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Test of Lorentz invariance in β decay of polarized 20Na
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Background: Lorentz invariance is key in our understanding of nature, yet relatively few experiments have tested
Lorentz invariance in weak interactions.
Purpose: Our goal is to obtain limits on Lorentz-invariance violation in weak interactions, in particular rotational
invariance in β decay.
Method: We search for a dependence of the lifetime of 20Na nuclei on the nuclear spin direction. Such directional
dependence would be evidence for Lorentz-invariance violation in weak interactions. A difference in lifetime
between nuclei that are polarized in the east and west direction is searched for. This difference is maximally
sensitive to the rotation of the Earth, while the sidereal dependence is free from most systematic errors.
Results: The experiment sets a limit of 2 × 10−4 at 90% C.L. on the amplitude of the sidereal variation of the
relative lifetime differences, an improvement by a factor 15 compared to an earlier result.
Conclusions: No significant violation of Lorentz invariance is found. The result sets limits on parameters of
theories describing Lorentz-invariance violation.

DOI: 10.1103/PhysRevC.94.025503

I. INTRODUCTION

Lorentz symmetry implies that physical laws do not change
under boosts and rotations. The theory of general relativity and
the standard model of particle physics are both invariant under
Lorentz transformations. One of the frontiers of present-day
physics is to unify these theories. Some of the proposed models
allow for Lorentz-invariance violation (LIV) [1–3]. LIV is a
manifestation of CPT violation [4]. Weak interactions violate
the discrete symmetries C, P , CP , and T , suggesting the
relevance of searches for CPT violation and LIV in weak
interactions. Relatively few searches have been conducted [5].
The study of β decay can give a unique contribution [6–8].

We have performed a β-decay experiment that tests the
dependence of the lifetime of nuclei on their absolute orienta-
tion. Such dependence would indicate a violation of rotational
invariance, and therefore imply LIV. The present experiment
improves our earlier experiment [9] in terms of statistical
precision and systematic accuracy. The limit on a sidereal
variation of the lifetime has been decreased by one order
of magnitude. This limit can be expressed as limits on the
tensor that parametrizes LIV in weak decays [10]. The latter
also translates to limits on parameters of the standard model
extension (SME) [11]. We will use the theoretical framework
of Ref. [10] to relate our result to those obtained in other
experiments.
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II. PRINCIPLE OF THE MEASUREMENT

Consider a correlation between a preferred direction in
absolute space N̂ and nuclear spin �J . For a sample of atoms
this correlation can be expressed as

�

�0
= 1 + ξ n̂ · P Ĵ . (1)

Here n̂ is the direction N̂ transformed to the laboratory frame.
� is the LIV decay rate of polarized atoms and �0 the standard
model decay rate. The average nuclear polarization is P Ĵ . The
magnitude of LIV is ξ .

The experiment aims to measure precisely the difference
between the lifetimes for opposite polarization directions
(Ĵ+ = −Ĵ−), rather than the lifetimes themselves. This reduces
the sensitivity to systematic errors that are common to the two
lifetime measurements. The LIV observable we measure is
defined as

�LIV = τ− − τ+

2τ

1

Peff
= ξ n̂ · Ĵ+ , (2)

with τ the lifetime taken from literature [12]. The normal-
ization relative to 2τ instead off τ− + τ+ is done to avoid
dependence on common systematic errors. Peff is the effective
nuclear polarization. It gives the overall sensitivity of the
experiment, as discussed in Sec. IV C 1.

For Earth-based experiments

�LIV(t) = ξN1 cos θ cos(�t + φ) + ξN2 cos θ sin(�t + φ)

+ ξN3 sin θ, (3)

with N1,2,3 orthogonal projections of N̂ such that N1,2

lie in the equatorial plane. θ is the angle between the
polarization axis and the equatorial plane, � is the Earth’s
sidereal rotation frequency, and φ is a phase defining t = 0.
When the polarization direction is in the equatorial plane
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the sensitivity to LIV amplitudes ξN1,2 will be maximal
and the third term in Eq. (3) is zero. While Eq. (2) has
reduced sensitivity to experimental effects that are even in
Ĵ , it is sensitive to experimental imperfections which are odd
in Ĵ , in particular due to the parity-violating β decay. The
latter will cause a systematic offset in Eq. (3). The ability
to exploit the sidereal dependence to eliminate systematic
errors was, indeed, essential to the experiment, and will be
discussed in detail in Sec. IV. Because of this advantage, our
experiment limits LIV at a level close to the statistical limit
with a final result of |ALIV| = ξ

√
(N1)2 + (N2)2 < 2 × 10−4.

In our previous experiment the polarization was in the up-down
direction. Therefore, the sensitivity to ξN1,2 was reduced with
cos θ [see Eq. (3)], while the constant term ξN3 could not be
measured because of the aforementioned systematic offset.

