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We explore the breaking of Lorentz and CPT invariance in strong interactions at low energy in the framework of
chiral perturbation theory. Starting from the set of Lorentz-violating operators of mass-dimension five with quark
and gluon fields, we construct the effective chiral Lagrangian with hadronic and electromagnetic interactions
induced by these operators. We develop the power-counting scheme and discuss loop diagrams and the one-pion-
exchange nucleon-nucleon potential. The effective chiral Lagrangian is the basis for calculations of low-energy
observables with hadronic degrees of freedom. As examples, we consider clock-comparison experiments with
nuclei and spin-precession experiments with nucleons in storage rings. We derive strict limits on the dimension-
five tensors that quantify Lorentz and CPT violation.
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I. INTRODUCTION

Lorentz symmetry [1–3], the covariance of the laws of
physics under rotations and boosts in four-dimensional space-
time, plays a central role in physics and is at the basis of the
standard model (SM) of particle physics and general relativity.
In particle physics, it is closely related to the invariance under
the combined transformations of charge conjugation, parity,
and time reversal (CPT). In quantum field theories, with
mild assumptions, Lorentz symmetry implies CPT invariance,
while CPT violation implies Lorentz violation (LV) [4,5].
Nowadays, research into the breaking of Lorentz symmetry is
strongly motivated by theories that attempt to unify quantum
mechanics and general relativity [6,7]. Some of these theories
contain mechanisms that naturally lead to Lorentz violation
[8]. The intriguing possibility exists that remnants of LV at
high energy are detectable at energies that are in reach of
present-day experiments. The detection of the corresponding
signals would be a revolutionary discovery and could point us
to the correct theory of quantum gravity. LV, in fact, is one of
the few possibilities to get an experimental handle on quantum
gravity.

In particle physics, the consequences of LV at low energy
are conveniently studied within an effective field theory
(EFT), which allows for a systematic and model-independent
framework. The pertinent operators are built from SM fields
coupled to fixed-valued Lorentz tensors (sometimes called
“background fields”), while keeping many desirable SM fea-
tures, such as gauge invariance and the SM gauge-group struc-
ture, energy and momentum conservation, microcausality, and
observer Lorentz covariance [9]. The tensors parametrize
LV, which presumably originates from more fundamental
Lorentz-tensor fields that obtained a vacuum expectation value
through spontaneous symmetry breaking at high energy. This
approach has led to the standard-model extension (SME) [9],
which is the most general and widely-used framework for
theoretical and experimental considerations of Lorentz and
CPT violation in particle physics.

At low energy, LV results in unique experimental signals
that are in principle easily distinguished from Lorentz-
invariant physics beyond the SM, in particular frame de-
pendence of observables and a dependence on sidereal time.
Experimental constraints can be characterized and classified
in terms of bounds on the components of the LV tensors in
the SME. An overview of the existing experimental bounds
can be found in Ref. [10]. Most experimental bounds on LV
have been obtained in the area of quantum electrodynamics,
while recently progress also has been made in the weak
sector [11–14]. However, most precision tests of Lorentz and
CPT symmetry take place at low energies where quantum
chromodynamics (QCD) is nonperturbative. This complicates
the study of LV operators that contain quark or gluon fields, to
the extent that only a relatively small number of direct bounds
exists for the strong sector [10].

In this paper, therefore, we explore the use of chiral
perturbation theory (χPT), the low-energy EFT of QCD
[15,16] (for reviews, see, e.g., Refs. [17–19]), to investigate
the consequences of several higher-dimensional LV operators
with quark and gluon fields. We construct, in Sec. II, chiral
Lagrangians that describe LV interactions between pions,
nucleons, and photons. The large nucleon mass is treated in the
heavy-baryon approach [20]. Our approach is similar in spirit
to previous studies of the breaking of parity [21] and time
reversal [22] from dimension-six operators, as applied, for ex-
ample, to P -odd [23] and P - and T -odd [24] electromagnetic
form factors of the nucleon. Within this framework, it becomes
possible to study various LV observables for hadronic and
nuclear degrees of freedom. In Sec. III we first construct the
LV Hamiltonian, and next we identify in Sec. IV observables
for clock-comparison experiments with nuclei in atoms and
ions and storage-ring experiments with nucleons. We obtain
bounds on our LV tensors from existing experiments and
identify opportunities to further constrain the parameter space.
We end with a summary and outlook in Sec. V. In Appendix A
we briefly review the construction of the chiral Lagrangian and
the use of naive dimensional analysis. Appendix B is devoted to
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the use of field redefinitions to reduce the number of effective
operators.

II. THE LORENTZ-VIOLATING CHIRAL LAGRANGIAN

A. Operators with quarks and gluons

We start with a set of operators relevant below the elec-
troweak scale �F � 250 GeV, but above the scale of chiral-
symmetry breaking �χ � 2πFπ ∼ 1 GeV in QCD, where
Fπ � 185 MeV is the pion decay constant. LV is associated
with a high-energy scale �LV beyond �F, presumably to be
identified with the Planck scale. Many LV operators have been
discussed elsewhere in the literature. In Ref. [9] all possible LV
operators compatible with the SM gauge structure and of mass-
dimension 3 and 4 are given. This restriction to power-counting
renormalizable operators is sometimes called the minimal
standard-model extension (mSME). A characterization of
nonminimal, higher- (5-, 6-, . . . )dimensional operators exists
for electrodynamics, neutrinos, and free fermions [25].

In an EFT framework, higher-dimensional operators are
expected to be suppressed by powers of some high-energy
scale, �UV. In this respect, dimension-3 and -4 operators
are less natural in an EFT for LV, where one assumes that
�UV = �LV. Additional symmetry arguments are then needed
to prevent the LV physics at high energy from resulting in
large dimension-3 and -4 LV operators at a low-energy scale
such as �χ . To evade the strong experimental limits on LV,
these symmetry arguments should forbid the appearance of
the dimension-3 and -4 operators, or at least make them scale
like �2

IR/�UV and �IR/�UV respectively, where �IR is, e.g.,
the scale of supersymmetry breaking, �SUSY. Remarkably,
for LV in the minimal supersymmetric standard model, the
lowest dimension for LV operators is 5 [26–28], so that LV is
suppressed by at least one power of the high-energy scale. A
similar suppression of dimension-3 and -4 operators occurs
when we construct the effective chiral Lagrangian that is
induced by dimension-5 operators in the LV QCD Lagrangian.

In Ref. [29] all dimension-5 operators were classified that
can be built out of SM fields and are restricted by a set of “UV-
safety” conditions that protect the operators from transmuting
into lower-dimensional operators by quantum effects. In this
paper, we will restrict ourselves to a subset of the quark and
gluon operators listed in Ref. [29]. The operators we choose
are, for our exploratory purpose, the most interesting ones
from the point of view of χPT. Other LV QCD operators can
be treated in the same way, but we leave this for future work.

At a scale of 1 GeV there is a limited set of protected
dimension-5 operators in the quark sector. They are sum-
marized in Eq. (18) of Ref. [29]. Of this set, we consider
the only two that explicitly contain the gluon field strength
Gμν = taGa,μν [ta = 1

2λa , a = 1, . . . ,8, where λa are the
Gell-Mann matrices, are the generators of the SU(3) color
group]. They are given by the Lagrangian density

LLV
q =

∑
q=u,d

[
Cq

μνρq̄γ μGρνq + Dq
μνρq̄γ μγ 5Gρνq

]
. (1)

Both operators also violate CPT invariance. Our naming of
the LV tensors differs from Ref. [29], wherin Cq is called

Dqg , while Dq is Dqg,5. Although these operators should be
considered as part of a theory where the W and Z bosons are
already integrated out, one should keep in mind that C and
D contain (different) contributions from the same high-energy
operators, because of mixing due to W - and Z-boson loops.
Lacking a renormalization-group analysis for such operators,
we will here consider C and D to be independent. For isospin
considerations we split the Lagrangian density in Eq. (1) in
two parts,

LLV
q = C+

μνρQ̄γ μGρνQ + D+
μνρQ̄γ μγ 5GρνQ

+C−
μνρQ̄γ μGρντ3Q + D−

μνρQ̄γ μγ 5Gρντ3Q (2)

with Q = (u d)T , X±
μνρ = (Xu

μνρ ± Xd
μνρ)/2 for X ∈ {C,D},

and τ3 the third Pauli matrix.
Operators similar to those in Eq. (1) exist that contain

the photon field strength Fμν instead of the gluon field
strength. Some phenomenological effects of these operators
are considered in Refs. [30,31]. Since we are interested in
observables for nonstrange baryons, we have focused on
operators with up and down quarks only. Our analysis can
be extended to include the strange quark and observables with
kaons and hyperons.

In addition to the quark operators we consider the only
dimension-5 pure-gauge term that satisfies the UV-safety
conditions of Ref. [29]. It is given by the Lagrangian density

LLV
g = Hμνρ Tr

(
GμλDνG̃

ρ
λ

)
, (3)

where G̃μν = 1
2εμνρσGρσ is the dual tensor of Gμν . In Ref. [29]

Hμνρ is called C
μνρ
SU(3)C

.
The real tensor components C

q
μνρ and D

q
μνρ describe LV

in the quark-gluon interactions, whereas Hμνρ parametrizes
the LV of gluonic interactions. All the LV tensor components
have mass-dimension −1. Constraints on the symmetry of
the components are derived from UV-safety considerations
in Ref. [29]: Xμνρ = 1

2 (Xμνρ + Xρνμ) with X ∈ {C,D}, while
Hμνρ is fully symmetric in all its Lorentz indices. Additionally,
all traces of the LV tensors vanish. Due to these symmetries
there are 16 independent components of Hμνρ , while the ob-
servable parts of C and D, i.e., Xμ[νρ] = 1

2 (Xμνρ − Xμρν), each
also have 16 independent components. The transformation
properties of the LV operators under the discrete-symmetry
transformations C, P , and T are summarized in Table I.

