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Rapidity correlation structure in nuclear collisions
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We show that measurements of the rapidity dependence of transverse momentum correlations can be used to
determine the characteristic time τπ that dictates the rate of isotropization of the stress energy tensor, as well
as the shear viscosity ν = η/sT . We formulate methods for computing these correlations using second-order
dissipative hydrodynamics with noise. Current data are consistent with τπ/ν ∼ 10, but targeted measurements
can improve this precision.
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I. INTRODUCTION

The forces that drive the nuclear collision system towards
local thermal equilibrium leave few observable traces. Heavy-
ion experiments report a range of features widely attributed
to the hydrodynamic flow of a near-equilibrium quark gluon
plasma at the Relativistic Heavy Ion Collider (RHIC) and the
Large Hadron Collider (LHC). In particular, measurements of
azimuthal anisotropy provide the most comprehensive support
for the hydrodynamic description of these systems [1]. In
search of the source of this flow, experimenters turned to
smaller proton-proton, proton-nucleus, and deuterium-nucleus
collisions, expecting to find this effect absent. Instead, these
collisions show an azimuthal anisotropy that is comparable to
the larger ion-ion systems [2–6]. How can we learn about the
mechanisms that give rise to hydrodynamics if every available
collision system exhibits flow?

In this paper we argue that the rapidity dependence of
transverse momentum correlations can be used to extract
information on the thermalization process. In Ref. [7] we
pointed out that viscous diffusion broadens the rapidity
dependence of pt correlations, yielding information on the
shear viscosity. Here we propose that systematic changes in
the shape of this rapidity dependence with centrality can be
used to measure τπ , the relaxation time that sets the rate at
which the pressure becomes isotropic.

Rapidity correlations provide the space-time information
that allows us to probe the onset of hydrodynamic behavior
in collisions. Two-particle correlation measurements show a
near-side peak that sits atop a flat ridge in relative rapidity;
see, e.g., Refs. [8–15]. This result affirms the long-standing
principle that longitudinal expansion roughly follows a one-
dimensional Hubble-like behavior [16–18]. Long-range cor-
relations over several rapidity units originate at the earliest
stages of an ion collision [19,20]. Correlated particles that
are closer in rapidity interact for a longer period, depending
on their rapidity separation. Here we are most interested in
the short-range behavior—the peak—because it tells us how
fluctuations are dissipated by the stochastic dynamics of the
strongly interacting system.

We focus on transverse momentum correlations because
they are dissipated by shear viscous diffusion, which is par-
ticularly sensitive to the relaxation time τπ . Nuclear collisions
produce a fluid that flows with a transverse velocity that differs

slightly from point to point within each event. Viscous friction
arises as neighboring fluid elements flow past one another. As
a simple illustration, consider the variation of the velocity vx

along the longitudinal z direction near a point where the fluid
is at rest. Near local equilibrium, this flow produces a stress,

Szx = −η∂vx/∂z, (1)

that works to make the transverse momentum distribution
as uniform as possible. In Refs. [7,21], we studied how
transverse momentum fluctuations are spread throughout the
liquid by viscous diffusion described by Eq. (4) in Sec. II,
which follows from the Navier-Stokes equation. The effective
diffusion coefficient is the kinematic viscosity ν = η/sT ,
where s is the entropy density and T is the temperature.

The character of viscous diffusion changes dramatically as
the system evolves from its initial state toward the Navier-
Stokes regime. In essence, the stress energy tensor Tzx relaxes
to Eq. (1) at a rate

∂

∂t
Tzx = − 1

τπ

(Tzx − Szx), (2)

with corrections to be discussed later. Now described by
Eq. (8), relaxation allows shear stress to propagate as waves. In
the next sections we argue that the rapid longitudinal expansion
in nuclear collisions can freeze a wavelike structure into the
rapidity distribution, allowing an experimental glimpse of the
equilibration process and a measurement of τπ . Measurements
from the STAR Collaboration at RHIC discussed in Secs. VI
and VII may hint at these effects [22,23].

We comment that several time scales describe different
aspects of hydrodynamization. Near local equilibrium the
relaxation times for shear, bulk, and heat transport are τπ ,
τ�, and τq , respectively [24–28]. At sufficiently low densities,
these quantities can be calculated from the Boltzmann equa-
tion. However, causality arguments suggest that the general
form of (2) and similar bulk and heat relaxation equations can
apply more widely [29,30]. Color fields evolve with their own
distinct time scales [31]. Sometimes we describe the entire
evolution from free-streaming partons to thermalized matter
using a Boltzmann equation with a single effective relaxation
time. Such time scales may differ appreciably. Furthermore,
pre-equilibrium flow affects all hydrodynamic observables.
Several groups have recently studied the effect of anisotropic
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pressure on single-particle spectra, flow harmonics, and other
bulk observables [32–37]. It is unlikely that any single
signal will yield unambiguous information on pre-equilibrium
evolution. All of these signals together will likely be needed
to create a complete picture.

This paper is organized as follows. We discuss the rapidity
dependence of transverse momentum fluctuations in terms of
shear hydrodynamic modes. In Sec. II we briefly introduce
the hydrodynamic modes in the first- and second-order theory.
As pointed out in Refs. [7,38], to discuss the evolution of
these fluctuating modes towards the proper local equilibrium
state, we must include hydrodynamic noise [39–41]. In
Sec. III we use the stochastic differential equations that
describe hydrodynamics in the presence of noise to obtain
equations for correlation functions. We use analytic techniques
for working with stochastic differential equations that are
common in mathematics but less familiar in physics [42,43].
Our main result (45) describing correlations in second-order
hydrodynamics is new. In Sec. IV we derive equations that
describe the fluctuations in the presence of Bjorken flow, in
particular Eq. (61). Sections III and IV are technical and may
be skipped by readers interested only in the phenomenology.

We then turn to the phenomenological problem at hand in
Sec. V, where we discuss the observables that we recommend
to study correlations in collisions following Refs. [7,21]. In
Sec. VI we solve Eq. (61) and compare the results to data
and to first-order diffusion theory [7]. We find that data are
best described by the second-order theory [22,23]. Finally, we
discuss how to measure τπ in Sec. VII.

II. SHEAR HYDRODYNAMIC MODES

Our description of the rapidity dependence of pt correla-
tions begins with the observation that the spread of transverse
velocity fluctuations in the beam direction is determined
by shear hydrodynamic modes [7]. Shear modes generally
account for the linear response of a fluid in directions
perpendicular to an initial impulse. Viscous diffusion spreads
this response throughout the fluid, eventually making the
velocity as uniform as possible. While shear modes likely
dominate the observables we discuss here, other hydrodynamic
modes exist and contribute elsewhere. Sound modes are
compression waves that propagate in the same direction
as the initial impulse. Additional diffusive modes transport
conserved charges relative to energy density. Net charge and
baryon number correlations in rapidity can be used to extract
experimental information about diffusion coefficients [38].

To identify the hydrodynamic modes, we consider fluctu-
ations of a fluid at rest with energy density e and pressure p.
Small fluctuations produce a small velocity v corresponding
to a momentum current M ≈ (e + p)v. To linear order in the
fluctuations, we write the conservation form of the relativistic
Navier-Stokes equation,

∂

∂t
M + ∇p = ζ + 1

3η

w
∇(∇ · M) + η

w
∇2M, (3)

where η and ζ are the shear and bulk viscosity coefficients and
w = e + p is the enthalpy density. We write the momentum
density M = gl + g, where ∇ × gl = 0 and ∇ · g = 0. The

shear modes satisfy

∂

∂t
g = ν∇2g, (4)

where ν = η/w is the kinematic viscosity. This is a closed
equation. Sound modes are curl-free compression waves
described by

∂

∂t
gl + ∇p = 	s∇(∇ · gl), (5)

where 	s = (ζ + 4η/3)/w. We point out that the physics
of sound modes is considerably more complex than shear
modes, because they also involve pressure fluctuations and
heat transfer; see, e.g., Refs. [29,44].

We focus on the damping of transverse velocity fluctuations
along the beam direction z, which necessarily involves shear
modes. More generally, it is useful to understand when
shear and other diffusive modes are more important than
sound in determining the overall response of the system to
perturbations. Equation (4) implies that shear modes of wave
number k and frequency ω are damped with ω = −iνk2. In
contrast, sound modes described by (5) propagate at the sound
speed cs = (∂p/∂e)1/2 with ω = ±csk − i	sk

2/2 ≈ ±csk,
where the damping coefficient is 	s plus thermal conduction
contributions. A general perturbation will excite both gl and g
at a range of frequencies, and one must consider the combined
response. A low-frequency perturbation satisfying

ω ∼ νk2 � csk, (6)

will predominantly excite shear modes, while perturbations at
higher frequencies,

ω ∼ csk � νk2, (7)

excite sound waves [44,45]. When hydrodynamics is applica-
ble, νk � cs because macroscopic length scales ∼k−1 must
greatly exceed the mean free path ∼ν. We see in Secs. VI
and VII that the longitudinal distance scale k−1 for rapidity
correlations is long and grows with proper time, so that the
low-frequency regime applies.