III. EXPERIMENTAL SETUP AND PROCEDURES

A 20Ne beam of 20 MeV/nucleon from the AGOR cyclotron
was used to bombard a hydrogen-gas target producing 20Na at
forward angles with similar energy. The TRIμP dual separator
removes the primary beam giving a beam of radioactive
20Na [13] with 19Ne as main contaminant. The 20Na nuclei
are stopped in a cell filled with Ne buffer gas, where they
can neutralize to atoms [14]. The 19Ne stops in the gas-cell
window. Decay rates are measured by β and γ detectors (see
Fig. 1). The 20Na nuclei are polarized in either east (+) or west
(−) direction, using optical pumping. The lifetime is extracted
from the γ -decay rates for the two polarization directions. The
experimental method thus assumes that the electromagnetic
interaction is Lorentz invariant.

A. Nuclear detection

The ground state of 20Na decays with a half-life of 0.45 s
by positron emission. 79% of the decays are Gamow-Teller
transitions to the first excited state of 20Ne (E = 1.63 MeV,
Jπ = 2+). This state promptly decays with a quadrupole γ
transition to the 20Ne ground state. To be independent of the
intrinsic parity-odd emission of the positrons, we use the γ
ray of 1.63 MeV to signal a decay. This γ ray contributes for
more than 99% to the photon spectrum above the annihilation

radiation of 0.511 MeV and is therefore the right probe for the
selected Gamow-Teller transition.

For γ -ray detection we placed two large NaI detectors
in the vertical plane. These detectors are placed approxi-
mately 75 mm away from the center of the buffer-gas cell
and have a diameter of 15 cm. The γ -detection threshold
was set at about 1 MeV, where the measured spectrum is
relatively flat, minimizing the dependence of the count rates
on experimental parameters such as gain shifts, drifting offsets,
and threshold fluctuations. The contribution of the positrons
(E � 11.7 MeV) to the γ signal has been strongly reduced by
placing aluminum absorbers of 20 mm thickness in front of the
γ detectors. The placement of the γ detectors perpendicular
to the polarization axis reduces further the asymmetry caused
by Bremsstrahlung photons.

For the determination of the polarization, β detectors are
mounted on the east and west side of the gas cell. The �E
(NE-104) scintillator material has 5 mm thickness and 44 mm
diameter. Low-energy positrons (Eβ � 2 MeV) are stopped in
the material between the gas cell and β detectors.

The 20Na beam was centered in between the main detectors
by adjusting the angle of a transmission foil in the incoming
20Na beam, maximizing the count rate in the γ detectors.
The 20Na beam was pulsed with beam “on” for 2 s and
“off” for 2.1 s, respectively, of which the last 0.1 s was
used for switching the polarization. The polarization sequence
consisted of three such periods of 4.1 s: for unpolarized
nuclei and for Ĵ± polarization (see Fig. 2). Our data set
contains 3 × 104 of such sequences, with the γ detectors
having 3.4 × 104 counts on average in a 4.1 s period.

B. Polarization

The polarization of 20Na is achieved by optical pump-
ing [15]. Details specific to the present experiment are
also given in Ref. [14]. A solid-state laser system (Toptica
TA-SHG pro) provides laser light tuned to the 2S1/2 –2P1/2

(D1) transition in 20Na adjusted for the absolute buffer gas
pressure of 6.5 bar (λ = 589.782 nm). Pressure broadening
of about 50 GHz mixes the hyperfine levels. An optical
fiber transfers the laser light to the optical table near the
gas cell (see Fig. 1). With a polarizing beam splitter (PBS)
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FIG. 1. Schematic view of the gas cell, detectors, and laser setup. Left: front view; right: top view.

025503-2



TEST OF LORENTZ INVARIANCE IN β DECAY OF . . . PHYSICAL REVIEW C 94, 025503 (2016)

20Na beam
polarization

on off on off on off
0 + −

time [s]0 2 4 6 8 10 12

FIG. 2. The switching scheme of the 20Na beam and the polarization sequence. Gray areas denote the time window for changing the
polarization state.

the laser light is split into two beams with horizontal and
vertical polarization. A λ/2 plate, in front of the PBS, was
adjusted to equalize the power of the two laser beams to about
150 mW each, in principle sufficient to obtain full nuclear
polarization. With remote-controlled beam stops each laser
beam can be blocked. The beam paths are recombined by
a second PBS. After passing a beam expander, the beam
has an approximately Gaussian shape with a full width at
half-maximum of 1.2 cm. A λ/4 plate converts the horizontally
and vertically polarized light to circularly polarized light
of opposite handedness. Silver mirrors guide the laser light
through the gas cell, passing fused silica windows with a view
diameter of 29 mm. The windows are surrounded with coils in
Helmholtz configuration, providing a magnetic field of about
1.5 × 10−3 T aligned with the laser beam.