B. Operators with nucleons and pions

At momenta p of order of the pion mass p ∼ mπ � �χ ∼
1 GeV, the above operators induce interactions among the

TABLE I. The transformation properties of the LV operators
contracted by the tensors C, D, and H under C, P , and T . (−1)μ is
equal to +1 (−1) if μ is a time-like (space-like) index.

Cμνρ Dμνρ Hμνρ

P (−1)μ(−1)ν(−1)ρ −(−1)μ(−1)ν(−1)ρ −(−1)μ(−1)ν(−1)ρ

T −(−1)μ(−1)ν(−1)ρ −(−1)μ(−1)ν(−1)ρ (−1)μ(−1)ν(−1)ρ

C +1 −1 +1
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relevant low-energy degrees of freedom, pions (π ), nucleons
(N ), and photons (Aμ). To derive these interactions we employ
χPT [15,16]. The standard χPT Lagrangian contains all
interactions allowed by the QCD symmetries. In the limit of
zero up- and down-quark masses and charges, the QCD La-
grangian has an SU(2)L × SU(2)R ∼ SO(4) chiral symmetry.
Chiral symmetry is spontaneously broken to its SO(3) isospin
subgroup, resulting in a triplet of (almost) massless Goldstone
bosons, the pions. In this limit, pions only interact via
space-time derivatives, allowing for the calculation of hadronic
observables in perturbation theory, with expansion parameter
p/�χ , where p is the typical momentum of the process
under consideration. The pion fields can be parametrized in
infinitely many ways. We use stereographic coordinates [17],
as reviewed briefly in Appendix A, but different choices give
identical results. For a generalization to SU(3)L × SU(3)R the
standard formalism reviewed in Ref. [19] would be indicated.

Although the operator form of the effective hadronic
interactions is dictated by symmetry considerations, each
interaction is multiplied by a low-energy constant (LEC) that
parametrizes the nonperturbative dynamics. The values of
these LECs do not follow from symmetry arguments alone.
In principle these LECs can be calculated with lattice QCD,
but for the LV cases discussed here this has not been done.
Alternatively, if a Lorentz- or CPT-violating signal would be
detected, the LV LECs can be fitted to the experimental data. In
the absence of such LV signals, we resort to naive dimensional
analysis (NDA) [32], cf. Appendix A, to estimate the LECs at
the order-of-magnitude level.

The chiral (and gauge) symmetries are incorporated with
covariant derivatives for the pion,

(Dμπ)a = D−1(∂μδab + eAμε3ab)πb, (4)

and for the nucleon,

DμN =
(

∂μ + i

F 2
π

τ · π × Dμπ + ie

2
Aμ(1 + τ3)

)
N, (5)

where D = 1 + π2/F 2
π , e > 0 is the proton charge, τ are the

Pauli isospin matrices, and a,b are isospin indices. The low-
energy effective Lagrangian involves an infinite number of
interactions ordered by the expected size of their contributions
to physical processes. Each effective interaction is associated
with a chiral index [15,16]

� = d + f/2 − 2, (6)

where d counts the number of (covariant) derivatives and f the
number of nucleon fields appearing in the interaction. Because
mN/�χ is not a small number, time derivatives acting on
nucleon fields are not suppressed. However, the combination
(i /D − mN ) is still small and increases d by one. The leading
terms in the chiral-symmetric Lagrangian (that is, with the
lowest chiral index � = 0) are then given by

L�=0
χ = 1

2
Dμπ · Dμπ

+ N̄

(
i /D − mN − gA

Fπ

(τ · Dμπ )γ μγ5

)
N, (7)

in terms of the nucleon mass mN and the axial-vector coupling
gA � 1.27.

Chiral symmetry is broken by the masses of the up and
down quarks, but, being small, these can be incorporated in the
expansion by letting d increase by two for each quark-mass
insertion. The most important consequence is that the pion
acquires a small mass through

L�=0
mπ

= −m2
π

2D
π2. (8)

In a similar fashion we can construct the hadronic inter-
actions induced by the LV operators in Eqs. (2) and (3). We
assume that there arises no additional Lorentz or CPT violation
from the QCD phase transition itself, such that the symmetry
properties of the LV coefficients remain intact when going
from the quark-gluon to the χPT Lagrangian. Although all
operators in Eqs. (2) and (3) break Lorentz symmetry, they
transform differently under chiral symmetry. The operator in
Eq. (3) and the first two terms in Eq. (2) are invariant under
global SU(2)L × SU(2)R chiral transformations, and therefore
induce low-energy interactions that are chiral invariant as
well. The interactions, however, have different symmetrization
properties of the Lorentz indices as well as different properties
under the individual discrete-symmetry transformations C,
P , and T (see Table I). Therefore, they lead to different
chiral-invariant interactions at lower energies.

In contrast, the last two terms in Eq. (2) break chiral
symmetry explicitly and thus induce chiral-breaking hadronic
interactions. In particular, they give rise to operators that
involve pion fields without the spacetime derivatives that are
necessary for chiral-invariant interactions [17]. The chiral
operators resulting from the C−

μνρ and D−
μνρ terms can be

easily constructed by noticing that the corresponding operators
transform as, respectively, the 34 and 12 components of the
antisymmetric SO(4) tensor

T μρν =
(

εabcQ̄γ μγ 5τc GρνQ Q̄γ μτa GρνQ

−Q̄γ μτa GρνQ 0

)
. (9)

As we discuss below, the strongest experimental constraints
result from LV two-point interactions for the nucleon. These
two-point interactions are induced by the LV tensors C±

μνρ and
H±

μνρ . At the level of pions and nucleons the former give rise
to the operators

LχC+ = i

mN

C̃+
μνρN̄σ νρDμN + H.c., (10a)

LχC− = i

mN

C̃−
μνρN̄

[
τ3 − 2

F 2
πD

(π2τ3 − π3τ · π )

]
× σ νρDμN + H.c., (10b)

where H.c. means Hermitian conjugate. We denote the LV
LECs at the hadronic level with a tilde. The LV components
C̃±

μνρ are related to C±
μνρ by C̃±

μνρ = c±C±
μνρ , where c± =

O(�χFπ ) is a strong-interaction matrix element estimated
with NDA [32]. We introduce a factor of 1/mN for each
covariant nucleon derivative to keep the time derivatives from
spuriously lowering the chiral index of the operators, given by
� = −1 for the dominant terms in Eqs. (10).
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Chiral symmetry relates the nucleon-nucleon (NN ) opera-
tors to pion-nucleon (πN ) interactions. However, the strongest
constraints result from the terms without pions. Operators
of different form exist at this order, but in Appendix B we
show that these are redundant. In all hadronic interactions we
also omit terms with additional nucleon covariant derivatives,
because by using the equations of motion such terms can be
reduced to operators of the same form plus higher-order terms.
The form of the free-nucleon operators in Eqs. (10) agrees with
the effective operator for Dqg obtained in Ref. [29].

Similar to C+
μνρ , the Hμνρ operator induces only contribu-

tions to the nucleon two-point function at this order, viz.,

LχH = 1

m2
N

H̃μνρN̄γ μγ 5DνDρN + H.c. (11)

with the LV LEC H̃μνρ = hHμνρ , where h = O(�2
χ ) is a

strong-interaction matrix element estimated by NDA. Redun-
dant terms are again discussed in Appendix B.

In contrast to the C and H tensors, the tensors D±
μνρ do not

lead to a nucleon two-point function at any chiral order. In fact,
at lowest order (� = −1) only D− contributes. The relevant
Lagrangian is given by

LχD− = i

mNFπD
D̃−

μνρN̄ (τ × π)3σ
νρDμN + H.c. (12)

The LV LEC is again defined by D̃−
μνρ = d−D−

μνρ , with the
strong-interaction matrix element d− = O(�χFπ ) according
to NDA. Because C−

μνρ and D−
μνρ are components of the same

SO(4) tensor, chiral symmetry gives the relation d− = 2c−.
Additional redundant operators are discussed in Appendix B.
The leading terms for D+, with chiral index � = 0, read

LχD+ = 1

m2
NFπ

D̆+
μνραβN̄ (τ · Dμπ )σ νρDαDβN + H.c.