Second-order hydrodynamics is widely used in phe-
nomenological studies of nuclear collisions [24,25,28]. This
formulation is especially important for diffusive phenomena,
where it renders the theory causal. In first-order diffusion
(4), a δ function perturbation instantaneously spreads into
a Gaussian, with tails extending to infinity. New transport
coefficients at second order include relaxation times for shear
and bulk stresses, among other terms. Linearized forms of
the second-order equations are discussed in Refs. [25,46].
To linear order the shear modes satisfy a Maxwell-Cattaneo
equation (

τπ

∂2

∂t2
+ ∂

∂t

)
g = ν∇2g; (8)

see Eq. (45) in Ref. [25]. Shear modes satisfy ω = −iνk2/(1 −
iωτπ ), implying that the low-frequency behavior is diffu-
sive, but high-frequency pulses can propagate at speeds up
to

√
ν/τπ . We stress that this equation only applies for

perturbations of a uniform stationary fluid. We obtain this

024921-2



RAPIDITY CORRELATION STRUCTURE IN NUCLEAR . . . PHYSICAL REVIEW C 94, 024921 (2016)

equation and its generalization to nuclear collisions from the
Müller-Israel-Stewart equation in Sec. IV.

III. CORRELATIONS AND NOISE

In a given event, fluctuations in the transverse velocity
perturb the shear momentum current of the fluid by an amount
gi in a transverse direction i = x,y. We describe transverse
momentum fluctuations in terms of the correlation function,

rij
g = 〈gi(x1,t)gj (x2,t)〉 − 〈gi(x1,t)〉〈gj (x2,t)〉, (9)

where the brackets denote an average over an ensemble of
possible fluctuations with fixed initial conditions. Observables
in Sec. V are essentially integrals of this function averaged over
the physical range of initial conditions [7]. In local equilibrium,
the correlation function (9) is nonzero owing to stochastic
hydrodynamic noise. If we were to omit this noise, rg would
vanish in that limit. We refer to the average in Eq. (9) as the
“noise average” or the “thermal average.”

To calculate correlation functions such as Eq. (9), we must
specify: (1) the initial correlations, (2) the hydrodynamic
equations and equation of state, (3) the dissipative contri-
butions and transport coefficients, and (4) the hydrodynamic
noise. The first two effects are essential for describing the
measured anisotropy of azimuthal flow, and most practitioners
also include dissipation. Schematically, the initial correlations
are determined by fluctuations in the geometry and number
of participants. In each collision event, correlated particles
are more likely to be found near hot spots produced by
these fluctuations. We often associate hot spots with flux
tubes produced by the initial nucleon participants, but that
association is not essential for this work.

Hydrodynamic noise is a consequence of the same micro-
scopic scattering processes that produce dissipation. While
dissipation tends to dampen the effect of the initial hot
spots on pressure and velocity fluctuations, noise opposes
this dampening. A number of authors have begun to study
theoretical and phenomenological aspects of thermal noise,
mostly with the aim of incorporating noise in numerical
simulation codes [39–41,46–48].

In the coming parts of this section, we obtain a partial
differential equation for rg including the effect of noise. We
find that �rg = rg − rg, le satisfies a deterministic diffusion
equation (45) in second-order hydrodynamics. Our result (45)
is new and our technique for constructing partial differential
equations for correlation functions is unique in the field. In
Ref. [7] we used the first-order approximation (29) with only a
cursory discussion of the effect of noise. Equation (45) refines
a more schematic causal diffusion that we used to study net
charge and baryon number diffusion in Ref. [38]. We derive
Eq. (45) and discuss the physics at length in part to extend our
earlier works to current phenomenological problem. We also
hope to develop techniques for applying hydrodynamics to
calculate similar correlation functions for other applications.

To obtain these hydrodynamic equations for correlation
functions, we work with stochastic differential equations ana-
lytically in a way that is common in probability theory but less
familiar in physics. We establish these methods heuristically
by working from the familiar example of Brownian motion

up to diffusion problems more relevant to our system. See
Refs. [42,43] for a more detailed treatment.

A. Brownian motion

Brownian motion refers to the random zigzag motion of a
heavy particle suspended in a fluid. This motion is described in
one dimension by the Langevin equation mv̇ = −mγv + f,
where both the friction coefficient γ and the stochastic force f
are attributable to collisions with faster-moving fluid particles;
we assume nonrelativistic motion for this illustration. We write
the Langevin equation as a difference equation,

v(t + �t) − v(t) ≡ �v = −γ v(t)�t + �W, (10)

where �W represents the net change in v owing to micro-
scopic collisions in the time interval from t to t + �t . The
contribution to �W from each collision is independent and
uncorrelated in both direction and magnitude, so that

〈�W 〉 = 0 and 〈�W 2〉 = 	�t, (11)

when averaged over the noise, i.e., all possible trajectories of
the heavy particle starting with the same velocity v and position
x. The linear relation 〈�W 2〉 ∝ �t is typical of random-walk
processes and, unopposed by friction, would cause the variance
of v to increase in proportion to time [43]. We determine
the coefficient 	 in accord with the fluctuation-dissipation
theorem by demanding that fluctuations in equilibrium have
the appropriate thermodynamic limit.

We obtain differential equations for the averages 〈v(t)〉 and
〈v(t)2〉 as follows. The average of Eq. (10) gives 〈v(t + �t)〉 −
〈v(t)〉 = −γ 〈v(t)〉�t , so that

d〈v〉/dt = −γ 〈v〉 (12)

as �t → 0. In the long-time limit, the average 〈v〉 tends to zero,
although each individual particle remains in random motion.
The noise term has no effect on the mean.

In contrast, 〈v(t)2〉 is profoundly affected by thermal noise,
as is well known. We square Eq. (10) to obtain the difference
v(t + �t)2 − v(t)2 = 2v(t)�v + �v2. The average of the first
term is 2〈v(t)�v〉 = −2γ 〈v(t)2〉�t . We use Eq. (11) to
average the second term and find 〈�v2〉 = 	�t to leading
order in �t . Combining these contributions and taking �t →
0, we obtain

d〈v2〉/dt = −2γ 〈v2〉 + 	. (13)

The need to keep �v2 along with v�v in the presence of noise
is known in the theory of stochastic differential equations as
the It ô product rule.

In equilibrium the time derivative in Eq. (13) must vanish,
so that

	 = 2γ 〈v2〉eq. (14)

Had we omitted the noise contribution, Eq. (13) would give
〈v2〉eq = 0 rather than the equipartition value 〈v2〉eq = T/m.
We take the equilibrium value to determine 	 = 2γ T /m. One
usually assumes that the particle is always in equilibrium with
the fluid, i.e., 〈v2〉 ≡ T/m, but this need not be the case.

To find the displacement of the Brownian particle, ob-
serve that �x = v(t)�t is independent of the noise, so that
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�(x2) = 2x�x = 2xv�t . Similarly, �(xv) = x�v + v�x,
which gives

d〈x2〉
dt

= 2〈xv〉 and
d〈xv〉

dt
= −γ 〈xv〉 + 〈v2〉. (15)

In equilibrium, γ 〈xv〉eq = 〈v2〉eq = T/m for T , the tempera-
ture, so that Eq. (15) yields the celebrated random-walk result
〈x2〉 = (2T/γm)t for t � γ −1.

The stopping of fast (but nonrelativistic) particles is
schematically described by Eq. (13). The deviation of the
variance rv = 〈v2〉 − 〈v〉2 from its equilibrium value measures
the degree to which such particles are thermalized by the fluid.
Combining the equation of motion for 〈v(t)〉 with Eq. (13), we
write

d�rv/dt = −2γ�rv, (16)

where �rv = rv − rv, eq measures the deviation of the variance
of 〈v2〉 from its equilibrium value.

We emphasize two features of Eq. (16) common to our
key result (45). First, the relaxation of �rv to equilibrium
is independent of the noise 	. Second, the time scale for
relaxation of the variance �rv is 1/2γ , half the value for
the relaxation of the mean 〈v〉. This factor is already evident
by comparing Eqs. (12) and (13). This factor is important for
our estimate of τπ in this paper.

We remark that the propagation of heavy flavor through the
quark gluon plasma is often treated with Langevin dynamics
[49–51]. Theoretical aspects of relativistic random walks have
been addressed using methods similar to ours [52]. Recent
work involves numerical simulations of the relativistic version
of Eq. (10) with momentum-dependent γ factors; see, e.g.,
Ref. [53].

B. Particle diffusion with noise

To generalize this result to hydrodynamics, we start with
the first-order diffusion equation,

∂n

∂t
= −∇ · J, where J = −D∇n + j. (17)

The left equation describes number conservation, while the
right equation is Fick’s law for the current. The new contribu-
tion j is a stochastic current owing to the motion of particles
in and out of a fluid cell centered at x. For now we consider
only first-order hydrodynamics linearized about a stationary
background. This is a good starting point because the stochastic
diffusion equation is well understood [43].

We write this as a difference equation,

n(t + �t) − n(t) ≡ �n = D∇2n(t)�t + �W, (18)

where �W represents the increment to the density n at
the point x owing to j from t to t + �t . These increments
satisfy 〈�W (x1)�W (x2)〉 = 	12�t . The stochastic nature of
j further implies that �W (xi) are uncorrelated for x1 and x2

corresponding to different fluid cells. In the hydrodynamic
limit where the cell size tends to zero, we therefore expect 	12

to be singular at x1 = x2 and zero otherwise [43].