The count rate in the β detectors is R±
E/W ∝ 1 +

AWu P Ĵ± · �βE/W, with AWu = 1/3 the β asymmetry param-
eter [16]. Here P Ĵ± refers to the opposite directions of the
nuclear polarization with magnitude P . �βE/W refers to the
velocity relative to the light speed of β particles measured
in the east (E) and west (W) detector, respectively. The
acceptance in this setup results in |〈Ĵ± · �βE/W〉| = 0.99. The
β asymmetry is obtained from the cross-ratio

Aβ =
√

R+
E R−

W −
√

R−
E R+

W√
R+

E R−
W +

√
R−

E R+
W

≈ AWuP. (4)

This method for determining Aβ does not depend on
detector acceptance and beam intensity to first order.

The β asymmetry as obtained from the weighted average
of all data sets is shown in Fig. 3. In the first two seconds with
beam “on” the asymmetry reaches a plateau corresponding
to P = 45%. With beam “off” the asymmetry appears to

decrease exponentially with a lifetime of order one second.
The loss of polarization can be mainly attributed to molecule
formation with residual chemically active reactants. A detailed
account of depolarization mechanisms is given in Ref. [14].
This reference also discusses why full polarization is not
achieved. Compared to our previous experiment, the buffer gas
pressure has been increased by a factor 3 to about 6.5 bar. This
reduces both the size of the longitudinal stopping distribution
and the diffusion by about a factor 3. At the beginning of the
experiment, natural 23Na was evaporated into the buffer gas,
which increased the polarization substantially. The evaporated
23Na is for binding the impurities that would otherwise
bind 20Na atoms. Whenever the average polarization dropped
during the experiment by about 20%, evaporation of 23Na was
repeated. The polarization improved by a factor 2 compared
to the previous experiment.

C. Additional measurements

The temperatures of several experimental components were
recorded because the expected daily (near-sidereal) variation
could introduce a systematic error mimicking a LIV signal. The
temperature of the gas cell was measured at the position of the
23Na dispenser with a thermocouple. The other temperatures
were measured with platinum resistance thermometers. The
temperature of a metal fence within two meters of the gas
cell is indicative of the temperature of the experimental hall.
The temperature of the two large γ detectors was measured
on the container of the NaI crystal. The temperatures of the β
detectors were measured on the metal photomultiplier housing.
Also recorded were the laser-light power for both circular
polarization directions using the photodiodes shown in Fig. 1
and the absolute pressure of the buffer gas.
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FIG. 3. (a) The instantaneous β-decay rates averaged over all data of run III for one of the β-particle detectors. The blue (upper) and red
(lower) data points are obtained with opposite polarization. The black data points (middle) are obtained without polarization. The bin width is
1 ms. (b) The experimental β asymmetry [Eq. (4)]. The data points have been binned to 100 ms, reducing statistical scatter.
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IV. ANALYSIS

Central to the analysis is a multiple-parameter description
of the detector count rates to determine �LIV(t); its time
dependence should have a period of a sidereal day. There-
fore, variations of experimental conditions on much shorter
timescales are reduced by averaging the polarization sequences
over a time span of 17 minutes, which we refer to as a
slice. Each slice has sufficient counting statistics to perform
a multiple-parameter analysis. Data-taking took place during
three periods of several days, separated by one month each.
These data sets (labeled I–III) have been analyzed separately
using the same procedures. To perform a blind analysis we
randomized the time order of the slices and determined �LIV

for each slice (Sec. IV A). After �LIV is determined we apply
systematic corrections associated with experimental drifts
(Sec. IV B). The effective polarization is also accounted for
(Sec. IV C 1). After establishing all analysis procedures, the
slices were reordered and analyzed for a possible sidereal
variation.

A. Determining �LIV

The γ decay rates (see Fig. 4) were modeled in detail. A
single 4.1 s period adds

Rγ (t) =
{
A(1 − e−t/τ ), t < T ,

A(eT/τ − 1)e−t/τ , t � T
(5)

to the total decay rate, with A the normalization parameter, τ
the lifetime parameter, and T = 2 s “on” time of the beam.
To include the contributions from all previous beam “on”
periods, Eq. (5) is modified. The resulting expression is given
in Appendix A. During the beam “on” period, prompt γ rays
from the production target and primary beam stop added to
the detector rate. This rate (parameter Aon) was modeled with
a block function following the time structure of the beam
and was typically 15% of the rate maximum. Long lifetime
components can be modeled as a constant background (Abg),
typically 5–6% of the maximal rate. These two background
parameters are independent of polarization.

