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Glauber modeling of high-energy nuclear collisions at the subnucleon level

C. Loizides
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 11 May 2016; published 22 August 2016)

Glauber models based on nucleon-nucleon interactions are commonly used to characterize the initial state in
high-energy nuclear collisions and the dependence of its properties on impact parameter or number of participating
nucleons. In this paper, an extension to the Glauber model is presented, which accounts for an arbitrary number
of effective subnucleon degrees of freedom, or active constituents, in the nucleons. Properties of the initial
state, such as the number of constituent participants and collisions, as well as eccentricity and triangularity, are
calculated and systematically compared for different assumptions of how to distribute the subnuclear degrees
of freedom and for various collision systems. It is demonstrated that at high collision energy the number of
produced particles scales with an average number of subnucleon degrees of freedom of between 3 and 5. The
source codes for the constituent Monte Carlo Glauber extension, as well as for the calculation of the overlap area
and participant density in a standard Glauber model, are made publicly available.
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I. INTRODUCTION

Properties of the initial state in high-energy nuclear
collisions are commonly calculated using a Glauber model
[1]. In these calculations, nuclei are composed out of a set
of nucleons, and the nuclear reaction is approximated by
successive independent nucleon-nucleon (NN) interactions
assuming the nucleons travel in a straight line along the beam
axis (eikonal approximation). The so-called “optical” Glauber
calculations [2,3] assume a smooth matter density distribution
for the makeup of the nuclei, while the Monte Carlo (MC)
based models [4,5] distribute individual nucleons event by
event, and collision properties are obtained by averaging over
multiple events. In both cases, one usually uses a Fermi
distribution for the radial direction and a uniform distribution
for the solid angle.

These calculations can easily be extended to the subnucleon
level by taking into account three valence quarks per nucleon
in the collision process. It has recently been shown [6–11]
that particle production at midrapidity in high-energy nucleus-
nucleus collisions scales almost linearly with the number of
quark participants, without the need to introduce a contribution
from a hard-scattering component scaling with the number
of binary nucleon-nucleon collisions. Further interest in such
calculations arises since understanding the observed azimuthal
momentum anisotropy as a result of anisotropic pressure
gradients formed early on due to the spatial anisotropy of
the initial state in pA and even pp collisions (see Ref. [12]
for a recent summary) needs calculations of the initial state in
small systems at the subnucleon level [13].

In this paper, an extension of the MC Glauber model
is presented, which generalizes the collision process by
accounting for an arbitrary, but fixed, number of effective
subnucleon degrees of freedom, or active constituents, in
the nucleons. This description can obviously not account for
the partonic structure of a nucleon, which depends on the
momentum transfer (Q2) and fraction of nucleon momentum
(Bjorken-x). However, the constituent MC Glauber calculation
can be used to effectively model the average number of
active degrees of freedom, which contribute to soft particle

production, and to study the dependence on collision energy
and species. In Sec. II the standard MC Glauber model is briefly
recalled, while in Sec. III its extension to the subnucleon level
is discussed. Section IV discusses properties of the initial state,
such as the number of constituent participants and collisions,
as well as eccentricity and triangularity, calculated for a variety
of different assumptions to distribute the subnuclear degrees of
freedom and for various collision systems. Section V provides
a short summary. The code for the constituent MC Glauber
program is described in Appendix A. Additional calculations
of the overlap area and participant density are discussed in
Appendix B.

II. MC GLAUBER CALCULATION

The Glauber calculation of a nucleus-nucleus collision is
done as described in Ref. [14]. First, the positions of each of
the A nucleons in a nucleus are determined according to the
measured charge density distribution of the nucleus extracted
from low-energy electron scattering experiments [15]. For
spherical nuclei, such as Pb, the distribution is taken to be
uniform in azimuthal and polar angles, and a two-parameter
Fermi function

ρ(r) = ρ0

[
1 + exp

(
r − R

a

)]−1

(1)

in the radial direction. In Eq. (1), R is the nuclear radius, and
a is the skin depth, and the overall normalization ρ0 is not
relevant for the calculation. To mimic a hard-core repulsion
potential in the context of the MC Glauber model, one usually
requires a minimum internucleon separation (dmin) of 0.4 fm
between the centers of the nucleons. These excluded-volume
effects of the nucleons distort the resulting nuclear density and
can be absorbed by rescaling the charge-density parameters
[16]. The standard and rescaled values for Au and Pb nuclei
are given in Table I; for other nuclei see Ref. [17].