As with the previous example, the average of Eq. (18)
satisfies the diffusion equation

∂〈n〉
∂t

= D∇2〈n〉. (19)

Now consider the correlation function 〈n(x1,t)n(x2,t)〉 ≡
〈n1(t)n2(t)〉. To obtain a differential equation for this corre-
lation function, we write a difference equation for �〈n1n2〉 ≡
〈n1(t + �t)n2(t + �t)〉 − 〈n1(t)n2(t)〉. We again use the It ô
product rule,

�〈n1n2〉 = 〈n1�n2〉 + 〈n2�n1〉 + 〈�n1�n2〉, (20)

where 〈�n1�n2〉 = 	12�t is the same order in �t as the other
terms owing to its stochastic nature. We combine Eqs. (18) and
(20) to obtain [

∂

∂t
− D

(∇2
1 + ∇2

2

)]
rn = 	12, (21)

where

rn = 〈n1n2〉 − 〈n1〉〈n2〉. (22)

The local equilibrium correlation function rn, le must be time
independent because we have assumed a static background
flow. We must then take 	12 ≡ −D(∇2

1 + ∇2
2 )rn, le.

It is useful to eliminate the noise term in Eq. (21) by writing[
∂

∂t
− D

(∇2
1 + ∇2

2

)]
�rn = 0, (23)

where �rn = rn − rn, le. Mathematically, this equation is
easier to work with than Eq. (21) because 	12 is singular at
x1 = x2; see Eq. (24). This result is derived more formally in
Ref. [43]. We used a generalization of this equation to study
second-order net charge correlations in Ref. [38].

To determine the local equilibrium rn, le, observe that the
particle number fluctuations satisfy Poisson statistics when
interactions and Bose-Fermi corrections are negligible and the
volume under consideration is sufficiently small that the grand-
canonical ensemble applies. Equilibrium fluctuations then
satisfy 〈N2〉 − 〈N〉2 = 〈N〉, which implies that the density
correlations rn = 〈δn1δn2〉 must equal rn, le = 〈n1〉δ(x1 − x2)
in local equilibrium.

We now obtain the noise term:

	12 = −(∇2
1 + ∇2

2

)
D〈n1〉δ(x1 − x2). (24)

The presence of noise when x1 = x2 owing to Eq. (24) ensures
that the particle number within the same fluid cell will fluctuate
even in equilibrium. Had we omitted the contribution from
noise in Eqs. (18) and (21), i.e. taken 	12 = 0, then rn

would tend to zero instead of rn, le as t → ∞, in violation
of thermodynamics.

The true utility of Eq. (23) lies in the fact that �rn is directly
observable by counting particles. The density of distinct pairs
is 〈n1n2〉 − 〈n1〉δ(x1 − x2). In the absence of correlations this
density is 〈n1〉〈n2〉. In equilibrium, particles at different points
are uncorrelated, because 〈n1n2〉 = 〈n1〉〈n2〉 except when x1 =
x2. See Refs. [54] and [38] for further discussion of particle
correlation measurements.

We interpret Eq. (23) as follows. Suppose that the initial
distribution for each event is “clumpy,” with regions of particle
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surplus and deficit. This inhomogeneity produces spatial
correlations, because it is more likely to find particles together
near a dense clump. The spatial size of clumps sets the initial
scale of �rn. As time goes on, Eq. (23) describes the tendency
of diffusion to distribute particles as evenly throughout the
volume as possible in the presence of noise.

C. Momentum diffusion with noise

We start with the first-order momentum diffusion equation
as studied in Ref. [7]. Each vector component of the shear
contribution to the momentum current satisfies a diffusion
equation (4), for which we write difference equations,

�gi = ν∇2gi�t + �Wi, (25)

where 〈�W (x1)i�W (x2)j 〉 = 	
ij
12�t . The momentum corre-

lation function,

rij
g = 〈

gi
1g

j
2

〉 − 〈
gi

1

〉 〈
g

j
2

〉
, (26)

satisfies the diffusion equation[
∂

∂t
− ν

(∇2
1 + ∇2

2

)]
rij
g = 	

ij
12. (27)

As before, the noise is fixed to give the correct local
equilibrium fluctuations,

	
ij
12 = −ν

(∇2
1 + ∇2

2

)
r

ij
g, le, (28)

where r
ij
g, le is the equilibrium correlation function. Note

that 〈g〉 ≡ 0 by definition, but we keep this quantity in the
calculations for generality. We can then write[

∂

∂t
− ν

(∇2
1 + ∇2

2

)]
�rij

g = 0, (29)

where �r
ij
g = r

ij
g − r

ij
g, le.

We interpret Eq. (29) and its second-order extension (45)
following our discussion of particle diffusion. An initially
clumpy distribution produces inhomogeneous gradients, re-
sulting in anisotropic transverse flow. Viscosity works to
reduce the anisotropy, driving r

ij
g to r

ij
g, le, the value set by

the thermal noise, so that �r
ij
g → 0.

Generalizations of Eqs. (23) and (29) are phenomenolog-
ically useful, so we do not need the explicit forms of 	

ij
12 or

r
ij
g, le to address observations. That said, we discuss the noise

as an aside because of its theoretical interest. Let f (x,p,t)
represent the phase-space density in an event, which differs
from the thermal average 〈f (x,p,t)〉 by an amount δf = f −
〈f 〉. Poisson statistics requires that 〈δf1δf2〉 → 〈f1〉δ(x1 −
x2)δ(p1 − p2) in local equilibrium. The total momentum den-
sity excess in an event is Mi = T 0i − 〈T 0i〉 = ∫

piδf (x,p)dp.
The correlation function r

ij
M = ∫

pi
1p

j
2〈δf1δf2〉dp1dp2 has the

equilibrium form r
ij
M, le = Aδij δ(x1 − x2), where A = wT . To

determine A = ∫
(pi)2〈f 〉dp, it suffices to take v � 1, so

that 〈f 〉 ≈ e−(E−p·v)/T and
∫

pi〈f 〉dp ≈ wvi . It follows that
w = ∫

pi(∂f/∂vi)dp = ∫
(pi)2(−∂f/∂E)dp = A/T .

To obtain the fluctuations of the shear modes rg from rM ,
we use Eq. (26) to write r

ij
g = P i

l (x1)P j
m(x2)rlm

M , where P is a

linear operator that projects out the divergence-free component
of M such that PM = g. Equation (28) then yields

	
ij
12 = −(

δij∇2
1 − ∇ i

1∇j
1

)
ηT δ(x1 − x2) + (1 ↔ 2). (30)

Note that the operator P is used in electromagnetism to project
out the transverse component of the electric current.

We turn now to the focus of this paper: the diffusion of
momentum fluctuations in linearized second-order hydrody-
namics. As in Brownian motion, we convert the second-order
equation (8) into a first-order stochastic system,

�hi = −γ (hi − Lgi)�t + γ�Wi, (31)

where L = ν∇2, γ = 1/τπ , and

�gi = hi�t. (32)

Again we keep the quantities 〈h〉 and 〈g〉 around for generality,
even though they are zero. As in Brownian motion, only
the first equation has a stochastic contribution satisfying
〈�W (x1)i�W (x2)j 〉 = 	

ij
12�t . For the moment, we hide the

vector indices for simplicity. We again follow the Brownian
motion example, writing

�〈g1g2〉 = 〈g1�g2〉 + 〈g2�g1〉
= (〈g1h2〉 + 〈h1g2〉)�t

to leading order in �t , because Eq. (32) is unaffected by noise.
We define the covariance

rgh = 〈g1h2〉 − 〈g1〉〈h2〉, rhg = 〈h1g2〉 − 〈h1〉〈g2〉, (33)

and find

∂

∂t
rg = rgh + rhg (34)

for rg defined in Eq. (26). Likewise, we use Eqs. (31) and (32)
to find

�〈g1h2〉 = 〈g1�h2〉 + 〈h2�g1〉
= (〈h1h2〉 − γ 〈g1h2〉 + γL2〈g1g2〉)�t,

so that (
∂

∂t
+ γ

)
rgh = rh + γL2rg, (35)

where

rh = 〈h1h2〉 − 〈h1〉〈h2〉; (36)

a similar equation for rhg replaces L2 with L1. The sum of
these functions satisfies(

∂

∂t
+ γ

)
(rgh + rhg) = 2rh + γ (L1 + L2)rg. (37)

To derive an evolution equation for rh, we must use the
Itô product rule,

�〈h1h2〉 = 〈h1�h2〉 + 〈h2�h1〉 + 〈�h1�h2〉, (38)

because 〈�h1�h2〉 = γ 2	12�t , owing to the noise contribu-
tion to Eq. (31). We obtain(

∂

∂t
+ 2γ

)
rh = γL1rgh + γL2rhg + γ 2	12. (39)
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In equilibrium in an infinite system, all the time derivatives
vanish and the system is translationally invariant, so that
Eq. (34) implies rgh, le = rhg, le = 0. Moreover, Eqs. (35) and
(39) imply γ	12 = 2rh, le = −γ (L1 + L2)rg, le, so that 	12 is
given by Eq. (30).

We again introduce �rg = rg − rg, le and �rh = rh − rh, le

in Eqs. (34), (37), and (39) to eliminate the 	12 contributions.
Next we use Eq. (34) to eliminate rgh + rhg in Eq. (37) and
find (

∂

∂t
+ γ

)
∂

∂t
�rg = 2�rh + γ (L1 + L2)�rg. (40)

We then write(
∂

∂t
+ 2γ

)
�rh = 1

2
γ (L1 + L2)(rgh + rhg)

+1

2
γ (L1 − L2)(rgh − rhg). (41)

Taking ∂/∂t + 2γ on Eq. (40) and using Eq. (34), we find(
∂

∂t
+ γ

)[
∂2

∂t2
+ 2γ

∂

∂t
− 2γ (L1 + L2)

]
�rg

= γ (L1 − L2)(rgh − rhg). (42)

The difference rgh − rhg on the right side of Eq. (42) satisfies(
∂

∂t
+ γ

)
(rgh − rhg) = γ (L2 − L1)�rg, (43)

where we use Eq. (35) and take L1rg, le = L2rg, le, because the
local equilibrium distribution rg, le is translationally invariant.