We include two polarization dependencies in the γ count
rates as

R±
γ (t) = R0

γ (t)[1 + P (t)(K ± L)]. (6)

For each detector R0
γ (t) is the count rate for no polarization and

R±
γ (t) is the count rate for Ĵ± polarization. P (t) is parametrized

with a polarization rate τ−1
pol , a polarization-decay rate τ−1

depol,

and a normalization P0. The rate τ−1
pol is fixed for each run; the

latter two parameters are left free. The K and L parameters
determine the strength of parity even and odd decay-rate
contributions, respectively. The rate-enhancement K results
from the emission pattern for the quadrupole γ transition of
the first excited state of the daughter nucleus 20Ne to the ground
state. The quadrupole pattern in the decay of fully polarized

nuclei 2+ GT β−→ 2+ E2 γ−→ 0+ has an enhancement perpendicular
to the polarization direction of 25% compared to isotropic
emission [17]. This enhancement is 10% when integrating
over the acceptance of the γ detectors. The enhancement can
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FIG. 4. Experimental γ -rate data averaged over run III. (a) The
red and blue data points are instantaneous γ rates measured in 1 ms,
obtained for opposite polarization directions. The blue points are
mostly invisible, because they lie under the red points. The sudden
drop in count rate at T = 2 s is a result of a count rate background
which is only present when the production beam is on. (b) The
presence of the term P (t)K in Eq. (6) as seen from the difference
between the γ rates with and without polarization. The data follow
the β asymmetry in Fig. 3. The jump at T = 2 s is again due to the
beam related background. The data were binned to 100 ms. (c) A
small parity-odd dependence P (t)L in Eq. (6) can be seen from the
difference between the γ rates obtained with opposite polarization. It
has an instrumental origin. The data were binned to 100 ms.

be seen in Fig. 4(b) where γ rates with and without polarization
are compared. It follows the polarization with a plateau value
for K P (t) of 4.5%, consistent with the observed maximum
polarization of 45%. K is left free for both detectors separately
(K1, K2) in the fitting procedure.
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The parameter L describes a parity-odd dependence in the
γ rates and should be absent in an ideal experiment. However,
in Fig. 4(c) it can be seen that such dependence exists and
reaches a value LP (t) ≈ 0.0022, i.e., L ≈ 0.005. This can
be attributed to the asymmetric distribution of matter around
the setup, where positrons annihilate and add to the γ signal.
Another source of asymmetry could be imperfect balancing
of the opposite polarizations. In practice we use L as the final
tuning parameter, making the time average 〈�LIV(t)〉 = 0. The
direct connection with the actual parameter is thereby lost and
other aspects of the setup asymmetry enter. The largest value
of L = 0.015 is three times larger than expected on the basis
of the count-rate distributions alone. Systematic dependencies
and errors in �LIV(t) are discussed in Sec. IV A.

Most of the 19Ne is stopped in the entrance foil to the gas
cell. No contribution with a 19Ne lifetime was found in the
β detectors. To monitor the running conditions an auxiliary
detector with threshold below 511 keV was placed close to the
entrance foil. About 72% of the count rate of the auxiliary γ de-
tector consists of 19Ne decays with T1/2 = 17 s. For this detec-
tor, K = L = 0, also �τ = 0. Including the auxiliary detector
in the fitting routine improved the overall χ2 for all data slices.

Finally, taking into account the effects of pile-up, dead time,
and rate-dependent gain, a term quadratic in count rate was
added with a proportionality α. The apparent maximal pile-up
was typically 5%. An overview of all parameters is given in
Table I. We use a χ2 minimization to fit the set of parameters,
except L and τpol, simultaneously to the nine count-rate spectra
R0,+,−

γ1,2,3
(t) where �τ ≡ (τ− − τ+)/2 of the three detectors and

three polarization states for each slice of data of 17 minutes.
A typical fit of γ -rate spectra is shown in Fig. 5. The

residuals of the fit show the appropriate statistical scatter. The
lifetime τ 0 was found to be about 4% smaller than the literature
value of 0.45 s.

TABLE I. Overview of parameters to describe the various detec-
tor count rates and the polarization. The parameters are determined
per 17 minute data slice, except for the parameters L and τ−1

pol (�)
which are fixed for each of the three runs (see text).

Parameter Detector

γ1 γ2 γ3

Rate normalization A1 A2 A3

Prompt background Aon,1 Aon,2 Aon,3

Background Abg,1 Abg,2

Rate normalization 19Ne A19Ne

Rate dependence α1 α2 α3

Quadrupole parameter K1 K2

Common for (γ1, γ2)
Lifetime difference �τ

Asymmetry parameter (�) L

Normalization polarization P0

Polarization rate (�) τ−1
pol

Polarization decay rate τ−1
depol

Common for (γ1, γ2 γ3)
Overall lifetime τ0
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FIG. 5. A typical fit to a γ -rate spectrum of a single slice
of 17 minute data. The fitted lines cover the data, measured as
instantaneous rate in 10 ms. The overlapping blue and red (upper)
data points are obtained with opposite polarization. The black (lower)
data points are obtained without polarization. The time region
(0–0.21) s where the polarization may not have lost memory of
the previous 4.1 s polarization period is excluded from the fit. In
addition, the region (1.98–2.02) s where the beam is switched from
“on” to “off” is excluded. The bottom graph shows the residuals
χ = (data − fit)/σdata.