(13)

with D̆+ given by

D̆+
μνραβ = D̃+,1

μρνgαβ + D̃+,2
ανρgμβ + D̃

+,3
α[βρ]gμν, (14)

and the LV LECs defined as D̃+,i
μνρ = d+

i D+
μνρ with d+

i =
O(Fπ ). The metric tensor gαβ in the first term of D̆+
contracts two covariant derivatives. Since at lowest order
D2N = −m2

NN , we see that it represents the simple operator
D̃+,1

μνρN̄ (τ · Dμπ)σ νρN .
The operators in Eqs. (12) and (13) will induce loop

corrections to the nucleon Lagrangian. We will see an example
of this in Sec. II D. However, since nucleon two-point functions
are not allowed by the symmetries of the original operators,
they will also not be induced by quantum effects at first order in
LV. It turns out that the dominant observable effects of the loop
corrections are represented by nucleon two-point functions
coupled to the electromagnetic field strength. At leading order,
such operators have to take the form (see Appendix B)

LχDF = e

m3
N

N̄D̆F
αβμνρσλγ

5σαβDρDσDλNFμν + H.c. + · · · ,

(15)

where D̆F is an isospin matrix analogous to Eq. (14) and the
dots represent πN interactions that chiral symmetry relates
to the displayed operator. The tensor D̆F is built from the
LV components D±

μνρ , τ3, the metric tensor, and low-energy
constants of order one. This results in many inequivalent
contributions to D̆F , each of which has its own LEC. It goes
beyond the scope of this work to list them all, but two relevant
examples are

D̆F
αβμνρσλ � gβρgσλ

(
D̃F+,1

αμν + τ3D̃
F−,1
αμν

)
, (16a)

D̆F
αβμνρσλ � gαρgνσ

(
D̃

F+,2
λ[βμ] + τ3D̃

F−,2
λ[βμ]

)
. (16b)

The tensor in Eq. (16a) is the simplest contribution to
D̆F , with D̃F+,1 and D̃F−,1, together with LV LECs of order
O(Fπ/�χ ). (D±

νρσ contributes to both D̃F+,1 and D̃F+,1, due
to isospin-breaking from the quark charges.) Equation (16b) is
interesting because this operator gets a contribution from loop
corrections due to the dominant D−-dependent πN interaction
given in Eq. (12), which is therefore enhanced by a chiral
logarithm, cf. Eq. (25) below.

C. Heavy-baryon formalism

Loop calculations in a relativistic meson-nucleon field
theory performed with dimensional regularization receive con-
tributions from loop momenta of order mN . Since mN/�χ =
O(1), this upsets the assumed power counting. (When more
complicated regularization schemes are adopted the power
counting can be made consistent, for a review see Ref. [33].) In
heavy-baryon χPT (HBχPT) [20], this problem is overcome
by introducing heavy-nucleon fields with fixed velocity v,
defined by

Nv = 1 + /v

2
eimN vμxμN, (17)

where pμ = mNvμ + kμ, with k a small residual momentum.
Derivatives acting on the heavy fields give, instead of the
large nucleon mass, the small residual momenta. Because
the propagator of a heavy-nucleon field does not contain
the nucleon mass, the results of loop integrals scale with
powers of Q/mN and Q/�χ , where Q is of order mπ or
the external momentum and �χ � 2πFπ . In HBχPT the Dirac
matrices are eliminated in favor of the simpler nucleon velocity
vμ and the covariant spin vector Sμ with S = (0,�/2) and
� = γ 5γ 0γ in the nucleon rest frame, where v = (1,0).

For the LV Lagrangians in Eqs. (10)–(12), we find as
leading-order terms in the heavy-baryon formalism

LHB
χ = 4(εμναβC̃+

ραβ − H̃μνρ)vρvνN̄SμN

+ 4εμναβC̃−
ραβvνv

ρN̄

×
[
τ3 − 2

F 2
πD

(π2τ3 − π3τ · π )

]
SμN

+ 4

FπD
εμναβD̃−

ραβvρvνN̄ (τ × π)3SμN. (18)

All coupling constants of these interactions scale as �2
χ/�LV

or �χFπ/�LV and thus suffer a suppression of order
O(10−18,−19) compared to LECs appearing in standard χPT,
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if �LV is identified with the Planck scale. In the heavy-
baryon limit, the tensors C+

μνρ and Hμνρ lead to an identical
leading-order operator. However, because the symmetrization
properties of the tensors are different they can, in principle,
still be distinguished.

In HBχPT, the subleading operators in Eqs. (13) give

LHB
χD+ = 4D̆+

μνραβενρλκvλv
αvβN̄ (τ · Dμπ )SκN, (19)

while the terms parametrizing the D±-dependent nucleon
coupling to the photon field in Eq. (15) give

LHB
χDF = 4eN̄D̆F

[αβ]μνρσλv
βvρvσ vλSαNFμν. (20)

The examples in Eqs. (16a) and (16b) become, respectively,

LHB
χDF � 2eD̃F+,1

μνρ N̄SμNFνρ + 2eD̃F−,1
μνρ N̄τ3S

μNFνρ,

(21a)

LHB
χDF � 2eD̃

F+,2
ν[ρσ ]vμvνN̄SσNFρμ

+ 2eD̃
F−,2
ν[ρσ ]vμvνN̄τ3S

σNFρμ. (21b)

The nucleon operators in Eqs. (18) and (20) can be used
directly as the LV perturbation of the proton or neutron
Hamiltonian. As shown in Sec. IV, the Hamiltonian can be
used to determine LV contributions to observables such as the
nucleon spin-precession frequency and transition frequencies
in clock-comparison experiments. Taking v = (1,0), we see
that, in the nucleon rest-frame, Eq. (18) gives exactly the result
obtained later on in Eq. (31). In addition, the heavy-baryon
framework greatly simplifies loop calculations, as discussed
in the next section. On the other hand, at leading order in
the heavy-baryon expansion we neglect terms of order p/mN ,
such that the results only apply in the p → 0 limit. Terms of
higher order in p, which can become relevant in, for example,
storage-ring experiments, can be explicitly calculated in
HBχPT by including subleading terms in the heavy-baryon
expansion. However, when such terms are needed below in
Sec. III we find it more convenient to derive a relativistic
expression for the Hamiltonian.

D. Pion-loop diagrams

In contrast to the C±
μνρ and Hμνρ components, the LV tensors

D±
μνρ give no contribution to free nucleons at tree level, since

we cannot write down a two-point function that does not
vanish on-shell. Pion-loop corrections, however, can induce
a LV contribution to the electromagnetic form factor via the
loop diagrams shown in Fig. 1. The squares represent a LV
πN vertex from Eq. (18). We assign the external momenta
p, p′, and q = p − p′ to the incoming nucleon, the outgoing
nucleon, and the photon, respectively. In leading order in the
heavy-baryon expansion, we have v · q = 0.

The LV current that follows from the loop calculation has
the form

Iμ(q) = i(F+
1 νρσ (Q2) + F−

1 νρσ (Q2)τ3) εσραβvνvα

× (
Q2g

μ
β + qμqβ

)
+ (F+

2 νρσ (Q2) + F−
2 νρσ (Q2)τ3) vνvμq[σ Sρ] , (22)

(a) (b) (c)

FIG. 1. Lorentz-violating contributions to the nucleon electro-
magnetic form factor. The square denotes the pion-nucleon vertex
due to the Lorentz-violating tensor D−

μνρ , while the circles denote
leading-order vertices from Eqs. (7) and (8).

where q[σ Sρ] = 1
2 (qσSρ − qρSσ ) and Q2 = −q2. The loop

contributions to the isovector form factors F−
1 νρσ (Q2) and

F−
2 νρσ (Q2) turn out to vanish, while

F+
1 νρσ (Q2) = D̃−

νρσ

egA

(2πFπ )2

π

3mπ

f1

(
Q

2mπ

)
,

F+
2 νρσ (Q2) = D̃−

νρσ

8egA

(2πFπ )2

[
L − ln

m2
π

μ2
− f2

(
Q

2mπ

)]
,

(23)

in terms of the two functions

f1(x) = 3

2x

⎡⎣x2 + 1

x2
arcsin

⎛⎝√
x2

x2 + 1

⎞⎠ − 1

x

⎤⎦
x�1= 1 − x2

5
+ O(x4), (24a)

f2(x) =
√

1 + x2

x2
ln

(√
1 + x2 + x√
1 + x2 − x

)
− 2

x�1= 2x2

3
+ O(x4), (24b)

and L = 2/(4 − d) − γE + ln 4π , where d is the number
of spacetime dimensions and γE is the Euler-Mascheroni
constant.

The terms proportional to F±
1 (Q2) in Eq. (22) resemble

that of the anapole [34] form factor [23], where the role of
the nucleon spin is taken over by a LV absolute direction that
depends on D̃−. Although it is potentially relevant for, e.g.,
electron-nucleon scattering, it does not contribute for on-shell
photons and we will neglect this term from now on.

The terms proportional to F±
2 (Q2) do contribute for on-

shell photons. In that case, the isoscalar form factor can be
written as

F+
2 νρσ (Q2 = 0) = D̃−

νρσ

8egA

(2πFπ )2

(
L − ln

m2
π

μ2

)
, (25)

which contains a logarithmic divergence. This divergence
needs to be compensated by a counterterm that naturally
appears at this order in the chiral expansion, as seen in
Eq. (21b). The chiral power counting indicates that the long-
range contribution from the pion loop and the short-range
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term in Eq. (21b) are of similar size. However, the long-
range part is somewhat enhanced by the chiral logarithm,
as mentioned below Eq. (16). In any case, a cancellation
is unlikely considering the nonanalytic dependence of the
loop contributions on mπ . The isovector piece in Eq. (21b),
proportional to D̃

F−,2
ν[ρσ ], is not needed for renormalization

purposes, but there is no reason to assume it is very small
either. Absorbing L and the associated μ dependence into the
short-range terms and taking μ = mN as the renormalization
scale, we obtain for the form factors

F+
2 νρσ (Q2 = 0) = ¯̃DF+,2

νρσ + D̃−
νρσ

8egA

(2πFπ )2
ln

m2
N

m2
π

,

F−
2 νρσ (Q2 = 0) = D̃F−,2

νρσ , (26)

where the bar on ¯̃DF+,2
νρσ indicates that this is a renormalized

quantity.
In the following sections, we study the phenomenological

consequences of the relativistic LV chiral Lagrangians, ob-
tained in Sec. II B. The isocalar LV form factor in Eq. (26) gives
a slightly enhanced contribution to the operators summarized
in Eq. (15), which are studied in Sec. IV C. We mention already
here that, in the rest frame, the operators that follow from
the present loop calculation do not couple to the magnetic
field, which is most easily seen from Eq. (21b). This is
important when considering experimental methods to limit
the LV coefficients.