Second, the collision impact parameter (b) is determined
from dN/db ∝ b, and the centers of the nuclei are shifted to
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TABLE I. Standard and rescaled charge-density parameters.

Nucleus R (fm) Rs (fm) a (fm) as (fm)

197Au 6.38 ± 0.13 6.42 0.535 ± 0.053 0.44
197Au 6.62 ± 0.06 6.65 0.546 ± 0.010 0.46

(−b/2,0,0) and (b/2,0,0).1 Following the eikonal ansatz, the
nucleons are assumed to move along a straight trajectory along
the beam axis. Their transverse positions are held constant
during the short passage time of the two high-energy nuclei,
while their longitudinal coordinate does not play a role in the
calculation. The nuclear reaction is modeled by successive
independent interactions between two nucleons from different
nuclei. The interaction strength between two nucleons is
parameterized by the nucleon-nucleon inelastic cross section
(σNN). Two nucleons from different nuclei are supposed to
collide if their relative transverse distance is less than

D =
√

σNN/π . (2)

A nucleus-nucleus collision is accepted if at least one such
nucleon-nucleon collision was obtained.

The values used for σNN are usually obtained from the
difference of total and elastic pp cross-section measure-
ments [18–22], or interpolated using fits performed by the
COMPETE Collaboration [23] as shown in Fig. 1. Common
values of

√
sNN are summarized in Table II for a number of

collision energies, and in good agreement with the COMPETE
fits. At 13 TeV, however, the preliminary data [24,25] indicate
that the fit overpredicts the cross section by about 15%. As
a compromise, 78 mb, which is between the central value of
the data and the fit, and roughly within 1σ of the experimental
uncertainty, is given in Table II and used in the following.

1The reaction plane, i.e., the plane defined by the impact parameter
and the beam direction, is given by the x and z axes, while the
transverse plane is given by the x and y axes.

FIG. 1. Available data of total, elastic, and inelastic cross sections
measured in pp and pp̄ collisions [18–22]. The data [24,25] at 13 TeV
are preliminary. The curves are fits performed by the COMPETE
Collaboration [23].

TABLE II. Values used for σNN at various
√

sNN at the nucleon
level, as well as corresponding Nc and σcc parameters at the
subnucleon level. The modified case is indicated with ∗ (see text).

√
s (TeV) 0.019 0.2 2.76 5.02 7 13

σNN (mb) 33 42 64 70 74 78

Nc σcc (mb)
3 6.3 9.2 18.3 21.1 23.0 25.2
3∗ 5.8 8.1 15.5 17.9 19.7 21.6
5 2.4 3.6 8.4 10.3 11.4 12.7
7 1.2 1.9 4.6 5.7 6.5 7.4
10 0.6 0.9 2.2 2.8 3.3 3.8
20 0.1 0.2 0.5 0.6 0.7 0.8

To estimate systematic uncertainties for calculated quanti-
ties it is suggested to systematically modify the parameters of
the calculation [14]. One typically varies the parameters of the
nuclear density profile within the measured 1σ uncertainties,
the minimum internucleon separation distance by 100%, and
the σNN by about ±3 mb and ±5 mb at Relativistic Heavy Ion
Collider and Large Hadron Collider, respectively.

The Glauber calculation gives σ MC
PbPb = 7.6 ± 0.2 b and

σ MC
pPb = 2.1 ± 0.1 b for the total PbPb and pPb cross sections, in

good agreement with the measured values of σPbPb = 7.7 ± 0.6
b at

√
sNN = 2.76 TeV [26] and σpPb = 2.06 ± 0.08 b at

√
sNN =

5.02 TeV [27], respectively. For PbPb at
√

sNN = 5.02 a total
cross section of σ MC

PbPb = 7.7 ± 0.2 b is predicted. The total
cross sections of PbPb and pPb as a function of σNN are shown
in Fig. 2 calculated using the central values of the parameters
(i.e., without systematic uncertainties, which would be about
3 and 8%, respectively).