To obtain an initial value for �LIV we use �τ/[τP (t = 2)],
this value is too large in view of depolarization, as we will
argue in Sec. IV C, where we also discuss how to correct for
this effect.

B. Systematic corrections to �LIV

The parametrization of the γ rate does not explicitly account
for drifts in the experimental equipment. Therefore, �LIV still
depends in an intricate way on temperature, cell pressure, etc.
These can have day-night dependencies that appear as sidereal
variation in �LIV. Their values were recorded in parallel with
the data taking. In the following we refer to these as external
parameters. We use average values for each 17 minute slice.

We consider the correlations between �i
LIV and parameters

pi
j , where the index i refers to the individual 17 minute slices.

pi
j is the corresponding average value of an external parameter

j such as temperature and pressure. Using vector notation for
the data set {i}, the correlation is given by Dj = 〈�LIV · pj 〉.
This value can be established without unblinding the data. The
most relevant correlation was found to be the asymmetry in
laser power for both polarizations, which is shown in Fig. 6.
The dependence on the parameters j is removed from the data
by redefining �LIV as �′

LIV = �LIV − Dj pj . We first remove
the dependence on the laser asymmetry (j = las). Because
most parameter drifts are temperature driven, we also make
sure to remove the correlations 〈plas · pk〉 among the remaining
parameters k. An example is the correlation between pressure
in the gas cell and its temperature, as shown in Fig. 7. Of
course, a correlation between pressure and temperature is to
be expected. To see whether other parameters j are relevant we
repeat the procedure with the corrected data. In Appendix B 1
we give a formal account of the correction procedure and the
criteria used.
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FIG. 6. The dependence of �LIV on the asymmetry of the power
of the laser for opposite polarizations (defined as fraction of the
difference over the sum). This indicates that the polarizations were not
completely balanced throughout the experiment. The laser asymmetry
itself was found to be temperature dependent. Therefore, it is also a
measure of the temperature of the experimental hall.

It is not unlikely that one or more of the parameters
has an apparent sidereal dependence. Its amplitude Aj can
be determined by fitting Aj sin(�ti + φ) to pi

j . If DjAj is
significantly deviating from zero, the procedure described
above might also partly remove the actual LIV signal, as we
will discuss in Sec. IV C. This correction procedure is a crucial
step in the analysis. The laser asymmetry was found to drift
with the ambient temperature and would have resulted in a
sidereal signal of DlasAlas = (−2.0 ± 0.3) × 10−4.

Data set III has the highest statistical power. For this data set
also less significant corrections for pressure and temperature
of the buffer gas were made. The first two data sets with much
lower statistics allowed only for the laser power correction.
Similarly we determine the magnitude DjAj for the remaining
parameters that were not significant enough to give a noticeable
effect on �LIV. Applying the decorrelation procedure among
these remaining parameters we find the magnitudes DjAj .
The individual values for data set III are shown in Table II. We
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FIG. 7. Correlation between pressure and temperature in the gas
cell. The parameters shown already have the correlation with the
laser asymmetry removed. The error on the data points are about 1 ×
10−2 ◦C and 1 mbar, indicating that other environmental parameters
play a role in the data scatter.

TABLE II. Systematic uncertainties for data set III due to the
parameters �LIV was not corrected for. The last two columns
indicate the correlation Dj multiplied by the sidereal amplitude Aj

components in the N1 and N 2 direction. The order of the parameters is
a result of the decorrelation procedure where initially the temperature
of the γ2 detector had the largest Dj/σDj

. σcorr is the sum of DjAj

added in quadrature.

Parameter j Dj/σDj
DjAj (×10−5)

N̂ 1 N̂ 2

γ2 temperature 1.1 −1.3 0.4
β2 temperature 0.68 −0.5 −1.8
β1 temperature 1.2 1.3 0.0
Laser average 1.1 1.2 0.8
γ1 temperature 0.96 −1.5 −1.0
Beam intensity 0.88 0.3 1.3
Hall temperature 0.14 −0.3 0.0
σcorr 2.7 2.6

take the sum over remaining parameters σcorr =
√∑

j (DjAj )2

as the remaining systematic uncertainty of the correction
procedure.

C. Experimental sensitivity

There are two aspects that affect the sensitivity of the
measurement. They are the time-dependent depolarization and
the possibility of accidental removal of the sidereal signal by
the correction procedure as described in the previous section.