E. Nucleon-nucleon interactions from one-pion exchange

Our analysis can be extended to systems with multiple
interacting nucleons, and in particular to the few-nucleon
sector, where χPT is often called χEFT. χEFT allows the
derivation of the structure and hierarchy of multi-nucleon
interactions (for reviews see e.g. Refs. [35,36]). χEFT is
usually formulated for nonrelativistic nucleons, which fits
naturally with the heavy-baryon framework discussed above.
We briefly discuss here the LV NN interaction arising from
one-pion exchange with the πN vertices from Eqs. (18) and
(19). Although the tensors C± and H give contributions to
NN interactions at the same chiral order as D+, we omit them
here, because, in contrast to D±, there exist nucleon two-point
functions for C± and H that already provide very strict limits
(see below in Sec. IV).

In combination with the standard leading-order πN vertex
multiplied by gA, we obtain the LV NN potential

VLV = −(εijkD̃−
0ij )

2igA

F 2
π

(τ 1 × τ 2)3
(σ 1 · k)σ k

2 + (σ 2 · k)σ k
1

k2 + m2
π

− (εjklD̆+
ijk00)

4gA

Fπ

τ 1 · τ 2

(
σ l

1σ
m
2 + σm

1 σ l
2

)
kikm

k2 + m2
π

, (27)

where σ 1,2 (τ 1,2) are the spin (isospin) operators of the
interacting nucleons and the momentum transfer k = p − p ′
flows from nucleon 1 to nucleon 2; p and p ′ are the relative
momenta of the incoming and outgoing nucleon pair in the
center-of-mass frame. The Latin indices i,j,k, . . . denote
spatial directions. At the same order as the second term

in Eq. (27), there exist contributions from LV NN contact
interactions, which we ignore here.

We postpone a detailed study of this potential and its
consequences to future work, but point out that the interactions
between nucleons can lead to measurable LV in clock-
comparison experiments on nuclei or in the spin precession of
nuclei in storage rings. This is especially relevant because the
effects could be considerably larger than for nucleons where,
in case of the D± operators, a coupling to an electromagnetic
field is required. As discussed in Secs. IV B and IV C, this
greatly weakens the constraints on the D± LV tensors. A study
of the effects of Eq. (27) on, for example, the spin precession of
deuterons in storage rings would therefore be very interesting.

III. HAMILTONIAN WITH LORENTZ VIOLATION

Having obtained the low-energy chiral Lagrangian, we
now obtain the limits that are set by existing experimental
constraints, from which we deduce which parts of the pa-
rameter space have room for improvement. As mentioned, the
strictest limits are on the nucleon two-point functions and come
from clock-comparison experiments [10]. For the analysis of
clock-comparison experiments, the block-diagonalized form
of the Hamiltonian has proven to be convenient [37]. In this
diagonal form the Dirac equation for the particle and the
antiparticle are decoupled. The diagonalization is achieved
by performing a unitary Foldy-Wouthuysen transformation of
the fields [38]. A comparable particle-antiparticle decoupling
is obtained in HBχPT.

The heavy-baryon approach employs a nonrelativistic
expansion in p/MN , which implies that observer Lorentz
invariance can only be restored perturbatively [39]. As for the
Foldy-Wouthuysen transformation, for some Hamiltonians an
exact diagonalization can be achieved [38,40]. In most cases,
however, the transformation is done such that the off-diagonal
parts of the Hamiltonian can be made of arbitrary order in some
small quantity. Often, p2/m2 is chosen as the small parameter,
which results in a nonrelativistic expansion of the Hamiltonian,
comparable to the heavy-baryon approach. Here, we adopt
the approach of Ref. [41], where the relevant Hamiltonian
is obtained with a Foldy-Wouthuysen transformation on the
relativistic muon Hamiltonian that follows from the mSME
[9]. The small quantities in which the off-diagonal parts of
the Hamiltonian are expanded are the LV tensor components
and the electromagnetic fields. This results in a relativistic
expression for the relevant parts of the Hamiltonian for free
nucleons (at least when restricting to frames where the LV
coefficients and the EM fields are small with respect to the
nucleon mass).

The Dirac equation that includes the LV from Eqs. (10) and
(11) is given by

i∂0ψw = Hwψw, (28)

where w ∈ {p,n} denotes proton or neutron and

Hw = γ 0(γ · � + mN ) + eA0 + 1

4
(gw − 2)μNγ 0σμνF

μν

+ 2

m2
N

H̃ανρ�
ν�ρ�α − 2

mN

C̃w
μαβ�μγ 0σαβ (29)
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with �μ = i∂μ − eAμ, �α = γ 5γ 0γ α , and where for the
proton and neutron C̃ is given by C̃p = C̃+ + C̃− and C̃n =
C̃+ − C̃−. We added the term for the anomalous magnetic
moment of the nucleon, where μN = e/2mN is the nuclear
magneton.

The operator Hw is not a standard Hamiltonian because
it contains extra terms with time derivatives. This is a well-
known problem when dealing with LV. In the mSME it can be
solved by applying a spinor redefinition that removes the extra
time derivatives [42]. However, since we have time-derivative
terms of higher order, we use the approach of Ref. [25], where
one first diagonalizes the Hamiltonian and then substitutes
i∂0 →

√
p2 + m2 for the fermion and i∂0 → −

√
p2 + m2 for

the antifermion in the LV terms. Contributions that we miss
in this way are higher order in the LV components, and hence
negligible.

The Foldy-Wouthuysen transformation used to diagonalize
Hw is given by H ′

w = eγ 0γ 5φHwe−γ 0γ 5φ , with tan 2φ = � ·
�/mN . We assume that all the electromagnetic fields are
homogeneous and small and we neglect all contributions
that are quadratic in these fields as well as products of LV
and an electromagnetic field. This results in a Hamiltonian
with off-diagonal 2 × 2 blocks that are first order in the LV
components or the E and B fields. We neglect these small
off-diagonal contributions and take the upper left 2 × 2 block
(hw,+) as the Hamiltonian for the particle and the lower right
2 × 2 block (hw,−) as the Hamiltonian for the antiparticle. We
find that the resulting Hamiltonian is given by

hw,± = hw,0 ± δhw, (30)

where hw,0 is the conventional particle or antiparticle Hamil-
tonian, while the LV perturbation δhw is given by

δhw = −2γ

[
σ · ξ̄w − γσ · β

(
ξ̄ 0
w − γ

γ + 1
β · ξ̄w

)]
, (31)

where β = p/E is the (anti)particle velocity, γ is the relativis-
tic boost factor, and

ξ̄ μ
w = ξμνρ

w βνβρ = [
H̃μνρ − εμναβ(C̃w)ραβ

]
βνβρ (32)

with β = (1,β). We thus conclude that the part of ξμνρ
w that is

symmetric in ν and ρ is the only observable combination of
the C and H tensors in experiments with free nucleons. This
is consistent with Eq. (18), where the same combination of
C and H appears. It confirms that the heavy-baryon and the
Foldy-Wouthuysen approach are equivalent for nucleons at
rest. The tensor ξμνρ is completely traceless and its observable
part therefore has 32 independent components, while the
observable parts of C and H both contain 16 independent
components. In the following, we will derive bounds on a
subset of these.

IV. EXPERIMENTAL CONSTRAINTS

A. Clock-comparison experiments

The most restrictive limits on Lorentz and CPT violation
for protons and neutrons come from clock-comparison exper-
iments [10,37]. In these experiments transition frequencies of
two colocated samples of atoms or ions are compared. The

variation of these frequencies, as the clocks rotate with Earth,
gives a limit on rotational noninvariance and hence on LV.
In Ref. [37] the combinations of mSME tensor components
that are observable in clock-comparison experiments are deter-
mined by calculating expectation values of the particle Hamil-
tonian that is linear in LV. For an atom or ion W , it is given by

h′
W =

∑
w

Nw,W∑
N=1

δhw,N , (33)

where δhw,N is the LV Hamiltonian for the N th particle of
species w, the second sum runs over all Nw,W particles of
species w that are present in the atom or ion W , and the
first sum runs over all species. In the present case, δhw,N for
protons and neutrons is given by δhw in Eq. (31), while it is
zero for electrons.

We take the laboratory z axis as the axis of quantization. The
LV corrections to the transition frequencies follow from the
expectation value δE(F,MF ) = 〈F,MF |h′

W |F,MF 〉, where
|F,MF 〉 is the state corresponding to the atom or ion with
total relevant angular momentum F and projection MF .
The LV shift in a frequency corresponding to a transition
(F,MF ) → (F ′,M ′

F ) is then given by

δω = δE(F,MF ) − δE(F ′,M ′
F ). (34)

Depending on the rotational transformation properties of the
different parts of the Hamiltonian, LV will give rise to different
multipole contributions to the transition frequencies. The LV
shift can be written as

δE(F,MF ) = M̃1
F EW

1 + M̃2
F EW

2 + M̃3
F EW

3 , (35)

where the constants M̃n
F (n = 1,2,3), given by ratios of

Clebsch-Gordan coefficients, read

M̃1
F = MF

F
, (36a)

M̃2
F = 3M2

F − F (F − 1)

3F 2 − F (F − 1)
, (36b)

M̃3
F = MF

F

5M2
F + 1 − 3F (F + 1)

5F 2 + 1 − 3F (F + 1)
. (36c)

Furthermore, EW
1 , EW

2 , and EW
3 originate from spherical

tensors of rank 1, 2, and 3, respectively, which require a total
angular momentum of at least 1

2 , 1, and 3
2 to be nonvanishing.