MC Glauber calculations are typically used to compute
geometrical properties of the collision, such as the number of
participating nucleons in the collision, Npart, i.e., the number
of nucleons that are hit at least once, or the number of
independent nucleon-nucleon collisions, Ncoll, i.e., the total
number of collisions between nucleons. Particle production at
low pT roughly scales with Npart [28], while hard processes in

FIG. 2. Calculated total cross sections for PbPb and pPb colli-
sions as a function of σNN.
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FIG. 3. Geometric properties (2NcollNpart,S,ε2, and ε3 from top left to bottom right panels) computed with Glauber MC for AuAu collisions
at

√
sNN = 19 GeV and PbPb collisions at

√
sNN = 5.02 TeV.

the absence of strong final-state modification scale with Ncoll

[29–31].
Examples of geometrical properties are shown in Fig. 3,

and have been discussed extensively in the literature (e.g., see
Ref. [14]). The ratio between Ncoll/Npart normalized to that
of pp (i.e., 1/2), which has been argued to be a measure for
the relative importance of hard versus soft processes, rises
with centrality and in particular with collision energy. The
overlap area of the two colliding nuclei is proportional to

S=
√
σ 2

x σ 2
y − σ 2

xy , given by the (co-)variances of the participant
distributions in the transverse plane [14]. The area can also be
directly computed from the MC as explained in Appendix B,
leading to a slightly different shape for peripheral collisions.
The eccentricity [32] and triangularity [33] of the collision
region, given by εi = 〈ri cos(iφ − iψi)〉/〈ri〉 (for i = 2 and
3, respectively) [34], are used to characterize the initial
geometrical shape. They are similar between AuAu and PbPb
collisions, and at different collision energies.

III. EXTENSION TO THE SUBNUCLEON LEVEL

The calculation can be readily extended to the subnucleon
level by assuming that a nucleon carries Nc degrees of freedom.
Often Nc = 3 for three constituent quarks [6–8], but larger
numbers (up to Nc = 17) have previously [35] been used

to account for the effective number of partonic degrees of
freedom. Generalizing Eq. (2), the interaction between two
constituents can be modeled by an effective parton-parton
cross section (σcc) in the same way as before, i.e., two
constituents from different nuclei collide if their relative

FIG. 4. Radial distribution of constituents after recentering
when constructed from the standard parametrization [Eq. (4)] for
different Nc.
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FIG. 5. Radial distribution of constituents after recentering when
constructed from the standard [Eq. (4)] or modified [Eq. (5)]
parametrizations for Nc = 3.

transverse distance is less than

D =
√

σcc/π. (3)

The hard-sphere approximation differs from the approach, e.g.,
implemented in Ref. [13] where a Gaussian shape is assumed
for the partonic inelasticity profile.

There are two, somewhat limiting, cases to distribute
subnucleon degrees of freedom. The first is to bind constituents
to nucleons making up the nucleus (labeled as “bound” in
figures). In this case, Nc constituents are radially distributed
centered around each nucleon according to

ρ(r) = exp (−r/R) (4)

with R = 0.234 fm based on the measured form factor of the
proton [36]. The second is to freely distribute constituents over
the whole nucleus (labeled as “free” in figures). In this case
A × Nc constituents are distributed according to Eq. (1).2 In
both cases, a hard core repulsion potential is not considered.

2This is conceptually similar to the optical approach used in [6].

FIG. 7. Calculated σNN for various choices of Nc vs σcc. Parame-
ters for commonly used σNN are listed in Table II.