1. Depolarization dependence

The sensitivity to depolarization is parametrized with Peff.
As we showed in Ref. [14] the polarization of the 20Na sample
can be characterized by a time τpol ≈ 40 ms for each particle
to become polarized after it enters the gas cell and a depo-
larization time τdepol ≈ 1–4 s. The latter depends on the gas
condition and whether the beam was “on” or “off” (cf. Fig. 4
of [14]). Therefore, a Monte Carlo simulation was done to
find the effective polarization to be used with Eq. (2). The test
particles appear in the gas cell with a constant rate until T = 2
s. Upon entering they polarize with a rate τ−1

pol and depolarize

with τ−1
depol, resulting in a time-dependent polarization Pn(t);

cf. Ref. [14]. The test particles decay with a probability of
[τ (1 ± Pn(t)δτ )]−1, where δτ is chosen appropriately small.
The accumulated spectra are fitted with a decay time τ (1 ±
Peffδτ ) in the region T > 2 s, from which Peff is obtained.
We also determine the dependence of Peff on the polarization
decay parameter τdepol with these simulations. We find that the
weighted average over the three runs to be τdepol = 1.3 ± 0.3 s
for which Peff = (0.79 ± 0.09)P (t = 2) is a good representa-
tion of the data taken, where P (t = 2) is the value from the
actual fit of a particular time slice, as discussed in Sec. IV A.

2. Impact of the correction for systematic errors

The procedure for correcting systematic errors could
remove part of an actual LIV signal in �LIV(t), thus reducing
the experimental sensitivity. After unblinding the data and
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FIG. 8. The LIV observable �τ
τ

1
Peff

versus local sidereal time for
data set III. For this figure data were binned to 8 bins of 3 sidereal
hours width. Vertical error bars indicate the statistical uncertainty
only. The curved line y(t) = ξN1 cos �t + ξN 2 sin �t was fitted to
the data. The fit result has χ 2/ndf = 3.2/6 with p = 78%. Both ξN1

and ξN 2 are consistent with zero (see Table III).

measuring the limits on the LIV amplitudes (ξN1,ξN2), we
investigated the extent to which this happens. We refer to
Appendix B 2 for the formal aspect. We added small
amounts of artificial sidereal variation with amplitudes
(δ(ξN1),δ(ξN2)) to the data points �i

LIV. The entire analysis
procedure is then rerun and by fitting the sidereal amplitude
again it is established which fraction can be recovered. This
procedure is repeated for a set of values (δ(ξN1),δ(ξN2))
to map between the final solution plane (ξN1,ξN2) and the
observed solution plane. The set of values (δ(ξN1),δ(ξN2))
is such that all points within the 1σ confidence region of
the measurement are reached in the observed solution plane.
The final values (ξN1,ξN2) are obtained by scaling the
measurement with the inverse of the recovered fraction for
the N1 and N2 directions separately. The bounds on ξN1 and
ξN2 increase maximally 49%.

V. RESULTS AND INTERPRETATION

�LIV for data set III as a function of time modulo one
sidereal day is shown combined in Fig. 8. No significant signal

for LIV has been found, which yields an upper limit on the LIV
amplitude |ALIV| = ξ

√
(N1)2 + (N2)2. The measurements for

data sets I–III are then scaled to correct for the systematic
corrections reducing sensitivity (Sec. IV C 2). The limits on
the LIV amplitudes are shown in Table III together with the
statistical and systematic uncertainties. The uncertainties in
L [Eq. (6)] are 26%, 10%, and 3% for data sets I, II, and
III, respectively. The correlation between L and the LIV
amplitudes (ξN1,ξN2) leads to an uncertainty in the latter,
listed as σasymm in Table III. It constitutes 8–26% of the total
uncertainty for data sets I and II, while being negligible for
data set III.

The analysis considers the cosine and sine components
separately. This enabled combining the three data sets
while preserving phase information. Statistical and system-
atic uncertainties are combined by quadratically averaging
the measurements I to III to obtain sidereal amplitudes
ξN1 = (−0.1 ± 0.8) × 10−4 and ξN2 = (0.2 ± 1.1) × 10−4.
This sets a 90% C.L. limit on sidereal amplitude variations of
|ALIV| < 2 × 10−4.

This result is interpreted within the framework that was
developed in Ref. [10]. The W -boson propagator is modified
by adding a general Lorentz-invariance violating tensor χμν

to the metric tensor. Evaluating the vector–axial-vector (V-A)
theory for β decay with this modification, observables can
be found that break Lorentz (and possibly CPT ) invariance.
In this framework the relative lifetime difference in Eq. (2)
is given by �LIV = −AWu �̃χi · Ĵ . The vector �̃χi is defined
in the laboratory frame with components χ̃ k

i ≡ Im(εklmχlm),
where k,l,m are the spatial indices and the subscript i labels
the imaginary part. Our experiment is exclusively sensitive to
imaginary parts of χ .