Following Ref. [37], we call EW
1 , EW

2 , and EW
3 the dipole,

quadrupole, and octupole contributions, respectively. We cal-
culate these contributions in the nonrelativistic limit, keeping
only terms up to first order in p2/m2

N . We find

EW
1 =

∑
w

(
2ξ 300

w Mw,W
1 +

(
2ξ 300

w − 3

5
ξ (300)
w

)

×Mw,W
2 − 36

5
ξ (300)
w Mw,W

3

)
, (37a)

EW
2 =

∑
w

2ε3ij ξ i(j3)
w Mw,W

4 , (37b)

EW
3 =

∑
w

(
3

5
ξ (300)
w − ξ 333

w

)
Mw,W

5 , (37c)
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where we used that ξμνρ is completely traceless and de-
fined the symmetrized parts of ξμνρ as ξμ(νρ) = 1

2 (ξμνρ +
ξμρν) and ξ (μνρ) = 1

6 (ξμνρ + ξμρν + ξρμν + ξρνμ + ξνμρ +
ξνρμ). In contrast to the mSME case in Ref. [37], we find
an octupole contribution, which originates from the totally-
symmetric gluon tensor Hμνρ . Due to the antisymmetry of
the C term in Eq. (32), the contributions of ξ (300)

w contain no
component of H or C that is not already present in ξ 300

w .
It does contain different linear combinations of the tensor
components, however.

The matrix elements M1 to M5 are sums of expectation
values of spherical-tensor operators in the special “stretched”
state |F,F 〉. The relation between the expectation values in
this special state and a state with general MF follows from
the Wigner-Eckart theorem [43], which allows to separate
the matrix elements of spherical tensors in a Clebsch-Gordan
coefficient and a reduced matrix element. The ratios of these
Clebsch-Gordan coefficients for the expectation values in the
states |F,F 〉 and in the states |F,MF 〉 are given by the factors
M̃n

F in Eqs. (36). The relevant expectation values in the state
with MF = F are given by

Mw,W
1 = −

Nw,W∑
N=1

〈[σ 3]w,N 〉, (38a)

Mw,W
2 = 1

m2
N

Nw,W∑
N=1

〈[p3pjσ j − σ 3pjpj ]w,N 〉, (38b)

Mw,W
3 = 1

m2
N

Nw,W∑
N=1

〈[pjpjσ 3]w,N 〉, (38c)

Mw,W
4 = 1

m2
N

Nw,W∑
N=1

〈[p3(p1σ 2 − σ 1p2)]w,N 〉, (38d)

Mw,W
5 = 1

m2
N

Nw,W∑
N=1

〈[5p3p3σ 3 − 2p3pjσ j − pjpjσ 3]w,N 〉.

(38e)

To determine the values of these matrix elements one has
to adopt some nuclear-structure model, such as the simple
Schmidt model [44], wherein the entire angular momentum
of the nucleus is carried by a single nucleon. However, we
can already see that M2 to M5 will most likely be suppressed
with respect toM1, since they contain the small factor p2/m2

N ,
which will cause a loss in sensitivity of order O(10−2).

Finally, we define the physical observable as in
Refs. [37,45], where the transition frequency of a certain
clock A is written as ωA = fA(B3) + δωA. Here, fA(B3) is
the conventional transition frequency in terms of the external
magnetic field projected on the quantization axis, while δωA is
the LV contribution. When comparing two clocks, say A and
B, one defines a frequency ω� by [45]

ω� ≡ ωA − fA

(
f −1

B (ωB)
) = δωA − ρδωB, (39a)

where

ρ = dfA

dB3

(
dfB

dB3

)−1∣∣∣∣
B3=0

, (39b)

which in most cases is equal to the ratio of the gyromagnetic
ratios of A and B. The observable ω� vanishes when there is
no LV and its explicit form in our case can be obtained by
using the expectation values we calculate above. In general it
is given by

ω� =
3∑

n=1

�M̃n
FA

EA
n − ρ

3∑
n=1

�M̃n
FB

EB
n (40)

with �M̃n
F = M̃n

F − M̃n
F ′ for a transition (F,MF ) → (F ′,M ′

F ).
With the relations in Eqs. (37) this can easily be made explicit
in terms of ξμνρ . To be able to compare different experiments
it is convenient to give limits in the Sun-centered inertial
reference frame. This frame and the relevant transformations
to the laboratory frame are described in Refs. [10,45].

The strongest limits from clock-comparison experiments
are on the nonrelativistic dipole contribution to transition
frequencies, corresponding to Eq. (37a). In the mSME the
corresponding combination of LV tensor components is called
b̃J , with J ∈ {X,Y,Z} a spatial coordinate in the Sun-centered
frame [10]. The best bounds on b̃J come from a 3He /129Xe
comagnetometer for the X and Y directions [46,47] and from a
199Hg /133Cs comagnetometer for the Z direction [48]. These
bounds directly translate to a 1σ limit on parts of ξμνρ , given in
the first three rows of Table II, where the X, Y , and Z directions
are again defined in the Sun-centered frame [10]. In obtaining
these limits, we have ignored the suppressed contributions
proportional to M2 and M3 in Eq. (37a).

Because of the high sensitivity of the clock-comparison
experiments, also boost effects due to Earth’s velocity can be
used to bound LV parameters. These effects are suppressed by
at least one power of the velocity of Earth with respect to the
Sun, β⊕ � 10−4. The dominant signal will oscillate with the
rotation frequency of Earth around the Sun. This can be seen
by realizing that the transformation from the laboratory frame
to the Sun-centered frame, to first order in β⊕, is given by [45]

� =
(

1 0

0T R
)(

1 β⊕
βT

⊕ 1

)
, (41)

where R is the rotation matrix that rotates the axes of the in-
stantaneous rest frame of the laboratory into the axes of
the Sun-centered frame. We neglect the rotation velocity
of the Earth around its axis, which is almost two orders of
magnitude smaller than its orbital velocity. The entries of the
first matrix in Eq. (41) are of order 1, while the off-diagonal
entries of the second transformation are of order 10−4, which
demonstrates the suppression of boost effects.

An analysis looking for a boost-dependent signal oscillating
with the rotation frequency of Earth around the Sun was
performed in Ref. [50]. The last four rows in Table II represent
this result in terms of ξμνρ , where we used Ref. [47] to obtain
the sensitivity to the proton parameters.

Of the 32 observable LV components of ξμνρ , i.e., the
traceless part of ξμ(νρ), only seven combinations are bounded
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TABLE II. Limits (1σ ) on LV tensor components obtained from two experiments on a 3He /129Xe comagnetometer [46,50] and an
experiment with 199Hg /133Cs [48]. The contributions of the neutron and the proton correspond to the their relative contributions to the nuclear
spin, which are taken from Refs. [51], [47], and [49] for 3He, 129Xe, and 199Hg, respectively. The angle η � 23.5◦ is Earth’s axial tilt.

Combination Result in GeV Refs.

|ξXT T
n + 0.2ξXT T

p | <7.3 × 10−34 [46,47]
|ξYT T

n + 0.2ξYT T
p | <7.7 × 10−34 [46,47]

|ξZT T
n + 0.1ξZT T

p | <4 × 10−30 [48,49]
|ξY (T X)

n + 0.2ξY (T X)
p | <6.9 × 10−28 [47,50]

|ξT T T
n + 2ξX(T X)

n + 0.2(ξT T T
p + 2ξX(T X)

p )| <9.0 × 10−28 [47,50]
| cos η(ξX(T Y )

n + 0.2ξX(T Y )
p ) + sin η(ξX(T Z)

n + 0.2ξX(T Z)
p )| <4.0 × 10−28 [47,50]

| cos η(ξT T T
n + 2ξY (T Y )

n + 0.2(ξT T T
p + 2ξY (T Y )

p ))+2 sin η(ξY (T Z)
n + 0.2ξY (T Z)

p )| <7.4 × 10−28 [47,50]

by the limits in Table II. However, if we ignore the possi-
bility of accidental cancellations among different LV tensor
components, Table II represent bounds on ten independent
components of ξμνρ . If we include, from Eq. (37a), the
corrections proportional to M2 and M3, ten additional ξ
components will receive limits that are weaker by a factor
p2/m2

N � 10−2. These are limits on the tensor components
whose indices are a permutation of the ones present in the
Table. Taking into account the tracelessness of ξμνρ , we
conclude that every component of ξμ(νρ) that has at least one
time-like index has a bound between 10−25 and 10−33 GeV for
the neutron, while the sensitivity to the proton tensor is a factor
5 to 10 worse.

To obtain bounds on the remaining 12 components, which
all have only space indices, one should consider double-boost
effects, which are suppressed by β2

⊕ � 10−8 with respect to
the dominant effects. For definite limits, a dedicated analysis
of the data would be necessary, since the signal will contain
higher harmonics of Earth’s orbital frequency. We estimate
that components of ξμ(νρ) that only have space indices will
receive bounds between 10−21 and 10−25 GeV for the neutron,
while proton bounds will again be 5 to 10 times less stringent.