We can appreciably simplify Eq. (42) if rgh ≈ rhg , as
follows when the right side of Eq. (43) is negligible. To
see when this is the case, write L1,2 in terms of the relative
and average coordinates, xr = x1 − x2 and xa = (x1 + x2)/2,
respectively. Then

L1 + L2 = 2ν∇2
r + ν

2
∇2

a and L1 − L2 = 2ν∇a · ∇r .

(44)

The right side of Eq. (43) is zero if correlations are translation-
ally invariant, so that they depend only on xr . If correlations
are symmetric in xa and slowly varying compared to xr , then
Eq. (43) is negligible near xa = 0. This holds for the situations
we consider in this paper. Finally, if we average the correlation
functions over the full range of xa then the right side of Eq. (44)
contributes a surface term that must vanish.

We solve the approximate evolution equation,[
τπ

2

∂2

∂t2
+ ∂

∂t
− ν

(∇2
1 + ∇2

2

)]
�rg = 0, (45)

in which we restore the original notation. This equation is
a solution of Eq. (42) for rgh = rhg in an infinite system.
Equation (45) is hyperbolic, so that an initial pulse will
propagate as a wave, as noted in Sec. II. It is also a relaxation
equation,

∂

∂t
� = − 2

τπ

[
� − ν

(∇2
1 + ∇2

2

)
�rg

]
, (46)

where � = ∂(�rg)/∂t . For t � τπ/2, the Navier-Stokes
first-order diffusion equation (29) holds. The halving of the
relaxation time compared to the mean behavior described by
Eq. (8) is precisely the same behavior we saw in Brownian
motion; see Eq. (16).

We comment that there are two cases where we may
need to solve the coupled equations (40), (41), and (43),
rather than Eq. (45). In considering the rapidity dependence
in an asymmetric pA collision, there may be an interesting
asymmetric xa dependence. However, we can also remove
this dependence by averaging over xa . Alternatively, if the
coefficients are strongly time or position dependent, then the
derivation of Eq. (45) will not hold.

IV. ION COLLISIONS

In this section we apply our formulation to the diffusion of
transverse momentum fluctuations through the expanding fluid
produced in a nuclear collision. Such fluctuations are driven
by the shear modes we have been discussing. We begin by
summarizing the relevant relativistic hydrodynamic equations.
For simplicity, we omit contributions from bulk viscosity and
thermal conduction because they do not affect the shear modes.
To set the pattern for the rest of this section, we derive Eq. (8)
describing shear perturbations of a static fluid. We then develop
a linearized hydrodynamic description of fluctuations about a
fluid with an underlying Bjorken flow [46]. After obtaining the
familiar equations describing the thermal-averaged underlying
flow, we generalize Eq. (45) for the fluctuations of that flow.

Recall that in relativistic hydrodynamics the state of the
fluid is characterized by the local energy density e, pressure
p, and four velocity uμ = γ (1,v) for γ = (1 − v2)−1/2 at each
space-time point. The equations of motion of the fluid are
determined by energy-momentum conservation ∂μT μν = 0.
The stress-energy tensor for an ideal dissipation-free fluid is
T

μν
id = (e + p)uμuν − pgμν . More generally, T μν = T

μν
id +

�μν , where �μν describes the deviation from ideal behavior
owing to viscosity and other dissipative processes. Such
processes arise when the mean free path of individual particles
approach the space-time scales over which e, p, and uμ vary.
We therefore express �μν using the comoving time derivative
and gradient,

D = uμ∂μ and ∇μ = ∂μ − uμuν∂ν, (47)

for the metric gμν = diag(1,−1,−1,−1). In the local rest
frame where uμ = (1,0,0,0), these quantities are the time
derivative and three-gradient.

At first order in the mean free path, �μν is given by the
shear stress,

Sμν = η
(∇μuν + ∇νuμ − 2

3�μν∇αuα
)
, (48)

where η is the shear viscosity coefficient and we use the
Landau-Lifshitz definition of the four velocity. The projector
�μν = gμν − uμuν satisfies �μνuν = 0. Requiring ∂μ(T μi

id +
Sμi) = 0 for each spatial direction i yields the Navier-Stokes
equation.

In second-order hydrodynamics, one writes relaxation
equations for the shear stress, bulk stress, and heat current
[24,28,55]. We keep only the shear contribution, which
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satisfies

�μ
α�ν

βD�αβ = − 1

τπ

(�μν − Sμν) − κ∇αuα�μν, (49)

where τπ is the shear relaxation time and κ is given by Eq. (54).
This Müller-Israel-Stewart equation has seen wide use; see,
e.g., Ref. [46].

To illustrate how shear modes evolve in second-order
hydrodynamics, consider the fluctuations of a fluid that is,
for the most part, at rest. We take the momentum current
Mi ≈ (e + p)vi to be small, so that momentum conservation
∂μT μi = 0 implies

∂

∂t
Mi + ∂ip = −∂μ�μi, (50)

to linear order in v and M. Similarly, Eq. (49) gives

∂

∂t
�μi = − 1

τπ

(�μi − Sμi) (51)

to this order. As in Sec. II we write Mi = gi
l + gi , where gi is

the divergence-free shear current. The curl-free current gi
l can

be expressed as the gradient of a potential and, consequently,
receives contributions only from terms proportional to ∂i in
Eqs. (50) and (51). Discarding these terms, we write

∂

∂t
gi = −∂μ�

μi
T and

∂

∂t
�

μi
T = − 1

τπ

(
�

μi
T − S

μi
T

)
,

where �
μi
T and S

μi
T include only the shear contributions. Taking

the time derivative of the left equation and the gradient of the
right, we eliminate �

μi
T to find(

τπ

∂2

∂t2
+ ∂

∂t

)
gi = −∂μS

μi
T .

Linearizing Eq. (48) for perturbations of a fluid at rest, we find
∂μS

μi
T = −ν∇2gi , which gives Eq. (8). This equation holds

only for fluctuations of a quiescent fluid and has been derived
by different methods elsewhere [25].

In nuclear collisions, hydrodynamic noise produces small
variations of the momentum current Mi = T 0i − 〈T 0i〉 in
each event compared to the average over this noise. We
assume the average flow velocity has the Bjorken form, uμ =
(t/τ,0,0,z/τ ), where τ = (t2 − z2)1/2 and η = (1/2) ln[(t +
z)/(t − z)]. The average entropy density s then evolves as
a function of proper time following the set of evolution
equations first derived in Ref. [56] (and the erratum). We
take uν∂μ(T μν

id + �μν) = 0 and use uν∂μT
μν

id = De + (e +
p)∇μuμ. Bjorken flow implies ∇μuμ = 1/τ and uμ∂μ =
∂/∂τ , while de = T ds and e + p = T s at zero net baryon
density. We find

ds

dτ
+ s

τ
= �

T τ
, (52)

where � = �zz. The entropy density evolves owing to lon-
gitudinal expansion and viscous heating. Causality delays the
heating following the relaxation equation (49), which implies

d�

dτ
= − 1

τπ

(
� − 4η

3τ

)
− κ

τ
�. (53)

The coefficient κ is

κ = 1

2

{
1 + d ln(τπ/ηT )

d ln τ

}
. (54)

For a conformal liquid in which the only scale is T , τπ ∼ 1/T
and η ∼ s ∼ T 3 give κ = 4/3.

We next study fluctuations relative to this mean flow,
focusing on the longitudinal variation of transverse flow
fluctuations. To generalize Eq. (50), we compute ∂μ(δT μi

id +
δ�μi) = 0 including the underlying expansion in the first term
to obtain (

∂

∂τ
+ 1

τ

)
Mi + ∂ip = −∂μδ�μi, (55)

where we take Mi = δT 0i
id for i = x,y the Cartesian transverse

coordinates. Linearizing the relaxation equation (49) following
Ref. [46] gives

Dδ�μi = − 1

τπ

(δ�μi − δSμi) − κ

τ
δ�μi, (56)

where we eliminate many of the terms by using the Bjorken-
flow identities ∇̃μτ = (t/τ,0,0,z/τ ) = uμ and ∂μuν =
�̃μν/τ , where the velocity projector �̃μν only has nonzero
t and z components [18]. Equation (56) includes a κ term
absent in Eq. (51) because ∇αuα = 1/τ .

The shear contribution to Mi must be divergence free, so
that Eq. (55) implies(

∂

∂τ
+ 1

τ

)
gi = −∂μδ�

μi
T . (57)

The divergence-free contribution δ�
μi
T satisfies Eq. (56) with

δSμi replaced with δS
μi
T . Linearizing Eq. (48) for Bjorken

flow gives δS
μi
T = η∇̃μδui = ν∇̃μgi , where ∇̃μ refers to the

gradient comoving with the Bjorken flow.
As with the static background equations (50) and (51),

we seek to obtain an equation for gi by using Eqs. (56) and
(57) to eliminate δ�

μi
T . Observe that uμδ�

μi
T = 0 for Bjorken

flow, while Eq. (56) further implies that uμDδ�
μi
T = 0.