When the constituents are bound to nucleons, recentering
of the constituents to align with the centers of their respective
nucleons introduces a distortion of the resulting radial con-
stituent distribution. The effect is most dramatic for Nc = 3,
and reduces quickly with increasing number of constituents
as shown in Fig. 4. For Nc = 3, the distortion can be avoided
by distributing the constituents according to an empirically
determined function [37]

ρ(r) = r2 exp(−r/R) × [(1.22 − 1.89r + 2.03r2)

× (1 + 1/r − 0.03/r2)(1 + 0.15r)] (5)

as shown in Fig. 5. Equation (5) holds for Nc = 3. Hence,
it is used as an alternative to Eq. (4) only in the case of
constraining 3 constituents to nucleons. This case is labeled
as “mod” when displayed in figures. If not otherwise specified
in the following, the constituents are not recentered. In any
case, not recentering has a negligible effect on the center of a
nucleus since the deviations from the center of mass average
out over ANc degrees of freedom.

FIG. 6. Impact parameter distribution for pp (left) and PbPb (right) collisions. In case of pp, σcc = 3.6 and 25.2 mb with Nc = 3 are used
for pp collisions at

√
s = 0.019 and 13 TeV, respectively. For PbPb collisions at

√
sNN = 5.02 TeV, the standard nucleon-based approach is

compared to bound and freely distributed cases using σcc = 3 mb and Nc = 10.
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The resulting impact parameter distributions differ from a
straight line (∝ b) which holds in the case of a hard-sphere
profile. Examples are shown in Fig. 6 for pp collisions at√

s = 0.019 and 13 TeV in the left, and for PbPb collisions
at

√
sNN = 5.02 TeV in the right panel. In the case of pp,

the distributions are obtained for Nc = 3 with σcc = 3.6 and
25.2 mb, and clearly extend beyond the hard-sphere limit of
about 1.0 and 1.6 fm, respectively. In the case of PbPb, the
distribution obtained for the standard NN based approach is
compared to the bound and freely distributed cases for σcc = 3
mb and Nc = 10. Freely distributing constituents instead of
binding them into nucleons generally lead to a wider impact
parameter distribution.

One way to constrain the parameters of the calculation is to
compare with nuclear reaction cross sections. Nuclear reaction
cross sections can be computed by counting if there was at least
one collision among two constituents. Figure 7 shows the de-
pendence of σNN on σcc for various choices of Nc. As expected,
σNN strongly increases with increasing σcc and Nc. For Nc = 3,
the two parametrizations lead to a small but noticeable differ-
ence on σNN for σcc

>∼ 10 mb. Values for Nc and σcc that corre-
spond to commonly used

√
sNN are summarized in Table II.

Figure 8 shows the increase of the PbPb (top) and pPb
(bottom) cross sections with σcc for different values of Nc

FIG. 8. Calculated total cross section for PbPb (top) and pPb
(bottom) collisions for various choices of Nc vs σcc for the bound and
free cases.

and the two ways to distribute the constituents, e.g., bound
to nucleons or freely distributed inside the nucleus. For the
same parameters, the freely distributing case always leads to
a larger cross section than the bound case. In particular, for
large σcc and Nc the likelihood for peripheral collisions to
occur increases significantly, making the total cross section
exceed the value expected from geometrical considerations
(also visible in the right panel of Fig. 6). For example, 8 b
corresponds to an effective radius of about 8 fm (which is
larger than R + 2a of Pb).

FIG. 9. Average values of Nccoll (top) and Ncpart/2 (middle), as
well as of the ratio Nccoll/Ncpart (bottom) vs σcc for various Nc in pp
collisions.
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IV. RESULTS

In this section, results of constituent Glauber model
calculations are presented for pp and AA collision systems,
for different input parameters.

A. pp collisions

Figure 9 shows average values of Nccoll and Ncpart/2, as
well as of the ratio Nccoll/Ncpart vs σcc for various Nc in pp
collisions. The resulting values increase with increasing Nc and
σcc compared to those at the nucleon level, which are Npart =
2,Ncoll = 1, and Ncoll/Npart = 0.5. For simplicity, 〈Nccoll〉 is
also denoted as ν and 〈Ncpart〉 as μ in pp collisions.