To make the result independent of the laboratory frame we
transform the tensor χ to the sun-centered frame of [5]: �̃χi →
�̃Xi . For the present setup with east-west polarization, the limit
on |ALIV| results in a limit [(X̃X

i )2 + (X̃Y
i )2]1/2

< 6 × 10−4.
Superscripts X,Y,Z refer to the spatial coordinates in the sun-
centered frame. This limit is obtained by 90% coverage of a
two-dimensional Gaussian, |X̃X

i |, |X̃Y
i | < 4 × 10−4.

We interpret the result in the SME where χμν∗ = χνμ

up to order 1/M2
W for β decay (MW is the W -boson

TABLE III. Limits on the sidereal amplitudes for Lorentz-invariance violation. The
standard deviations refer to the statistical and two systematic uncertainties described
in the text.

Data set

{
ξN 1

ξN 2 (×10−4) σstat (×10−4) Systematic uncertainties

σcorr (×10−4) σasymm (×10−4)

I

{−2.9
−0.8

4.1
5.5

8.8
5.3

0.4
1.6

II

{−3.4
−5.2

3.7
2.6

4.3
3.2

1.5
1.3

III

{−0.1
0.6

0.7
0.9

0.4
0.7

0.0
0.0

Average

{−0.1
0.2

σavg (×10−4)
0.8
1.1
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TABLE IV. Limits on sidereal amplitudes of �LIV at 90% C.L.
and the corresponding limits for the χ tensor formalism and the SME
parameters in the sun-centered frame.

Description Coefficient 90% C.L.

|ALIV|, this work <2 × 10−4
�τ
τ

1
Peff

(t) |ALIV|, previous work [9] <3 × 10−3

χ tensor [10] |X̃X
i |, |X̃Y

i | <4 × 10−4

|XXZ
i | = |(kA

φφ)XZ + 1
2g

(kφW )XZ|
SME [5,10] <2 × 10−4

|XYZ
i | = |(kA

φφ)YZ + 1
2g

(kφW )YZ|

mass) [10]. Using X̃X
i = 2XYZ

i and X̃Y
i = 2XZX

i we find the
90% confidence limits |XYZ

i |, |XXZ
i | < 2 × 10−4. The various

limits with references to their definitions are summarized in
Table IV.

VI. CONCLUSIONS AND DISCUSSION

No significant polarization-dependent LIV in the decay rate
of 20Na was found at 2 × 10−4 (90% C.L.).

Bounds on the LIV coefficients from other β-decay ex-
periments have been expressed in the theoretical frameworks
of Refs. [10] and [5]. Very strong limits were derived [18]
from experiments [19,20] searching for an anisotropy of
“forbidden” β decays. Limits on combinations of real and
imaginary coefficients of χ of order 10−8 were found. In
absence of fine tuning, these strong limits apply also to
the coefficients measured in this work. The present bounds
are, however, uniquely linked to the imaginary part of
χ , avoiding possible cancellations of coefficients by fine
tuning. Combining Eq. (8c) of [18] with limits from pion
data [21] reduces but does not eliminate the possibility of fine
tuning.

With the present method further reduction of the LIV
limit could be obtained by higher polarization, higher particle
yields, and a longer measurement time. Use of segmented
detectors reduces coincident summing and, therefore, reduces
systematic effects related to positron contamination of the γ
signal. Intense particle sources could be provided by advanced
radioactive-beam facilities.

Alternative methods to obtain direct limits on LIV parame-
ters in the weak interaction are very possible. A discussion of
possible measurements is given in Ref. [7]. For experiments
exploiting orbital electron capture a discussion is in Ref. [8].
We note that there are as yet no values for χ0l

i . This requires
measurement of the coincidence rate of γ particles and of
β particles perpendicular to the polarization axis, in a setup
similar to the present one.
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APPENDIX A: FORMULA FOR THE γ -DETECTOR RATE
FOR REPEATED DATA CYCLES

While the sodium is introduced to the buffer-gas cell it will
decay. The basic decay rate given in Sec. IV A is modified
by consecutive periods (duration P = 4.1 s) of beam “on”
(duration T = 2 s) and beam “off” (duration T ′ = 2.1 s) so
that

R(t) = A(1 − e−T/τ )e−t/τ

×
[

e−T ′/τ

1 − e−P/τ
+

{
et/τ −1

1−e−T/τ if t < T

eT/τ if t � T

]
, (A1)

with A the scaling parameter and τ the 20Na lifetime. The
first term describes decay of sodium nuclei remaining from
the previous periods which was approximated with an infinite
sequence. If there were only N previous periods the error of
this approximation is e−(N+1)P/τ .