Equation (57) then reduces to(
∂

∂τ
+ 1

τ

)
gi = 1

τ

∂

∂τ
(giτ ) = −∇̃μδ�μi, (58)

where we have used the identity ∂μ = uμD + ∇μ. Next we
take the gradient ∇̃μ = �̃μν∂ν of Eq. (56). Using

∇̃μ(uν∂νδ�
μi) = (∇̃μuν)(∂νδ�

μi) + uν∂ν(∇̃μδ�μi)

= 1

τ
∇̃μδ�μi + ∂

∂τ
(∇̃μδ�μi),

we find (
∂

∂τ
+ 1

τπ

+ κ

τ

)
(τ ∇̃μδ�μi) = ν

τπ

(∇̃2giτ ). (59)

Together, Eqs. (58) and (59) describe the longitudinal diffusion
of transverse flow fluctuations of Bjorken average flow.

To obtain an equation analogous to Eq. (8) for the expanding
system, observe that the rapidity density of total momentum
Gi ≡ ∫

giτdx⊥, where the integral is over the transverse area
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of the two colliding nuclei. If one identifies spatial rapidity
η with the momentum-space rapidity of particles, then Gi is
observable. We combine Eqs. (58) and (59) to find that this
rapidity density satisfies

τπ

∂2Gi

∂τ 2
+

(
1 + κτπ

τ

)∂Gi

∂τ
= ν

τ 2

∂2Gi

∂η2
. (60)

In the absence of diffusion, the rapidity density Gi remains
constant, although the spatial density gi changes owing to
the underlying Bjorken expansion. Diffusion tends to broaden
the rapidity dependence of Gi . This equation is modified by
noise, as in the previous sections. To define the Langevin force
in the evolving system, observe that noise is attributable to the
microscopic motion within a fluid cell. Hydrodynamics applies
when each cell is effectively pointlike. Therefore, we define
the noise in the local rest frame of the cell using Eq. (30) and
transform to rapidity coordinates. Nevertheless, care would be
needed to treat a cell of finite size because, e.g., it takes time
for fluctuations to propagate across a cell. Even for simple
Brownian motion, it would take time for a heavy particle of
finite size to respond to random collisions. This is an interesting
problem for future research [57].

We finally obtain the second-order viscous diffusion equa-
tion for transverse momentum correlations in rapidity[

τ ∗
π

2

∂2

∂τ 2
+ ∂

∂τ
− ν∗

τ 2

(
2

∂2

∂η2
r

+ 1

2

∂2

∂η2
a

)]
�r

ij
G = 0, (61)

where

r
ij
G = 〈

Gi
1G

j
2

〉 − 〈
Gi

1

〉 〈
G

j
2

〉
(62)

and �r
ij
G is the difference of r

ij
G from its equilibrium value

r
ij
G, le. We stress that �r

ij
G is unaffected by the noise. For

convenience we use the relative rapidity ηr ≡ η1 − η2 and
average rapidity ηa = (η1 + η2)/2 in Eq. (62). In deriving
Eq. (61) we start with Eq. (60) and absorb the effect of κ by
defining τ ∗

π = τπ/(1 + κτπ/τ ) and η∗ = η/(1 + κτπ/τ ). We
then follow the derivation of Eq. (45), taking the coefficients to
vary slowly with time. To be sure, the coefficients also depend
on time because τπ and η vary with the mean temperature
obtained from Eqs. (52) and (53). To strictly account for the
time dependence, one may solve a family of coupled equations
(40), (41), and (43). We feel that Eq. (61) is adequate for our
exploratory study.

As noted earlier, Eq. (61) is a hyperbolic wave equation.
Because it can also be written in the form of Eq. (46), it relaxes
to a diffusion equation

∂

∂τ
�r

ij
G ≈ ν∗

τ 2

(
2

∂2

∂η2
r

+ 1

2

∂2

∂η2
a

)
�r

ij
G , (63)

for τ � τπ/2, except near the wave font, where the second
time derivative is always important. The temperature and time
variation of coefficients, as well as the explicit τ dependence
of Eq. (63), affect the relaxation rate. We see that the relaxation
equation (53) has a similar form for �, implying that the stress
energy tensor tends to the Navier-Stokes form for τ � τπ ,
with a similar caveat about the τ dependance. This behavior
will have important observable consequences in Sec. VI.

V. OBSERVABLES

The diffusion of transverse momentum correlations can be
observed by measuring the covariance

Cij = 〈N〉−2

〈∑
a �=b

pi,apj,b

〉
− 〈pi〉〈pj 〉, (64)

where i and j label the vector components of the momentum,
a and b label particles from each event, and the brackets here
represent the event average. The average momentum is 〈pi〉 ≡
〈∑a pi,a〉/〈N〉. In the absence of correlations Cij = 0, as is
the case for local equilibrium in an infinite system.

In this section we must distinguish averages over events
from the noise averages used exclusively in the previous
sections. Here we denote the event average of X as 〈X〉 and
the noise average as 〈X〉n. Mathematically, event averages of
a noise-averaged quantity 〈〈X〉n〉 amount to averages over the
initial conditions for 〈X〉n.

The covariance Cij for Cartesian transverse components
i = x,y measures the fluctuations of conserved quantities:
the components of total transverse momentum [21]. Such
fluctuations are highly constrained, as we see by considering
an ideal measurement that detects all particles with perfect
efficiency. There are no fluctuations in this limit, because each
component of the total momentum Pi ≡ ∑

a pi,a vanishes in
every event. The unrestricted sum over pairs

∑
a,b pi,apj,b =

PiPj also vanishes, so that
∑

a �=b pi,apj,b = −∑
a pi,apj,a . It

follows from Eq. (64) that

Cij → −
〈
p2

i

〉
〈N〉δij (65)

for all particles in the full ηr range. We point out that
fluctuations of conserved quantities have been studied in many
contexts; see, e.g., Ref. [58].

Measurements of Cij in a finite rapidity interval differ from
Eq. (65) because conserving particles fall outside the interval.
Our interest lies in finding the mechanisms that transport
them outside that interval. Transverse momentum is distributed
over a large rapidity range early in the collision by glasma
fields together with jet, minijet, and string fragmentation
processes. Subsequent evolution is more local, involving
particle scattering and, ultimately, diffusion. Measurement of
Cij probes these rapidity scales. Furthermore, the evolution
of azimuthal anisotropy can also be studied using γ ′ ≡
(Cyy − Cxx)/(Cyy + Cxx), as proposed in Ref. [21].

The covariance in a rapidity interval is related to the spatial
correlation function (62) by

Cij = 〈N〉−2
∫ 〈

�r
ij
G (ηr,ηa)

〉
dηrdηa. (66)

The brackets in 〈�r
ij
G 〉 remind us that this quantity is first

averaged over the noise as in Eq. (9), and then over the initial
conditions, corresponding to a true event average.

The result (66) was first obtained in Ref. [7]. Here
we expand the arguments to clarify the approxima-
tions. Consider δf (x,p,t), the difference of the phase-
space distribution in an event from the noise-averaged
〈f 〉n. The contribution of fluctuations to the transverse
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momentum current is Mi(x) = ∫
δf (x,p)pidp. Fluctua-

tions contribute to the unrestricted sum
∑

a,b pi,apj,b =
〈∫ pi1pj2dn1dn2〉n = PiPj + ∫ 〈Mi(x1)Mj (x2)〉ndx1dx2. Av-
eraging this quantity over events yields 〈∑a,b pi,apj,b〉 =
〈PiPj 〉 + ∫ 〈〈Mi(x1)Mj (x2)〉n〉dx1dx2. We assume that freeze-
out occurs at a constant proper time within the colli-
sion volume, so that limiting the space integrals to a
spatial rapidity interval gives

∫ 〈〈Mi(x1)Mj (x2)〉n〉dx1dx2 =∫ 〈〈Mi(η1)Mj (η2)〉n〉dηrdηa , where Mi = ∫
Miτdx⊥ is the

rapidity density of transverse momentum.
Our physics arguments suggest that shear modes r

ij
G

in Eq. (62) drive the correlations of M; we prove this
shortly. For now, we identify

∫ 〈〈Mi(η1)Mj (η2)〉n〉dηrdηa =∫ 〈rij
G 〉dηrdηa , so that∫ 〈

r
ij
G

〉
dηrdηa =

〈 ∑
all a,b

pi,apj,b

〉
− 〈PiPj 〉. (67)

We use Eq. (64) to write the unrestricted sum as〈 ∑
all a,b

pi,apj,b

〉
= 〈N〉2Cij +

〈∑
a

pi,apj,a

〉
+ 〈Pi〉〈Pj 〉,

(68)
where we added and subtracted 〈Pi〉〈Pj 〉 = 〈N〉2〈pi〉〈pj 〉 to
obtain Cij . Combining Eqs. (67) and (68) then gives

〈N〉2Cij =
∫ 〈

r
ij
G

〉
dηrdηa + cov(Pi,Pj ) −

〈∑
a

pi,apj,a

〉
,

(69)

where cov(Pi,Pj ) = 〈PiPj 〉 − 〈Pi〉〈Pj 〉. In local equilibrium
Cij ≡ 0, so that∫ 〈

r
ij
G, le

〉
dηrdηa =

〈∑
a

pi,apj,a

〉
− cov(Pi,Pj ). (70)

Subtracting Eq. (70) from Eq. (67) and using Eq. (68) gives
Eq. (66).

We comment that the cov(Pi,Pj ) term on the second line of
Eq. (69) represents fluctuations of the total momentum in the
rapidity interval from event to event. The second term includes
additional fluctuations from the noise in each event.