Figure 10 shows the dependence of the average eccentricity
〈ε2〉 and triangularity 〈ε3〉 versus σcc for various Nc in
central pp collisions with b < 0.5 fm. Increasing Nc and σcc

decreases the observed initial-state anisotropy as expected for
a spherically symmetric system. In the limiting case, without
substructure, ε2 = 1 and ε3 = 0. Figure 11 shows eccentricity
and triangularity versus b for a set of input parameters
reflecting pp collisions at 13 TeV. For central collisions
(b < 0.5 fm) 0.45 < ε2 < 0.65 and 0.46 < ε3 < 0.54 leading
to scaled values of about 0.1 and 0.02 for measured values
[38,39] of v2 ∼ 0.05 and v3 ∼ 0.01, respectively. Figure 12
compares eccentricity and triangularity versus b for Nc = 20

FIG. 10. Average eccentricity (top) and triangularity (bottom) for
b < 0.5 fm vs σcc for various Nc in pp collisions.

FIG. 11. Eccentricity (top) and triangularity (bottom) vs b for
various Nc in pp collisions at 13 TeV. The calculation for σcc =
21.60 mb corresponds to the modified case.

and σcc = 0.85 mb corresponding to pp collisions at 13 TeV for
different density profiles. The first is the exponential [Eq. (4)]
profile, used so far. The others are single and double Gaussian
profiles, implemented in the impact-parameter dependent
Glauber-like collision framework of PYTHIA8 [40], and
typically used to model multiparton interactions. The resulting
distributions for ε2 and ε3 with the single and double Gaussian
profiles do not differ from the standard case.

B. AA collisions

The results for AA collisions are presented for PbPb
collisions at

√
sNN = 5.02 TeV and AuAu collisions at

√
sNN =

19.6 GeV, respectively. The calculations are done for various
choices of Nc and σcc, as well as various ways to distribute the
constituents, i.e., bound, modified, and free cases. The param-
eters, which are summarized in Tables III and IV, have been set
to either match the corresponding σNN or σPbPb. When fixing σNN,
the calculated cross sections exceed σPbPb by about 3% in the
constrained case and by up to 12% in the free case. When fixing
σPbPb, the effective σNN are lower by up to 25% in the constrained
case and up to 50% in the free case. The idea is to compare
the results for a set of parameters that lead to the similar
measurable quantities (the uncertainty of the measured cross
sections is on the level of 5–10%) to study the robustness of
conclusions with respect to a priori unfalsifiable assumptions.
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FIG. 12. Eccentricity (left) and triangularity (right) vs b for Nc = 20 and σcc = 0.8 mb corresponding to pp collisions at 13 TeV using
exponential, single, and double Gaussian density profiles (see text).

Figure 13 shows Ncpart/μ and Nccoll/ν versus b, where μ =
〈Ncpart〉 and ν = 〈Nccoll〉 in pp collisions, respectively. Figure
14 shows the ratio Ncpart/Npart versus Npart normalized to μ/2.
The calculations are performed in small bins of b and then
matched to the corresponding Npart at the nucleon level, since
in peripheral events 〈Npart〉 for events selected with Ncpart > 0
slightly differs from those calculated at the nucleon level and
selected with Npart > 0. In particular for Nc � 5, the shape
is similar to that of the measured 2dN/dη/Npart [28,42,43].
The inverse of what is plotted, i.e., μ/2Npart/Ncpart, would
be the factor needed to translate the measurements scaled by
Npart/2 to Ncpart/μ. Hence, the correction would affect the
shape the strongest for peripheral events, making /dη/Ncpart

approximately flat.
Indeed, this is directly demonstrated in Fig. 15, which

shows dN/dη in PbPb collisions at
√

sNN = 17.2 GeV [41]
and

√
sNN = 5.02 TeV [42] scaled by Ncpart/μ for subnucleon

TABLE III. Values for PbPb collisions at σNN = 5.02 TeV. Input
parameters are Nc,σcc and the way the constituents are distributed
(bound, modified, and free). Output values are μ = 〈Ncpart〉,ν =
〈Nccoll〉,σNN, and σPbPb as well as σ free

PbPb for the freely distributing case.
The modified cases are indicated with ∗. The parameters in rows
above the horizontal line are chosen to match σNN = 70 mb, while
those below the horizontal line σPbPb = 7.7 b.

