

3π

(
�En

mgz0

)3/2

= 2(�En)3/2

3πg�

√
2

m
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and gives

dn

dEn

=
√

En

πg�

√
2

m
. (D18)

We also use that |ψ∗
⊥n(0)| � ψ⊥0(0), and for an upper estimate

of Eq. (D12) we replace |ψ∗
⊥n(0)| by |ψ⊥0(0)| for En <

V0. Using Eq. (D18), we rewrite Eq. (D12) for �En < V0

as

w� ≈
∫ pmax

0

kBT dpq

π�2αpq

∣∣ψ2
⊥0(0)V0

∣∣2

πg
√

2m

∫ V0

0

√
EndEn√

a2 − (b − En)2
.

(D19)

This integral converges, with main contributions from En ∼
V0. An upper bound w

up
� of this integral can be obtained by

replacing
√

En by
√

V0 in the integrand and by extending the
integration region from (0,V0) to (a − b,a + b). This gives an

integral over En similar to Eq. (D15):

w
up
� =

∫ pmax

pmin

kBT dpq

π�2αpq

∣∣ψ2
⊥0(0)V0

∣∣2√
V0

πg
√

2m

×
∫ b+a

b−a

dEn√
a2 − (b − En)2

= kBT
∣∣ψ2

⊥0(0)V0

∣∣2√
V0

π�2αg
√

2m
ln

(
pmax V 0

pmin V 0

)
. (D20)

Since V0 > En and the integrand in Eq. (D19) is real for
b − a < En < b + a, the region of integration over En in
Eq. (D19) is nonzero if b − a ≈ �ωq − p‖pq/m < V0, which
for p2

‖/2m = 100 neV corresponds to pq < pmax ≈ �qmax V 0

with qmax V 0 = 1.57 × 105 cm−1. On the other hand, �En <
b + a can reach V0 if b + a ≈ �ωq + p‖pq/m � V0. For
p2

‖/2m = 100 neV this gives pq > pmin V 0 ≈ �qmin V 0 with
qmin V 0 = 3.8 × 104 cm−1. For pq < pmin V 0 the logarithmic
divergence disappears. Hence, using Eq. (D20) we obtain an
upper estimate of w�:

w
up
� ≈ 4 × 10−5 × T [K] s−1. (D21)
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