Generally, M combines shear flow g with a curl-free
contribution, gl . However, gl does not contribute to the integral
quantity Mi , because we can write gl = ∇ϕ. The rapidity
density Mi is then proportional to

∫
dxi∂ϕ/∂xi , which

depends only on the value of the potential ϕ on the spatial part
of the freeze-out surface, where interactions effectively cease.
There is no resorting force for ripples in this surface as there
would be, e.g., for ocean waves. The curl-free contribution gl to
fluctuations at the freeze-out surface must therefore be along
the normal direction, so that the surface is an equipotential.
The net contribution of gl to Mi therefore vanishes.

Observe that Eq. (65) implies a fixed value for the integral
of 〈�r

ij
G 〉 over all rapidity when all particles are measured.

A system completely constrained by momentum conservation
can never reach the uncorrelated local equilibrium state. Math-
ematically, this constraint constitutes a boundary condition

for 〈�r
ij
G 〉 that amounts to a rapidity independent shift in

magnitude.
Experimental studies of momentum correlations have fo-

cused on pt , rather than px and py . In Ref. [7] we advocated
studying such fluctuations using

C = 〈N〉−2

〈∑
a �=b

pt,apt,b

〉
− 〈pt 〉2

= 〈N〉−2
∫

〈�rG(ηr,ηa)〉dηrdηa, (71)

where 〈�rG〉 is the rapidity correlation function for the density
G = τ

∫
grrdrdφ, where gr is the radial component. Most of

the basic arguments relating the rapidity dependence of C to
the corresponding correlation function �r follow as above.
The difference is that pt is not a conserved quantity. For all
particles in the full rapidity range, Eq. (65) is replaced with

C → 〈(Pt − 〈Pt 〉)2〉
〈N〉2

−
〈
p2

t

〉
〈N〉 ; (72)

the fluctuations of total Pt from event to event can be quite
large and dependent on experimental details.

The STAR collaboration at RHIC reports a differential ver-
sion of the quantity C as a function of relative pseudorapidity
ηr and azimuthal angle φr of pairs,

C(ηr,φr ) =
〈 ∑

a �=b p
t,a

p
t,b

〉
1,2

〈N〉1〈N〉2
− 〈pt 〉1〈pt 〉2, (73)

where the numbers 〈N〉k and 〈pt 〉k refer to the particle number
and transverse momentum in (ηk,φk) bins for particles k =
1,2 [22]. The broad features of the two-particle correlations
displayed by Eq. (73) as functions of ηr and φr are quite
familiar from measurements that omit the momentum weights.
The differential C(ηr,φr ) shows the usual ridge near φr = 0 as
a function of ηr . This near-side structure builds to a large
symmetric peak at ηr = 0,φr = 0. The away-side region also
shows also a ridge centered about φr = π that is not as high
and roughly independent of rapidity.

The rapidity dependence of C is characterized by the width
σ of the near-side peak in ηr . In Au + Au collisions at the
top RHIC energy, experimenters find that σ increases from
0.54 ± 0.02(statistical) ± 0.06(systematic) in the most periph-
eral collisions to 0.94 ± 0.06(statistical) ± 0.17(systematic) in
central collisions, consistent with predictions from Ref. [7]
with a mean viscosity η/s = 0.13 ± 0.03. Significantly, STAR
also presented the detailed rapidity distributions C(ηr ) for a
three centralities [22] and for several other centralities [23].
We study these measurements later.

VI. DIFFUSION VS EXPERIMENT

In this section we explore the behavior of �rG and
its influence on the qualitative features of C. To keep our
discussion here as simple as possible, we take τ ∗

π and ν∗ to
be constant. Generally, to solve Eq. (61) for �rG we must first
determine the behavior of the event-averaged temperature T
as a function of proper time using Eqs. (52) and (53) and a
realistic equation of state. The temperature then influences the

024921-9



SEAN GAVIN, GEORGE MOSCHELLI, AND CHRISTOPHER ZIN PHYSICAL REVIEW C 94, 024921 (2016)

evolution of fluctuations by changing the kinematic viscosity
ν = η/T s, relaxation time τπ = βν, and the coefficient κ .
This behavior is important for a quantitative analysis, but it
makes systematic understanding of the equations very difficult.
Taking constant τ ∗

π and ν∗ decouples Eq. (61) from Eqs. (52)
and (53). Furthermore, with this assumption we need not
distinguish event and thermal averages. We therefore drop the
brackets around �rG. We will study more realistic transport
coefficients in future work.

The most important feature of �rG is its width in relative
rapidity. Identified as an observable sensitive to viscosity in
Ref. [7], this width has since been measured [22]. To compute
the width, we follow Ref. [38] and multiply Eq. (61) by ηn

r .
Next, we integrate over ηr and ηa and use

∫
ηn

r ∂
2�rG/∂η2

r =
n(n − 1)

∫
ηn−2

r �rG, which is nonzero only for n � 2. We find(
τ ∗
π

2

d2

dτ 2
+ d

dτ

)
A

〈
ηn

r

〉 = 2ν∗

τ 2
n(n − 1)A

〈
ηn−2

r

〉
, (74)

where 〈ηn
r 〉 = A−1

∫
ηn

r �rGdηrdηa are the normalized mo-
ments of the rapidity correlation function. The amplitude A
and the mean 〈ηr〉 both satisfy Eq. (74) with the right side
equal to zero. We take them to be constant and, moreover, take
〈ηr〉 = 0 assuming a symmetric system.

The second moment gives the rapidity width σ 2 = 〈η2
r 〉,

which satisfies (
τ ∗
π

2

d2

dτ 2
+ d

dτ

)
σ 2 = 4ν∗

τ 2
. (75)

This equation holds generally for time- and temperature-
dependent ν∗ and τ ∗

π . However, with constant values of these
parameters, we see that the increase of the width is a function
of the lifetime of the system alone.

First-order diffusion is described by Eq. (75) for τ ∗
π = 0

and ν∗ = ν. We solve Eq. (75) for constant ν to find

σ 2 = σ 2
0 + 4ν

τ0

(
1 − τ0

τ

)
, (76)

a result first obtained in Ref. [7]. Diffusion increases the width
quickly and acausally at early times, reaching the asymptotic
value

σ 2
∞ = σ 2

0 + 4ν/τ0. (77)

This saturation of the rapidity width to the value (77) is a
straightforward consequence of Bjorken flow. In a stationary
liquid, a spike in momentum diffuses over a range ∼(2νt)1/2

that grows with time t . Bjorken expansion of the underlying
fluid stretches the longitudinal scale ∝ t , rapidly overtaking
diffusion and “freezing in” the initial inhomogeneity.

In Fig. 1 we show experimental measurements of the
rapidity width of the near-side peak of the differential
correlation function [22]. We present these results as a function
of the number of participants Npart to gauge the centrality. To
compare first-order diffusion to the measured widths (77),
we must specify the freeze-out time τF as a function of
Npart. Hydrodynamic calculations with a hadronic afterburner
are consistent with τF increasing roughly as a square of
the root-mean-square radius of the participants R [59]. We

FIG. 1. Rapidity width as a function of the number of participants
for second-order momentum diffusion calculations (solid curve)
compared to first-order results. Data (solid circles) from STAR
include a shaded area to denote the systematic uncertainty in the
fit procedure [22].

approximate that behavior as

τF − τ0 = K[R(Npart) − R0]2, (78)

where τ0 is the formation time and R0 is roughly the proton
size. We compute Npart and R from a Glauber model and fix
the constant K so that the freeze-out time in the most central
collisions has a specified value τFc.

The rapidity width in first-order diffusion rises with
increasing centrality in rough accord with data, as shown
in Fig. 1. The dash-dotted curve shows our best fit to this
data using Eq. (76) evaluated at τF , Eq. (78). Agreement
depends mainly on the kinematic viscosity ν = η/T s, where
η/s = 1/4π and T is the freeze-out temperature. Here we take
T = 140 MeV to be the same for all centralities. Values of the
space-time parameters τ0 = 0.65 fm and τFc = 12 fm then
specify Eq. (77) and the lifetime (78), respectively.

Though overall agreement in Fig. 1 is adequate, our
first-order result is consistently above the data in the region
where the data grows the most rapidly. This disagreement is
attributable to the rapid rise of the width (76) with τ = τF in
first-order diffusion.

To find the rapidity width for second-order diffusion, we
solve Eq. (75) for constant τ ∗

π = τπ and ν∗ = ν. We must
now specify an initial condition for dσ 2/dτ ≡ θ2

0 at τ = τ0,
the value of which is unknown. An analogous situation arises
when solving the one-body equations (52) and (53), for which
we must specify an initial value for �. Some authors take �0 =
4η/3τ0, the Navier-Stokes value [60,61]. This assumption aims
to reduce the relative importance of second-order corrections
to Navier-Stokes behavior, as explained in Ref. [60]. In that
spirit, we take the initial correlation function to satisfy

∂�rG

∂τ

∣∣∣∣
τ=τ0

= ν0

τ 2
0

(
2

∂2

∂η2
r

+ 1

2

∂2

∂η2
a

)
�rG, (79)

corresponding to θ2
0 = 4ν/τ 2

0 ; see the discussion of Eqs. (46)
and (63). In the absence of microscopic information on the
initial conditions, this seems a reasonable choice. We consider
an alternative ansatz θ2

0 = 0 in the next section.
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FIG. 2. Second-order momentum diffusion calculations (solid curve) compared to the rapidity dependence of the measured covariance
(73). First-order calculations are also compared for best fit to these data (dashed curves) and best fit to σ in Fig. 1 (dash-dotted curves). Data
are from Ref. [22] (open stars) and Ref. [23] (solid circles). Percentages of the cross section indicate centrality, with each panel corresponding
to a width measurement in Fig. 1.