By using the definition of ξμνρ in Eq. (32) and those of C̃±
and H̃ , one can easily translate the bounds in Table II to a
(less compact) form that explicitly shows the original quark
and gluon parameters. For example, the ξ component with the
best bound becomes

(ξn)XT T + 0.2(ξp)XT T

= 1.2hHT T X + 2(0.6c+ − 0.4c−)(Cu)T [YZ]

+2(0.6c+ + 0.4c−)(Cd )T [YZ]. (42)

The NDA estimates for the LECs are h = O(�2
χ ) and c± =

O(�χFπ ). Assuming that the combinations 0.6c+ ± 0.4c− are
of the same order as c± itself and ignoring the possibility of
accidental cancellations, we see that this clock-comparison
observable gives a limit on H and Cq of order 10−33 GeV−1.
Repeating this analysis for all results in Table II, gives us the
order-of-magnitude bounds in Table III.

As mentioned below Eqs. (37), the corrections proportional
toM2 andM3 do not contain any new components of H or Cq .
We thus conclude that clock-comparison experiments allow us
to place limits on nine of the 16 components of Hμνρ , and on 13
of the 16 components of C

q
μ[νρ]. The remaining components

of Hμνρ have only space indices, while those of C
q
μνρ are

C
q
Y [XY ], C

q
X[YX], and all components of the form C

q
J [T K], with

J,K ∈ {X,Y,Z}. For these, double-boost effects should be able
to provide bounds of order 10−21 to 10−25 GeV−1.

We find that clock-comparison experiments bound com-
ponents of H and Cq at least two orders beyond the Planck
scale. However, to reach this conclusion, we assumed that
no cancellations between LV tensor components take place.
When one allows for accidental cancellations up to 1%, one
concludes that it is desirable to get a few orders of magnitude
improvement for the worst-bounded components of ξ , Cq , or
H . Such improvements can be provided by spin-precession
experiments and in particular by storage-ring experiments,
since the latter do not suffer from boost suppressions.

B. Spin-precession experiments

A different class of experiments that can be used to bound
LV for nucleons and light nuclei are experiments that measure
their spin-precession frequency. In many experiments, the
ratio of the spin-precession frequency (ωs) to the cyclotron
frequency (ωc) is measured, which can be used to determine
the g factor. The dominant LV contribution to the nucleon
cyclotron frequency turns out to be proportional to the
electromagnetic field times a LV tensor component. This
results in a suppression by a factor of ∼10−15 with respect
to the LV effect on the spin-precession frequency, which is

TABLE III. Order-of-magnitude bounds on the LV tensor com-
ponents defined in Eqs. (1) and (3). We apply a logarithmic way of
rounding: a factor larger than 100.5 is rounded to 10, while anything
smaller than 100.5 is rounded to 1. Since we do not know the size of
the LECs c±, we take the limits on Cu and Cd to be the same and
summarize them as Cq .

Tensor component Limit in GeV−1

HT T X , HT T Y , C
q
T [XZ], C

q
T [YZ] <10−33

HT T Z <10−30

C
q
T [XY ] <10−29

HT XX, HT XY , HT YY <10−28

HT T T , HT XZ , HT YZ , C
q
T [T Z], C

q
X[YZ], C

q
Y [XZ], C

q
Y [YZ] <10−27

C
q
T [T X], C

q
T [T Y ], C

q
T [T Z], C

q
X[XZ], C

q
Z[XZ], C

q
Z[YZ] <10−26

025502-9



J. P. NOORDMANS, J. DE VRIES, AND R. G. E. TIMMERMANS PHYSICAL REVIEW C 94, 025502 (2016)

first order in LV. We therefore neglect this LV contribution and
take the cyclotron frequency as conventional.

The spin-precession frequency follows from the Heisenberg
equation of motion for the spin operator,

dσ

dt
= −i[σ ,H ] = ωs × σ . (43)

By using the Hamiltonian from Eq. (31) this gives a LV
contribution to the spin-precession frequency of nucleon w
of

∓δωs,w

4
= −γ ξ̄w + γ 2β

(
ξ̄ 0
w − γ

γ + 1
β · ξ̄w

)
, (44)

where the upper (lower) sign applies to particles (antiparticles).
If we assume the particle performs an integer number of
revolutions in an experiment in a magnetic storage ring, where
there is no E field and β · B = 0, we obtain that the LV
correction to the absolute value of the average spin-precession
frequency is given by

|〈δωs,w〉| = ±2γ
(
2ξk00

w + β2
(
ξk00
w − ξklm

w B̂lB̂m
))

B̂k. (45)

We can apply Eq. (45) to a comparison of the g factors
of the proton [52] and the antiproton [53]. Both of these are
determined by measuring ωs/ωc in a double Penning trap.
Neglecting the velocity-dependent part of Eq. (45), we obtain
for the experiments in Refs. [52,53] that

|〈ωs,p〉|
ωc,p

− |〈ωs,p̄〉|
ωc,p̄

= 4

ωc,p

[
ξ 100
p

]
Mainz

+ 4

ωc,p̄

[
ξ 300
p

]
CERN

= (2.4 ± 12) × 10−6, (46)

where the subscripts “CERN” and “Mainz” denote that the LV
tensors are defined in the laboratory frame of the corresponding
experiments, with the x̂, ŷ, and ẑ axes pointing south, east,
and up, respectively. We took the magnetic field in the proton
(antiproton) experiment as pointing south (up). Averaging over
one full sidereal day, we obtain that in the Sun-centered frame
[10]

|〈ωs,p〉|
ωc,p

− |〈ωs,p̄〉|
ωc,p̄

= 4ξZT T
p

(
cos ζCERN

ωc,p̄

− sin ζMainz

ωc,p

)
,

(47)

where the colatitudes of CERN and Mainz are given by
ζCERN = 43.8◦ and ζMainz = 40.0◦, respectively. This trans-
lates to a (1σ ) limit of∣∣ξZT T

p

∣∣ < 2.7 × 10−21 GeV. (48)

While this does not provide the same sensitivity as clock-
comparison experiments, it is a clean and direct limit on the
proton tensor components, independent of a nuclear model.

A similar result can be obtained from storage-ring experi-
ments [54,55]. An important difference with the Penning-trap
experiments is that there will be a significant contribution from
the boost-dependent part of Eq. (45), with sensitivity to ξJ (KL)

p ,
for which we were unable to derive definite bounds from
clock-comparison experiments. For example, in Ref. [54] an
absolute precision on the spin tune, defined by νs = |ωs |/|ωc|,
of σνs

� 3 × 10−8 per year is claimed. Analyzing the sidereal
variation of the spin tune would then give access to, for

example, ξZ(ZJ )
p . When it becomes possible to store polarized

antiprotons in the same ring, a ratio of the g factors of the
proton and antiproton can be measured with a precision of
10−9 or better. This is about three orders of magnitude better
than the result used to obtain Eq. (48) and also has sensitivity
to the boost-dependent part of Eq. (45). Hence, storage-ring
experiments can provide improved or complementary bounds
on ξμ(νρ) by analyzing the sidereal variation of the spin tune
or by comparing the spin tune of particles and antiparticles.
In addition to giving access to boost-dependent parts of the
observables, they give more direct bounds that do not depend
on nuclear models.

C. Electromagnetic form factor

From the Lagrangian density in Eq. (15), we can construct a
Hamiltonian and do a Foldy-Wouthuysen transformation, just
as we did to obtain the Hamiltonian in Eq. (31). In this case
we get

δhw = −2γσ ·
[
ϒw − γ

γ + 1
βϒ0

w

]
(49)

with

ϒα
w = −2γ 2eFμν(D̆w)[αβ]μνρσλβββρβσβλ, (50)

where D̆p (D̆n) is the upper-left (lower-right) entry of the
isospin matrix D̆ in Eq. (15). By using Eq. (49), we can
derive the LV correction to transition frequencies in clock-
comparison experiments and to the nucleon spin-precession
frequency. The latter is given by

∓δωs,w

4
= −γϒw + γ 2

γ + 1
βϒ0

w. (51)

Bounds can again be obtained from clock-comparison exper-
iments or from Penning-trap and storage-ring experiments.
However, these bounds will be significantly weaker than those
in Table II, because of the presence of the electromagnetic
field strength in ϒμ.

Focussing on the operator described by Eq. (16a), for
example, we find

ϒα
p = − e

γ 2
(gαβ − γ 2βαββ )(D̃F+,1 + D̃F−,1)βμνF

μν,

(52a)

ϒα
n = − e

γ 2
(gαβ − γ 2βαββ )(D̃F+,1 − D̃F−,1)βμνF

μν.

(52b)

Taking the nonrelativistic limit (and neglecting E fields), we
see that the LV component that replaces ξ 300

w in the first term
of the dipole contribution in Eq. (37a) is

ϒ3
p

∣∣
NR limit

= eBlεjkl(D̃F+,1 + D̃F−,1)3jk (53)

with the opposite sign for D̃F−,1 in the neutron case. Here,
Bl is the l-component of the magnetic field (its direction
differed in the different runs of the experiment in Ref. [46]).
In principle we could continue and obtain bounds on the
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corresponding components of D±
μνρ . Unfortunately, in contrast

to ξ 300
w , Eq. (53), when transformed to the Sun-centered frame,

induces terms that oscillate with twice the sidereal frequency,
making a reanalysis of the pertinent data necessary to obtain
exact limits.

It is also important to mention that some operators, like the
loop-induced operators obtained in Sec. II D, do not couple
to the magnetic field in the rest-frame of the nucleon. This
implies that bounds from clock-comparison experiments for
such operators will suffer another loss of p2/m2

N � 10−2.
Next to giving more direct limits, storage-ring experiments
can have an advantage in such cases, because boost effects are
not suppressed.