Nc σcc (mb) μ ν σNN (mb) σPbPb (b) σ free
PbPb (b)

3 21.1 3.5 2.7 70.0 7.94 8.24
3∗ 17.9 3.2 2.3 70.1 7.94
5 10.3 4.4 3.7 70.1 7.94 8.46
7 5.7 4.9 4.0 70.0 7.93 8.56
10 2.8 5.2 4.0 70.0 7.94 8.62

3 14.4 3.3 2.3 55.4 7.74
3∗ 11.9 3.0 2.0 53.6 7.71
3 8.8 3.0 1.9 40.9 7.74
5 6.4 3.9 2.8 55.8 7.75
5 2.9 3.1 1.9 37.2 7.76
10 1.7 4.4 2.9 56.8 7.78

(Nc > 1) and Npart/2 for nucleon (Nc = 1) participants.3

Using Nc = 3 and 5 for
√

sNN = 17.2 GeV and 5.02 TeV,
respectively, approximately flattens the scaled data, which
when fit with a first-order polynomial exhibit a slope consistent
with zero (0.0002 ± 0.0004 and 0.0000 ± 0.0002, respec-
tively). For the 5.02-TeV data also the cases Nc = 3 and 7 are
shown, which exhibit a small positive (0.0016 ± 0.0004) and
negative (−0.0009 ± 0.0003) slope, respectively. This may be
an indication that the effective partonic degrees of freedom
relevant for soft particle production are on average about 5 at
high energy, and about 3 at lower collision energy.

This is further investigated by comparing particle pro-
duction in central AA to pp collision data. The midrapidity
dN/dη in central AA collisions scaled by Npart compared to
that in inelastic pp collisions turned out to rise stronger with
collision energy, with s0.155

NN rather than s0.103
NN , respectively [42].

To evaluate if normalizing by constituent instead of nucleon
participants would lead to a more similar behavior, the ratio
Ncpart/μ has been computed for various Nc and several ways
to distribute the subnuclear degrees of freedom. The computed

3The data at
√

sNN = 17.2 GeV are used as proxy for the AuAu at√
sNN = 19.6 GeV, since they were measured over a larger range in

centrality. The corresponding σNN is 32 mb.

TABLE IV. Values for AuAu collisions at σNN = 19.6 TeV, with
σNN = 33 mb and σAuAu = 6.7 b. See description in Table III for more
information.

Nc σcc (mb) μ ν σNN (mb) σAuAu (b) σ free
AuAu (b)

3 6.3 2.8 1.7 33.0 6.89 7.03
3∗ 5.8 2.6 1.6 33.0 6.91
5 2.4 3.0 1.8 33.1 7.01 7.16

3 3.6 2.5 1.4 22.4 6.65
3∗ 3.8 2.5 1.4 24.1 6.67
3 3.2 2.5 1.4 20.5 6.66
5 1.4 2.6 1.5 23.2 6.70
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FIG. 13. Ncpart/μ (top) and Nccoll/ν (bottom panels) for AuAu (left) and PbPb (right panels) collisions. The parameters for the calculations
are summarized in Tables III and IV.

ratios for b < 3.5 fm are shown versus
√

sNN in Fig. 16, and
found to slightly decrease with increasing

√
sNN. This trend can

be compared to data, using the ratio of the power-law fits to
the central AA and the inelastic pp data taken from Ref. [42].
The ratio of the power-law fits is scaled by 160 to roughly
account for normalizing the central AA data by Npart/2, since
for central AuAu at

√
sNN = 19.6 GeV Npart ≈ 340, while

Npart ≈ 385 for PbPb at
√

sNN = 5.02 TeV. As can be seen
in the figure, the data exhibit a different trend, i.e., the ratio is
slightly rising with