Solving Eq. (75), we find

σ 2 = σ 2
0 + θ2

0 τπ

2
(1 − e−2(τ−τ0)/τπ )

+8ν

τπ

∫ τ

τ0

du

∫ u

τ0

ds

s2
e2(s−u)/τπ . (80)

The solid black curve in Fig. 1 shows the value of Eq. (80)
at the freeze-out time (78) in comparison to the data. Again
we take ν = η/T s for η/s = 1/4π , but now with T = 150
MeV for all centralities. We must now specify the second-order
relaxation time τπ = βν, for which we take β = 10. The values
τ0 = 1.0 fm and τFc = 10 fm then give superb agreement with
data.

Observe that any solution of Eq. (75) reaches a “terminal
velocity” dσ 2/dτ = 4ν/τ 2 for τ � τπ , so that σ 2 approaches
the first-order result (76) plus a constant. For θ2

0 = 4ν/τ 2
0 , the

width approaches the asymptotic value

σ 2
∞ = σ 2

0 + 4ν

τ0

(
1 + 1

2

τπ

τ0

)
, (81)

which is larger than the first-order limit (76). Consequently,
different parameter values are needed for the first- and second-
order fits in Fig. 1. For θ2

0 = 0 the solution approaches the

first-order value (76) from below for τ � τπ . We come back
to this point in the next section.

To lay bare the difference between first- and second-order
evolution, we turn to the shape of the differential correlation
function C as a function of ηr ; see Eq. (73). STAR reported
C(ηr ) for three centralities represented as open stars in Fig. 2
[22]. Additional centralities are shown as solid circles [23].
Percentages labeling each panel indicate the centrality defined
by the fraction of total cross section. Every panel in Fig. 2
corresponds to a width in Fig. 1. Experimenters fit the near-side
peak of the measured distributions with a double-Gaussian
function plus a constant offset. They then subtracted the offset
from the measured values to calculate the rapidity width in
Fig. 1. The error band here represents the uncertainty in this
fit procedure. The measured C(ηr ) are shown here with the
offsets from Refs. [22,23] subtracted.

We now solve Eq. (61) to compute the correlation function
�rG and its integral C(ηr ), assuming the initial transverse
momentum correlation function to be

�rG(ηr,ηa,τ0) = Ae−η2
r /2σ 2

0 e−η2
a/2�2

0 . (82)

This distribution is motivated by the rapidity dependence of
measured correlation functions for multiplicity and net charge
in pp collisions. We set the initial width in relative rapidity, σ0,
to fit the most peripheral distribution in Fig. 2. Furthermore,
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we assume there is insufficient time for significant evolution
in the three most peripheral cases. The data support this
claim and give a consistent value of σ0 = 0.50. The average
pseudorapidity width, �0 ≈ 5–6 units, is assumed to be a
“large” value relative to the size of experimental acceptance.
We take A to fit the peak value of the measured C. This
parameter has little impact on our current study, because we
are concerned with only the shape of the function. We use
Eq. (79) for the initial value of the first derivative.

First-order momentum diffusion yields a Gaussian rapidity
profile. For τ ∗

π = 0, Eq. (61) reduces to Eq. (63). Evolution
preserves the Gaussian initial shape (82) so that integration
over ηa yields a Gaussian in ηr of width (81).

We find first-order momentum diffusion to be inconsistent
with the measurements in Fig. 2, despite overall agreement
with the width in Fig. 1. Our most reliable first-order
calculations give the dash-dotted curves in Figs. 1 and 2. We
adjust the parameters to obtain best agreement with the rapidity
width data in Fig. 1, and predict the rapidity shape in Fig. 2.
These calculations fail miserably to describe the measured
rapidity profiles. We are confident in this fit because these
width measurements were the focus of the experimental study,
so that systematic errors were provided. We next ask whether
first-order diffusion can be brought closer to agreement with
the rapidity shape by fitting the data in Fig. 2 alone. The
dashed curves in Fig. 2 are computed for parameter values
η/s = 1/4π , T = 110 MeV, τ0 = 0.50 fm, and τFc = 10 fm.
Agreement with the measured shape is still quite poor.

The measured distributions in the top three panels of Fig. 2
differ from the Gaussian profile of first-order diffusion in
two telling ways. First, they are systematically broader, with
a flatter peak. Second, they show a small dip near ηr = 0,
suggesting a bimodal nature. The flattening feature is the most
compelling; this is why first-order diffusion fails. Furthermore,
we consider the bimodal feature an intriguing possibility.
Several points in the 0%–5% and 5%–10% panels indicate
double peaks. Note that the experimenters omit ηr = 0 bins
appearing in Ref. [22], as they are fraught with track-merging
and other experimental challenges [23]. The experimenters
also took this bimodal structure seriously, fitting their data as a
double-Gaussian function plus a constant offset [22], a result
that first-order diffusion can never generate.

Is the bimodal nature of the data a consequence of
second-order evolution? Causal diffusion broadens the rapidity
distribution by wavelike propagation of the initial signal in
addition to the usual diffusion. Mathematically, the τ ∗

π term in
Eq. (61) changes the equation from parabolic to hyperbolic,
like a wave equation. In wave motion, a Gaussian initial pulse
divides into half-amplitude pulses propagating to the right
and left in the z coordinate at wave speed v. In Eq. (60) the
speed is v = √

ν/τπ . Observe that the wave speed diverges
as τπ → 0 and we approach the first-order diffusion regime,
thus violating causality. In rapidity coordinates, this separation
is less pronounced because rapidity measures speed, z/t , not
position.

The time evolution of the rapidity profile is shown in
Fig. 3 for parameter values used in Fig. 2. In the 5%–10%
centrality range shown, evolution starts at τ0 = 1.0 fm and
ends at 6.8 fm. The evolution is initially wavelike, giving rise to

FIG. 3. Time dependence of the rapidity covariance in second-
order diffusion.

left- and right-moving pulses. After a time ∼τπ has elapsed, the
first derivative in the left side of Eq. (61) becomes important
and diffusion begins. This diffusion works to fill in the gap
between the pulses and create a single broad plateau over a
time ∼σ 2τ 2/ν. The τ 2 factor, which comes from the right
side of Eq. (61), eventually slows diffusion to an extent the
rapidity profile becomes “frozen.” How far this evolution can
progress for collisions in a given centrality class depends on
the freeze-out time (78) compared to these other time scales.
Whether distinct peaks can be resolved further depends on
the pulse width ∼σ0 compared to the asymptotic increase
σ∞ − σ0, given by Eq. (81).

Our solution of Eq. (61) gives the solid curves in Fig. 2. The
evolution from peripheral to central reflects the time evolution
in Fig. 3 owing to the increase of τF described by Eq. (78). Our
calculations agree very well with the measured shape rapidity
profiles for the three most central distributions. They also agree
with the widths in Fig. 1 for all centralities.

We emphasize that the evolution of the rapidity landscape
from a single peak in peripheral collisions to a broader
plateau for more central collisions is characteristic of second-
order diffusion. Second-order calculations with the initial
condition (79) show this behavior very strongly. For constant
τ ∗
π and ν∗ centrality dependence is determined solely by

τF (78). With temperature- and time-dependent parameters,
further complexity follows from the dependence on the initial
temperature and features of the equation of state.

We now comment on the effect of transverse flow on these
phenomena. NEXSPHERIO simulations in Ref. [62] demonstrate
that the average transverse flow does not appreciably alter the
rapidity distribution of its fluctuations, C(ηr ). These event-by-
event hydrodynamic simulations are broadly consistent with
the azimuthal-angular dependence of two-particle correlations.
Nevertheless, this code omits viscosity and thermal fluctu-
ations, so we would not expect it to describe the changes
in C(ηr ) that we discuss in this section. Indeed, NEXSPHERIO

simulations are essentially Gaussian for all centralities [62].
The rapidity width does not increase with centrality; nor does
the shape of C(ηr ) change. This result supports our neglect
of mean transverse flow in this paper. Furthermore, it fortifies
our interpretation of the data as consequences of second-order
viscous dissipation.
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A further consequence of transverse flow is that it generates
the azimuthal anisotropy of flow. This anisotropy causes the
difference γ ′ ∝ (Cyy − Cxx) [21]. It is reasonable to ask what
effect this anisotropy might have on the pt covariance (71) and
the near-side amplitude of the differential distribution (73) as
measured. A key motivation in Ref. [7] was to find a measure
of viscosity that is independent of this anisotropy. Arguments
in Ref. [63] show that the contribution of anisotropy to the
φ integrated quantity (72) is suppressed. In essence, C adds
the scalar pt of particles irrespective of their φ direction.
However, it is evident from data in Ref. [22] and simulations
in Ref. [62] that anisotropic flow influences the away-side
behavior of the differential distribution (73) and, by inference,
the near-side. Nevertheless, anisotropic flow is largely a
long-range correlation that varies slowly with rapidity. Flow
effects are likely removed when experimenters subtract their
rapidity independent offset.

VII. HOW TO MEASURE τπ

In the spirit of Ref. [7] we now ask how one can measure the
second-order transport coefficient τπ . Most work on measuring
transport coefficients in nuclear collisions has focused on
extracting η/s from azimuthal anisotropy measurements.
Niemi et al. found that changes in η/s could be compensated
by changing τπ to yield the same anisotropic flow [64]. To
vary τπ with everything else fixed, one writes

τπ = βν (83)

and varies β. This form is inspired by kinetic theory, which
gives β = 5 for massless particles obeying Boltzmann statis-
tics. While causality requires β � 2, little else is known about
its value [65,66]. Reference [64] showed that the values η/s =
0.16 and β = 10 yield practically the same v2 coefficient as
η/s = 0.08 and β = 5. How then can we disentangle these
contributions?