In general, LV effects in the mentioned experiments due to
D will be suppressed by a factor eFμνFπ/�3

χ or eFμν/�2
χ

with respect to effects induced by C or H . For a magnetic
field of 1 Tesla this constitutes a suppression factor of order
O(10−16). From clock-comparison experiments we can thus at
best expect bounds of order O(10−17) GeV−1 on D±

μνρ , while
some other, double-boost dependent, components will receive
bounds of order O(10−9,−6) GeV−1. None of the bounds on D
that can be obtained from clock-comparison experiments are
thus at Planck-scale level.

V. SUMMARY AND OUTLOOK

In this paper, we extended chiral perturbation theory, the
effective field theory of QCD for nucleons and pions at
low energy, with interactions that violate Lorentz and CPT
invariance. In our exploratory study, we took the dominant
operators that result from dimension-5 Lorentz- and CPT-
violating operators with quark, gluon, and photon fields. We
studied two quark-gluon interaction terms and one pure-gluon
term. The LV arising from these terms is parametrized by
the tensor components C±, D±, and H . We derived the
dominant chiral Lagrangian arising from the corresponding LV
quark-gluon terms and its heavy-baryon limit. We calculated
several pion-loop diagrams that are relevant to the nucleon
electromagnetic form factor and derived the relativistic LV
Hamiltonian.

The symmetries dictate that the dominant contributions
for C± and H are nucleon two-point functions, while for
D± no nonvanishing two-point function exists. This results
in far better bounds on C± and H than on D±, due to the
in standard χPT unfamiliar feature that the strictest limits
arise from two-point functions, through the frame-dependent
observables that they induce. The limits on two-point functions
were obtained from experiments on clock comparisons with
nuclei and on the spin rotation of nucleons in penning traps.
Compared to the bounds obtained in Table I of Ref. [29], our
best bounds are about four orders of magnitude better. This
results mainly from the use of updated experimental results.
We concluded that bounds on C± and H are at or beyond
Planck-scale level, although a few orders improvement would
be desirable for some of the components. Such improvements
could be provided by storage-ring experiments.

For the D± coefficients we derived the contribution to the
nucleon electromagnetic form factor and to NN interactions
from one-pion exchange. Using the nucleon electromagnetic

form factor, we estimated that potential limits on the D±
coefficients, considering only one-nucleon effects, are still
several orders of magnitude from the Planck scale. Also
here storage rings could make major contributions, although
the Planck scale is likely to stay out of reach for nucleons.
However, the contribution of D± to NN interactions in
nuclei could provide much better bounds. Especially the spin
precession of the deuteron in storage rings is promising in this
respect.

Our research could be extended in several directions. The
complete set of LV quark and gluon operators should be studied
and the potential of other experimental observables should be
explored. We addressed the spin precession of nucleons in
magnetic storage rings. Definite plans [54,55] exist to search
for electric dipole moments of the proton and the deuteron
in this way. Such experiments can be adapted to search for
Lorentz and CPT violation as well. As mentioned above,
compared to C± and H , D±-related effects in nucleons are
suppressed by a factor 1/�2

χ and the occurrence of E or B
fields, which reduces the sensitivity by orders of magnitude. It
would therefore be interesting to extend our study of LV in NN
interactions to the deuteron. Because of its simple structure,
the deuteron would be particularly interesting to study, along
the lines of χPT analyses of its P -odd [56,57] and T -odd
[58,59] electromagnetic form factors. We expect that in this
way the limits on D± can be improved by many orders of
magnitude.
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APPENDIX A: CONSTRUCTION OF THE CHIRAL
LAGRANGIAN

1. SO(4) formalism

We briefly summarize the techniques for the construction
of the chiral Lagrangian in the SO(4) formalism of χPT and
refer to Ref. [17] for more details. We focus on QCD with
two flavors, which is approximately globally invariant under
SU(2)L × SU(2)R transformations of the quark doublet Q =
(u d)T ,

Q → Q′ = exp[iθV · t + iθA · t γ5] Q, (A1)

where θV,A are real vectors and ta = τa/2, where τa are
the Pauli isospin matrices. The chiral group is isomorphic
to the group of SO(4) rotations in Euclidean space. This
global SO(4) symmetry is spontaneously broken to its SO(3)
isospin subgroup. The Goldstone bosons, the pions, live in the
coset space SO(4)/SO(3) also known as the “chiral circle”.
It is convenient to parametrize this chiral circle in terms of
dimensionless fields ζ = π/Fπ , where π is the pion field, and
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to introduce the orthogonal 4 × 4 rotation matrix

Rαβ =
(

δij − 2
D

ζiζj
2
D

ζi

− 2
D

ζj
1
D

(1 − ζ 2)

)
, (A2)

where D = 1 + ζ 2.
The field ζ transforms as a vector under isospin transfor-

mations,

δζ = θV × ζ , (A3)

but it transforms nonlinearly under axial transformations,

δζ = (1 − ζ 2)θA + 2(θA · ζ ) ζ . (A4)

For this reason it is convenient to introduce a chiral covariant
derivative Dμζ = (∂μζ )/D, which transforms as

δ(Dμζ ) = 2(ζ × θA) × Dμζ , (A5)

such that (Dμζ )2, the pion kinetic energy term in Eq. (7), is
invariant under isospin and axial transformations. Similarly,
we can introduce a nucleon doublet N that we define to
transform as the pion covariant derivative, but in the isospin-
1/2 representation, that is

δN = i(t · θV ) N + 2i t · (ζ × θA) N . (A6)

Because the axial transformation is spacetime dependent (it
contains ζ ), the derivative ∂μN transforms different from N
itself. To remedy this we also introduce the nucleon chiral
covariant derivative

DμN = (∂μ + 2i t · ζ × Dμζ ) N, (A7)

which does transform as N itself.
The chiral Lagrangian that corresponds to the chiral-

invariant part of the QCD Lagrangian can now be obtained
by constructing all operators consisting of Dμζ , N , and
DμN that transform in the same way under C, P , T , and
Lorentz transformations as the corresponding terms in the
QCD Lagrangian. This then gives rise to the terms in Eq. (7),
which are Lorentz invariant, and Eqs. (10a), (11), and (13),
which violate Lorentz symmetry.

The formalism to include chiral-symmetry-breaking oper-
ators in the SU(2)L × SU(2)R χPT Lagrangian is outlined in
Ref. [17]. Operators that break the symmetry as components of
chiral tensors can be obtained by rotating operators constructed
with non-Goldstone fields �, such as nucleons and nucleon
and pion covariant derivatives,

Oij ···z[ζ ,�] = RiαRjβ · · · RzξOαβ···ξ [0,�]. (A8)

Chiral-symmetry-breaking terms in the QCD Lagrangian
induce effective interactions that contain ζ directly, without
derivatives. As an example, we consider the quark-mass term
m̄ Q̄Q which transforms as the fourth component of an SO(4)
four-vector. From Eqs. (A8) and (A2) we obtain

S4[π,�] = 1

D
(1 − ζ 2)S4[0,�] − 2ζ

D
· S[0,�]. (A9)

Since the quark mass is a Lorentz scalar and the pion field
a Lorentz pseudoscalar, S4[0,�] has to be even under P and
T transformations, while S[0,�] has to be P - and T -odd. A
choice is then S[0,0] = m̄(0, v0), where v0 is a real number

that depends on the details of the spontaneous breaking of
chiral symmetry. This choice generates

S4[π,0] = 1

D
(1 − ζ 2)m̄v0 = m̄v0 − m̄v0

2ζ 2

D
. (A10)

The first term in Eq. (A10) is an irrelevant constant, while
the second term give the first contribution to the pion mass in
Eq. (8), after the identification m2

π = 4v0m̄/F 2
π .

In exactly the same way we obtain the operators in
Eqs. (10b) and (12) by using that the C− and D− LV tensors
transform as components of the SO(4) tensor in Eq. (9). As
an example we consider the C−

μνρ operator in Eq. (10b). It
transforms as the 34-component of the SO(4) tensor given in
Eq. (9). In this case we obtain from Eqs. (A8) and (A2)

T34[π,�] =
[(

1 − 2ζ 2

D

)
δi3 + 2ζ3ζi

D

]
Ti4[0,�]

+ 2

D
[ζiδj3 − ζj δi3]Tij [0,�]. (A11)

The candidate operators are restricted by the C, P , and
T properties given in Table I. This leaves as a possible
choice the tensor Tij [0,�] = T44[0,�] = 0 and Ti4[0,�] =
−T4i[0,�] = ic−

mN
C−

μνρN̄τiσ
νρDμN , which gives rise to the

operator in Eq. (10b).

2. Naive dimensional analysis

The procedure described above allows for the construction
of the chiral Lagrangian order by order in the chiral expansion.
However, it does not predict the sizes of the LECs associated
with each interaction. Nevertheless, the chiral expansion relies
on the LECs to have a size within a certain natural range in
order to have a consistent chiral power counting. The sizes of
the LECs can then be estimated by naive dimensional analysis
(NDA) [32]. Ideally, the LECs are fitted to data or calculated
with nonperturbative methods such as lattice QCD, but for the
study of LV interactions neither data nor lattice calculations
exist. We therefore rely on NDA to give an order-of-magnitude
estimate of the LECs, but we stress that these estimates are
associated with a significant uncertainty.