√
sNN. The comparison between data and

calculations does not reveal a preferred constant value for Nc.
Instead, at lower energy Nc = 3, while at higher energy Nc = 5
is supported by the data, indicating that the number of relevant
partonic degrees of freedom increases with increasing collision
energy. On an absolute scale, Fig. 17 indeed confirms that
scaling with Ncpart/μ for Nc = 3 or 5 leads to a more similar
collision energy dependence of central AA and inelastic pp
data than based on Npart (labeled with Nc = 1). In particular,
it is important to realize that while the collision energy varies
by three orders of magnitude the scaled dN/dη only changes
by a factor 2.

Figure 18 shows the eccentricity and triangularity versus
Npart calculated for parameters given in Tables III and IV,
which are quite similar to those calculated from participant
nucleons, as also concluded in Ref. [44]. The triangularity
exhibits a stronger variation to changes of the calculation

than the eccentricity, which is found to be quite insensitive
to the actual values of the parameters. As in the case of
the nucleon participant calculation, ε3 is only up to 10–20%
larger than ε2 in ultracentral collisions, which cannot resolve
the question why the measured v2{2} ≈ v3{2} in ultracentral
collisions [45,46].

V. SUMMARY

Glauber models based on nucleon-nucleon interactions are
commonly used to calculate properties of the initial state
in high-energy nuclear collisions, and their dependence on
impact parameter or number of participating nucleons. Such
calculations have be extended to the subnucleon level by
taking into account three valence quarks per nucleon in the
scattering process. In particular, it has been shown that particle
production at midrapidity in high-energy nucleus-nucleus
collisions scales almost linearly with the number of quark
participants. In this paper, an extension to the Glauber model is
presented, which accounts for an arbitrary number of effective
subnucleon degrees of freedom, or partonic constituents, in the
nucleons. Properties of the initial state, such as the number of
constituent participants and collisions, as well as eccentricity
and triangularity, are calculated and systematically compared
for different assumptions to distribute the subnuclear degrees
of freedom and for various collision systems. It is demonstrated
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FIG. 14. Ratio Ncpart/Npart normalized to μ/2 for AuAu (top) and
PbPb (bottom panel) collisions. The parameters for the calculations
are summarized in Tables III and IV.

FIG. 15. Values of dN/dη in PbPb collisions at
√

sNN =
17.2 GeV and

√
sNN = 5.02 TeV scaled by Ncpart/μ for subnucleon

(Nc > 1) and Npart/2 for nucleon (Nc = 1) participants. The data are
from [41,42], drawn with only point-to-point uncorrelated systematic
uncertainties. The 17.2-GeV data are scaled using Nc = 3 (σcc = 5.5
mb, modified case). The 5.02-TeV data are scaled using Nc = 5
(σcc = 10.3 mb). The lines show the central points if the data
were scaled by Nc = 3 (σcc = 17.9 mb, modified case) and Nc = 7
(σcc = 5.7 mb), respectively.

FIG. 16. Ratio of fits to central AA (scaled by 160 to approxi-
mately account for Npart/2) and inelastic pp collisions compared to
Ncpart/μ from constituent Glauber calculations for b < 3.5 fm. The
values for the power-law fits are taken from [42].

that at high collision energy the number of produced particles
scales with an average number of subnucleon degrees of
freedom of between 3 and 5. As in the case of the nucleon
participant calculation, ε3 is only up to 10–20% larger than
ε2 in ultracentral collisions, which cannot resolve the question
why the measured v2{2} ≈ v3{2} in ultracentral collisions. The
code for the constituent Monte Carlo Glauber program is made
publicly available. The author welcomes comments on the
code and suggestions on how to make it more useful to both
experimentalists and theorists.