The signature role of τπ is in determining the rate at which
the system relaxes to Navier-Stokes hydrodynamics. We have
seen two consequences of a finite τπ in the previous section:
First, the evolution changes from wavelike to diffusion-
dominated, as illustrated in Fig. 3. Second, it modifies the
flow that drives the increase of σ toward the asymptotic value
(81). The first effect is uniquely a second-order transport
phenomenon governed by τπ . In contrast, viscous diffusion
is at the heart of the second effect [7]. The growth of σ
only acquires a τπ dependence owing to initial flow θ2

0 ≡
d(σ 2)/dτ |τ0 ∝ ν/τ 2

0 .
To isolate the second-order relaxation effect of τπ and

identify its consequences, we replace Eq. (79) with

(∂�rG/∂τ )|τ=τ0 = 0, (84)

corresponding to no initial flow, θ2
0 = 0. While used here for

illustrative purposes, such a nonequilibrium initial condition
might be physically relevant if, e.g., the values of g and ∂g/∂t
are uncorrelated everywhere in each event in the initial state;
see Eq. (34). This is analogous to taking the initial � = 0 when
solving one-body equations (52) and (53), another common
choice among practitioners [64].

FIG. 4. The sensitivity of the rapidity width to the second-order
relation time τπ illustrated using initial conditions with no initial
flow. The different values of β change τπ = βν for fixed kinematic
viscosity ν relative to first order β = 0. Data are the same as in Fig. 2.

We first compute the centrality dependence of the rapidity
width using Eqs. (80) and (84). The results in Fig. 4 are then
computed with η/s = 1/4π , T = 143 MeV, τ0 = 0.6 fm, and
τFc = 10 fm. The difference between Figs. 1 and 4 is striking.
The width calculated using Eq. (79) asymptotically approaches
σ 2

∞ = σ 2
0 + 4ν/τ0, the first-order value (77). In contrast, σ

in Fig. 1 includes initial flow that leads to the τπ -dependent
asymptotic value (81). This is a large effect in practice: In

FIG. 5. The sensitivity of the rapidity profile of correlations to the
second-order relation time τπ . The different values of β change τπ =
βν for fixed kinematic viscosity ν relative to first order β = 0. The
top panel uses the no-flow initial condition (84) so that each curve has
the same integrated width σ . The bottom panel uses near-equilibrium
initial conditions (79), with σ that follows Eq. (81).
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FIG. 6. Measured rapidity profile compared to the characteristic evolution of second-order diffusion from single peak to plateau. Same as
Fig. 2, but with no initial flow.

Fig. 4 we compare first- and second-order calculations for the
same parameter values, while this is impossible in Fig. 1.

Relaxation is the only effect of τπ in Fig. 4. Its impact is
most evident where σ increases most rapidly. The same effect
is also evident in Fig. 1, albeit convoluted with the increase
in the asymptotic width. Sufficiently precise measurements of
the centrality dependence can yield information on τπ . While
we find best agreement in both Figs. 1 and 4 for β = 10, we
hesitate to draw such quantitative conclusions from the present
schematic calculation.

We exhibit the sensitivity of the rapidity profile to τπ = βν
in Fig. 5. The broadness of the shoulders compared to a
smoothly sloping Gaussian is fully evident in the data, but
the most interesting feature is the valley near ηr = 0, as it may
indicate wavelike structure. The top panel shows computations
for no initial flow. Two things happen as we increase β.
First, more time is available for wavelike structure to develop.
Second, the system reaches the first-order regime more slowly,
reducing the time during which diffusion can fill the valley
between the bumps. The width in this figure is constant,
compensated by changes in the tails outside the plotting range.

The profile computed with initial longitudinal flow (79) is
shown in the bottom panel in Fig. 5. In addition to the changes
described earlier, the overall width of the curve grows as β
increases owing to the increase of the asymptotic width σ∞,
described by Eq. (81). As with the widths, the data favor a value
β ≈ 10 for both initial conditions. It is interesting that we are

better able to resolve two peaks for the initial flow ansatz (79)
than for Eq. (84). It is precisely the larger difference between
σ∞ and the initial width σ0 with Eq. (79) that allows us to
better resolve these peaks.

In Fig. 6 we show the rapidity profiles for the entire
experimental centrality range obtained for initial conditions
with no initial flow (84). Figures 2 and 6 taken together
support our contention that second-order evolution can explain
these profiles better than first-order diffusion. Furthermore,
the results are well described by β = 10 regardless of initial
conditions.

We again point out that the data follow the characteristic
pattern of second-order evolution from a single peak to
a broader plateau for increasingly central collisions. The
bimodal nature at intermediate centralities is less evident for
the no-initial-flow calculations in Fig. 6, compared to the initial
condition (79) in Fig. 2. The initial conditions without this
flow seem more in accord with data. However, systematic
uncertainties for the distributions are not available, so we
cannot say anything precise about the bimodal character of
the distributions [22,23]. Moreover, details of calculations at
this level may change when temperature- and time-dependent
coefficients are included.

It is important to emphasize that we expect the rapid
changes in σ to coincide with the most dramatic shape changes
as centrality is varied, provided that τπ is the driving factor.
Theoretically, the relaxation of σ and the wave-to-diffusion
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transition are both attributable to a competition between the
first and second time derivatives in Eq. (61), because Eq. (75) is
derived from Eq. (61). How far this competition progresses for
collisions in a given centrality range depends on τπ compared
to the freeze-out time. Experimentally, the three data points
exhibiting the most rapidly increasing σ in Figs. 1 and 4 are
derived from the distributions in the middle panels in Figs. 2
and 6. One can see that the shape of the distributions—and not
just their widths—changes most rapidly in these panels.

VIII. CONCLUSION

Our goal in this paper is to identify the key physics
issues probed by momentum correlations. In earlier work
we suggested how such correlations could be used to study
viscosity [7,21]. Here we propose a way to measure τπ . This
measurement relies on the hyperbolic nature of the second-
order transport. Our analysis is constructed from several
different pieces, each with its own challenges.

Computing the correlations in Secs. III and IV required
the use of hydrodynamics with noise and dissipation. We
derived Eq. (61) and used it to compute the observable
correlation functions. The derivations in Sec. III were lengthy,
but essential. In addition to momentum diffusion, we discussed
Brownian motion and particle number diffusion. Equation (45)
that leads to Eq. (61) improved on our early exploratory work
in Ref. [67], which in turn relied on the heuristic formulation
of Ref. [38]. The factor of 1/2 in the second-order term
in Eq. (61) that is new to this work can be understood
by comparison to Brownian motion. In Eqs. (16) and (46),
fluctuations equilibrate on a time scale ∼τπ/2, half the time
needed for the mean to relax. Particle diffusion is easier to
understand and better known in the literature [42,43]. All three
problems have applications in nuclear collisions.

In Sec. II we discussed the hydrodynamic shear modes in
first- and second-order theory. We worked to establish the
connection between the observables Cij , C, and the shear
momentum current in Secs. IV and V. This connection is
important because shear modes do not couple at linear order
to the other modes. Consequently, Eq. (61) depends only on
τπ , ν, and κ , allowing us to use the systematic behavior of data
to extract these parameters. Other modes important for other
observables exhibit more complex behavior [68].

We are working to extend our methods to other modes
to address a wider range of observables. In particular, sim-
ilar hyperbolic behavior can appear in net charge and net
baryon diffusion. Diffusion of net charge and baryon number
including hydrodynamic fluctuations has been studied by a

number of authors [38,68–72]. To apply Eq. (61) to these
systems, we can replace η/w with D and τπ with the
relaxation time for particle diffusion τd . Whether one sees
the telltale features of relativistic diffusion amid the effects of
hadronization discussed in Ref. [58] is an interesting question
for future study.

In Sec. V we discussed the observables. The analysis
in Secs. VI and VII are based on measurements of pt

correlations using the observable C recommended in Ref. [7].
The data exclude the Gaussian shape of first-order calculations
[22,23]. The better agreement of the broader, flatter second-
order results is encouraging, but we are aware that both
measurements and computations can be improved with the
goal of measuring the shape—not just the width—in mind.
Moreover, the observable most closely connected to the
transverse momentum fluctuations is Cij , the covariance of
Cartesian components of the transverse momenta [21]. We
hope that the RHIC beam energy scan and LHC can measure
both quantities. ATLAS and CMS offer broader rapidity
coverage at LHC, but they also have a higher minimum
pt , which may affect the analysis. It would be especially
interesting to see if thermalization effects appear in pA as well
as AA measurements. We are also working to understand the
relationship between C and other observables of longitudinal
correlations, e.g., Refs. [73,74].

Data from Refs. [22,23] are in good accord with cal-
culations assuming τπ/ν = β = 10 for both sets of initial
conditions we tried. This value is large but not inconsistent with
azimuthal flow calculations [64]. While it differs appreciably
from the estimate β = 5 from kinetic theory of massless
Boltzmann particles, so famously does the viscosity. For our
values of ν we estimate τπ in the range from 1.0 to 1.1 fm. We
are currently working to include more realistic temperature-
and time-dependent parameters, and that may change these
values. It will undoubtedly be useful to use hydrodynamic
simulations as in Refs. [46,48] to compute this quantity,
although simulations in Ref. [62] suggest that millions of
events are needed for sufficient numerical accuracy.
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