APPENDIX B

1. Procedure used for systematic correction

This Appendix describes the correction procedure to correct
data points �i

LIV for a correlation with a separately measured
parameter j using its value pi

j . We use the vector notation for
the set {i} and drop the subscript “LIV”. We start with the
following Ansatz:

� = �R +
∑

j

Dj pj , (B1)

where � are the measured values for each slice and �R is
the true LIV signal. The sum contains contributions from
parameters j that have an impact of Dj on the value of the
LIV signal but that could not be modeled in the fit of the
time-dependent γ rates. The data are renormalized so that

〈�〉 = 〈pj 〉 = 0 . (B2)

The correlation (�,pj ) is

D′
j = 〈pj · �〉〈

p2
j

〉 . (B3)

Inserting Eq. (B1) into Eq. (B3) one finds

D′
j = Dj + 〈pj · �R〉 + ∑

j 
=k Dj 〈pk · pj 〉〈
p2

j

〉 . (B4)

Correcting � for parameter j one finds

� → �′ = � − D′
j pj

= �R − 〈pj · �R〉 + ∑
k 
=j Dj 〈pk · pj 〉〈

p2
j

〉 pj

+
∑
k 
=j

Dkpk . (B5)

Therefore, the correction is successful when there is no residual
correlation 〈pj · �R〉 or 〈pk · pj 〉.

It is clear that if there are several parameters that are driven
by a common parameter, e.g., a temperature, we cannot use the
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raw values of pk . Instead one should remove the correlations
so that 〈pkpl〉 = 0. This can be done analogously:

p′
k = pk − 〈pk · pj 〉〈

p2
j

〉 pj . (B6)

If 〈pj · �R〉 
= 0 it appears that one could remove the actual
LIV signal. This aspect cannot be studied with blinded data.
After unblinding the data one can add an artificial amount of
sidereal signal and determine to what extent it is removed in
the correction procedure. This is then taken into account in the
final result as a reduced sensitivity. This is discussed in the
next section of this Appendix.

We have not yet considered the statistical uncertainty of the
data for clarity of argument. Here we modify the expressions
above to include the uncertainty analysis. In this case the
coefficients Dj are obtained in a least-squares procedure using
the errors σ in �. Using the full notation one has

Dj =
∑

i

�i
LIVpi

j

(σ i )2∑
i

(pi
j

σ i

)2
with error σDj

= 1

1
N

∑ (pi
j

σ i

)2
. (B7)

These expressions require as in Eq. (B2) that
∑ �i

LIV
(σ i )2 = 0,

which is the case by definition, and although the pi
j are

normalized using
∑

pi
j = 0 also

∑
(
pi

j

σ i )2 ≈ 0.
The order in which the corrections on � are done as in

Eq. (B5) for its dependence on parameter j is based on the
significance Dj/σDj

. First the most significant correction is
taken, using the parameter j with the largest value Dj/σDj

.
Also all parameters k (k 
= j ) are corrected as in Eq. (B6).
The modified �LIV and pj are then used to search the next
most significant contribution. This procedure is repeated with
the remaining parameters until there is no parameter left with
Dj/σDj

> 3. This cutoff is used to avoid overcorrection on
statistically insignificant dependencies.

The errors in � are propagated as

σ ′
LIV =

√
σ 2

LIV + (σDj
pj )2 + (Djσ pj

)2 . (B8)

From this it can be seen that only parameters j with significant
values of Dj should be considered in the correction procedure.

The strong selection on the parameters that are considered
for a correction of the LIV signal may mean that corrections
are incomplete. For this we consider the set of parameters j ′
that were not used in the correction procedure and determine
their maximal contribution to a sidereal amplitude ignoring
the phase, which is Dj ′Aj ′ . This allow us to access the
systematic error in our procedure by selecting again the largest
contribution Dj ′/σDj ′ , applying the correction of Eq. (B6) and
observing the convergence of these errors to a common noise
level.

2. The sensitivity factor

To find to which extent a true �R could be removed due to
a finite value of 〈pj · �R〉 in Eq. (B5), consider the following.
One can write

pj = Aj�R + s, (B9)

where the parameter has a time dependence identical to the
sidereal frequency of �R with magnitude Aj and we assume
a contribution s that is effectively stochastic. The amount
removed from �R is then

〈
Aj�

2
R + s�R

〉
〈
A2

j�
2
R + s2 + 2s�R

〉 (Aj�R + s) . (B10)

Therefore, if the parameter has no stochastic part, i.e., s = 0,
the entire signal will be removed. However, in the more usual
case 〈s2〉 � 〈A2

j�
2
R〉, a much smaller fraction of �R is lost, i.e.,

〈A2
j�

2
R〉/〈s2〉. In this work the sensitivity factor is obtained by

adding an artificial sidereal dependence and determining how
much of this added signal survives the correction procedure;
this is defined as the sensitivity factor.
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