The NDA rules can be neatly summarized by introducing
the concept of a reduced coupling [61]. Consider an interaction
term with dimension D and N fields and coupling constant g.
The reduced coupling is defined as

gR = �D−4(4π )2−Ng, (A12)

where � is the scale at which two theories are matched (the
χPT and QCD Lagrangians), in our case identified with �χ ∼
2πFπ ∼ mN . The NDA estimate of a LEC appearing in the
chiral Lagrangian is obtained by demanding that the reduced
coupling of an operator below �χ is of the same size as the
product of the reduced couplings of the operators that appear
above �χ and induce the low-energy interaction. For instance,
consider the contribution of the quark masses to the pion
mass. The reduced pion mass is given by (m2

π )R = m2
π/�2

χ ,
whereas the reduced quark mass is given by (m̄)R = m̄/�χ .
The NDA rule then gives m2

π = O(m̄�χ ), which agrees fairly
well with the actual pion mass. In full QCD we could have
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dressed the quark mass by any number of gluon interactions,
which would bring in factors of gR

s = gs/(4π ). Consistency
of the estimates then requires that we count gs ∼ 4π . Another
example would be the coupling constant of the standard
CPT-even axial-vector pion-nucleon coupling in Eq. (7) with
reduced coupling constant (gA/Fπ )R = (gA/Fπ )�χ/(4π ) �
gA. This interaction arises from the chiral-invariant part of
the QCD Lagrangian where the reduced couplings are O(1),
because we count gs ∼ 4π . This implies that gA = O(1),
consistent with the actual value gA � 1.27.

We now apply the NDA procedure to estimate some
of the LECs appearing in the LV chiral Lagrangian. The
terms in Eq. (10) have reduced couplings (C̃±

μνρ/mN )R =
C̃±

μνρ/mN , which should be equal to the reduced coupling
of the LV quark-gluon interaction, (C±

μνρ)R = C±
μνρ(�χ/4π ).

The NDA rule then estimates C̃±
μνρ = O(C±

μνρ�χmN/(4π )) �
O(C±

μνρ�χFπ ). Because the reduced coupling of the LV
gluon interaction is given by (Hμνρ)R = Hμνρ�χ , we obtain
H̃μνρ = O(�2

χHμνρ) for the LEC appearing in Eq. (11).
Finally, we look at the electromagnetic operators in

Eq. (15). The reduced coupling, suppressing the Lorentz in-
dices, is given by (em3

ND̆F )R = eD̆F �χ/(4π ), which should
be equal to the product of the reduced couplings of the
LV tensor and the electromagnetic coupling, (D±)ReR =
eD±�χ/(4π )2. This implies that D̆F = O(D±/(4π )).

Exactly the same rules are applied to obtain the scaling of
all LECs that appear in the main text.

APPENDIX B: REDUCTION OF EFFECTIVE OPERATORS
USING THE EQUATIONS OF MOTION

If an effective operator vanishes when the fields satisfy
the lowest-order equations of motion, i.e., when they are “on-
shell”, then a field redefinition exists that removes the operator
from the Lagrangian, without changing the terms of equal or
lower order [60]. Therefore, to that order, the original operator
does not contribute to the S matrix and may be omitted from
the Lagrangian entirely. We use this to show that the following
operators are redundant:

O1 = N̄T (x)σ ντDτDμDρN, (B1a)

O2 = ενραβN̄T (x)γαDβDμN, (B1b)

O3 = ερναβN̄T (x)γαγ 5DβDμN, (B1c)

O4 = N̄T (x)γτγ
5DτDμDνDρN, (B1d)

O5 = N̄T (x)γ 5σμλDλDνDρN, (B1e)

where T (x) represents a general operator consisting of isospin
matrices, pion fields, and covariant derivatives of pion fields.
With the correct choice for T (x), all operators in Eqs. (B1) have
symmetry properties corresponding to one of the LV operators
in Eqs. (1) and (3). If T (x) does not contain derivatives
of pion or photon fields, these operators naively contribute
at the same order as the operators in the chiral effective
Lagrangians in the main text. However, we show that they are
equivalent to operators already present in these Lagrangians
and/or operators that are of higher order. In Table IV we
summarize the forms of T (x) that correspond to the dominant

TABLE IV. The expressions in Eqs. (B1) give different operators,
depending on the form of T (x). We give three possible forms of T (x)
and list the LV tensors to which the resulting operator corresponds.
All of these are shown to be redundant.

T (x) O1 O2 O3 O4 O5

1 C+
μνρ D+

μνρ C+
μνρ Hμνρ Hμνρ

τ3 − 2
F 2

π D
(π2τ3 − π3τ · π ) C−

μνρ D−
μνρ C−

μνρ – –
1

Fπ D
(τ × π )3 D−

μνρ C−
μνρ D−

μνρ – –

(� = −1) redundant operators for terms with C±
μνρ , D±

μνρ , and
Hμνρ .

The zeroth-order equation of motion for a nucleon field
reads

i /DN = mNN. (B2)

Multiplying this equation by γ μ, we get that

mNγ μN = iDμN + σμνDνN, (B3)

which in some cases is a more convenient form. After writing
out the gamma matrix commutator, partial integration, and
using the equation of motion and its complex conjugate, the
operator O1 can be written as

O1
on shell−→ i

2
N̄ (Dτ T (x))γ τγ νDμDρN + · · · , (B4)

where, here and in the following, the dots represent total-
derivative terms and/or terms containing the electromagnetic
field strength and higher-order pion terms. The latter two
originate from the commutator of covariant derivatives given
by

[Dμ,Dν]N = ie

2
Fμν(1 + τ3)N + pion terms. (B5)

All terms in this expression raise the chiral index by two with
respect to terms without the commutator. For convenience, we
have defined in Eq. (B4)

DμT (x) = ∂μT (x) + i

F 2
π

(π × Dμπ )a[τa,T (x)]

+ ie

2
Aμ[τ3,T (x)]. (B6)

Since T (x) only contains pion or photon fields, its derivative
will always either vanish or contain derivatives of these fields,
which are considered to be of higher chiral order as well.
Therefore, DμT (x) raises the chiral order of the operator by
one and operators of the form of O1 do not contribute at lowest
order. The explicit expressions for DμT (x) are given at the end
of this Appendix.

Equation (B3) can be used to write O2 as

O2
on shell−→ 1

mN

ενραβN̄T (x)DβDμ(iDα + σαλDλ)N

= 1

mN

ενραβN̄ (DλT (x))γλγαDβDμN + · · · ,

(B7)
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where the equality is a consequence of the antisymmetry of
the Levi Civita tensor. It makes the first term on the first line
proportional to the electromagnetic field strength, which is of
higher order. The remaining term is equal to Eq. (B4) and the
equality follows.

Next, we consider operators of the form of O3. Such
operators turn out to be equivalent to operators of the form
N̄T (x)σ νρDμN , which are already present in the effective
Lagrangians of Sec. II B. This can be shown, using Eq. (B3),
since

O3
on shell−→ − 1

mN

ερναβN̄T (x)γ 5DβDμ(iDα + σαλDλ)N

= i

mN

N̄T (x)[σ ντDτDμDρ − σρτDτDμDν]N

+ i

mN

N̄T (x)σρνD2DμN + · · · . (B8)

The first two of these operators are shown to be redundant in
Eq. (B4), while the last one is equal to the operator already
present in the Lagrangian, if we use that D2N = −m2

NN up
to the current order.

For operators O4, using the equation of motion, we get on
the one hand that

O4
on shell−→ imNN̄T (x)γ 5DμDνDρN + · · · . (B9)

On the other hand, if we use partial integration to let the
covariant derivative act on N̄ , we get that

O4
on shell−→ −imNN̄T (x)γ 5DμDνDρN

− N̄ (Dτ T (x))γ τγ 5DμDνDρN + · · · . (B10)

Therefore, on-shell and up to terms of higher chiral order and
a total derivative, O4 = −O4 = 0.

For operators of the form O5, the equation of motion gives

O5
on shell−→ N̄T (x)γ 5DνDρ(mNγ μ − iDμ)N + · · · . (B11)

Using partial integration to let the covariant derivative in
σμλDλ act on N̄ , then using the equation of motion and one

more partial integration, we can also write O5 as

O5
on shell−→ N̄T (x)γ 5DνDρ(mNγ μ + iDμ)N

− N̄ (DμT (x))γ 5DνDρN

+ N̄ (DλT (x))γ 5σμλDνDρN + · · · . (B12)

Combining these two results, we see that O5 is equivalent to

O5
on shell−→ mNN̄T (x)γ 5γ μDνDρN − N̄ (DμT (x))γ 5DνDρN

+ N̄ (DλT (x))γ 5σμλDνDρN + · · · . (B13)

The first term is equal to an operator that is already included
in the effective chiral Lagrangian, while the other terms are of
higher order. In addition to Hμνρ , as mentioned in Table IV,
O5 also corresponds to operators that could be included in
Eq. (15). This is the case if we replace T (x) by a contraction
of D−

μνρ and Fαβ . Using the analysis above it is then easy to
show that such operators are equivalent to the one displayed
in Eq. (15).

Finally, we give the explicit expressions for DμT (x) for the
forms of T (x) in Table IV:

Dμ(1) = 0, (B14a)

Dμ

(
τ3 − 2

F 2
πD

(π2τ3 − π3τ · π)

)
= 4

F 2
πD

((Dμπ )3τ · π − π · Dμπτ3), (B14b)

Dμ

(
1

D
(τ × π )3

)
=

(
1 − 2π2

F 2
πD

)
(τ × Dμπ )3 + 2π3

F 2
πD

π · (τ × Dμπ ).

(B14c)

This shows that all operators in this Appendix are redundant
up to higher-order operators with the correct chiral transfor-
mation properties. In other words, if we would want to extend
the chiral Lagrangian to include higher-order operators, we
would not need to reconsider the operators in Eqs. (B1).
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