FIG. 17. Power-law fit of dN/dη from inelastic pp collisions
compared to scaled central AA data. The AA curves are obtained
from a power-law fit to 2dN/dη/Npart scaled by μ/Ncpart (multiplied
by 160 to approximately account for Npart/2) for constituent Glauber
calculations with b < 3.5 fm. In the case of Nc = 1,Ncpart = Npart,
and μ = 2, the shown curve essentially represents the original
fit to 2dN/dη/Npart. The values for the power-law fits are taken
from [42].
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FIG. 18. Eccentricity (left) and triangularity (right panels) for AuAu (top) and PbPb (bottom panels) collisions. The parameters for the
calculations are summarized in Tables III and IV.
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APPENDIX A: PROGRAM CODE

The program code, called “runCGM.C,” for the generalized
constituent Monte Carlo Glauber can be found at http://
tglaubermc.hepforge.org/svn/branches/tools/runCGM.C. It
requires “runglauber_v2.3.C” from the most recent
TGlauberMC version (v2.3) [17], which can be downloaded
from HepForge (http://www.hepforge.org/downloads/
tglaubermc), and ROOT [47] (see http://root.cern.ch for
installation files and documentation.). To compile the code,
execute at the ROOT prompt:

.L runglauber_2.3.C+

.L runCGM.C+
The function “runCGM” can be run with the following

arguments:
Int_t n= number of events
const char *sysA= system A
const char *sysB= system B
Double_t signn= NN cross section (mb)

Double_t mind= min. dist. betw. nucleons
Int_t nc= number of constituents / dof
Double_t sigcc= constituent cross section (mb)
Int_t type, -> how to distribute dof:
=0 no recentering
=5 modfied (PHENIX)
=8 free no recentering
const char *fname= output filename
Double_t bmin= min. imp. parameter
Double_t bmax= max. imp. parameter
The output ROOT “ntuple” contains the following list of

per-event variables:
Npart= number of nucleon participants
Ncoll= number of nucleon collisions
B= impact parameter
Ncpart= number of constituent participants
Nccoll= number of constituent collisions
Ap= area def. by participant (co-)variances
Ac= area def. by constituent (co-)variances
EccXP= eccX nucleon participants (X=1-5)
EccXC= eccX constituent participants (X=1-5)

See the source code for options on how to run the
program and the description of the output ROOT “ntuple.”
All distributions discussed in Sec. IV have been obtained from
the output of “runGCM.”
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FIG. 19. Area calculated directly by counting of the overlap area
and scaled using the participant widths for AuAu collisions at

√
sNN =

19 GeV and PbPb collisions at
√

sNN = 5.02 TeV.

APPENDIX B: AREA CALCULATION

As briefly mentioned in Sec. II, the overlap area of
two colliding nuclei is usually taken to be proportional to
S =

√
σ 2

x σ 2
y − σ 2

xy , given by the (co-)variances of the par-
ticipant distributions in the transverse plane [14]. However,
using the participant distributions does not provide a direct
measure of the area, and in particular misses also the absolute
normalization. Instead, one can event-by-event compute the
overlap area directly using a fine-grained grid. Figure 19
compares the two approaches for AuAu collisions at

√
sNN =

19 GeV and PbPb collisions at
√

sNN = 5.02 TeV, where the
results using the participant widths were rescaled by A0/S0

where S0 and the absolute area A0 were obtained at b = 0 fm.

FIG. 20. Participant transverse area density in an area given by
radius R = 1,3, and 5 fm for AuAu collisions at

√
sNN = 19 GeV and

PbPb collisions at
√

sNN = 5.02 TeV.

The values are S0 = 9.8 and 8.7 with rms of 0.4, and A0 =
165.8 and 120.1 with rms of 5.2 and 3.9 for PbPb and AuAu,
respectively (all units in fm2). The code can be found at http://
tglaubermc.hepforge.org/svn/branches/tools/runArea.C.

Alternatively, instead of directly using the area when
estimating the energy density via the Bjorken estimate [48],
one can use the participant transverse area density, ρcore, which
can be obtained by counting the number of participants within
a core area of given radius R. Figure 20 shows ρcore for various
choices of R in AuAu collisions at

√
sNN = 19 GeV and PbPb

collisions at
√

sNN = 5.02 TeV. The code can be found at http://
tglaubermc.hepforge.org/svn/branches/tools/runCore.C.
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