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We use linear viscous hydrodynamics to describe the energy and momentum deposited by a fast moving
parton in a quark gluon plasma. This energy-momentum is in turn used to compute the probability density for
the production of soft partons by means of the Cooper-Frye formula. We use this probability density to render
manifest a relation between the average transverse momentum given to the fast moving parton from the medium
q̂, the shear viscosity to entropy density ratio η/s, and the energy lost by the fast moving parton �E in an
expanding medium under similar conditions to those generated in nucleus-nucleus collisions at the CERN Large
Hadron Collider. We find that q̂ increases linearly with �E for both trigger and away side partons that have
been produced throughout the medium. On the other hand, η/s is more stable with �E. We also study how these
transport coefficients vary with the geometrical location of the hard scattering that produces the fast moving
partons. The behavior of q̂, with �E, is understood as arising from the length of medium the parton traverses
from the point where it is produced. However, since η/s is proportional to the ratio of the length of medium
traversed by the fast parton and the average number of scatterings it experiences, it has a milder dependence on
the energy it loses. This study represents a tool to obtain a direct connection between transport coefficients and
the description of in-medium energy loss within a linear viscous hydrodynamical evolution of the bulk.
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I. INTRODUCTION

The results from experiments where heavy nuclei are
collided at high energies, carried both at the BNL Relativistic
Heavy-Ion Collider (RHIC) [1] and the CERN Large Hadron
Collider (LHC) [2], show that a state of matter, where quarks
and gluons are not confined to individual nucleons is formed,
the so-called quark-gluon plasma (QGP). The behavior of
the QGP’s soft bulk, that is particles with pT � 2 GeV,
can be accurately described using viscous hydrodynamics in
the liquid regime [3,4]. One way to study the properties of
the QGP is to consider the way that fast moving partons,
either quarks or gluons, traveling through the QGP, transfer
energy and momentum to the bulk. This energy-momentum is
then converted into particles upon hadronization. The process
is well described by hydrodynamics, where the source of
energy and momentum is the fast moving parton [5–7]. In
a gradient expansion to lowest nontrivial order, one can
include the viscous effects to first order in the shear viscosity
to entropy ratio η/s. This procedure is known as linear
viscous hydrodynamics. Extracting the value of this transport
coefficient for the QGP is at the core of current efforts both in
the theoretical and experimental fronts [8,9].

An important ingredient for this description is the energy
loss per unit length dE/dx which enters as the coefficient
describing the strength of the local hydrodynamic source term.
Hadronization of the energy and momentum deposited into
the medium can be carried out by means of the Cooper-Frye
formula. In this way, linear viscous hydrodynamics provides

a means to compute the probability density describing the
production of soft particles from the energy lost by a fast
moving parton in the medium [10].

Another important quantity that describes the interaction
of fast moving partons and the QGP is the average transverse
momentum squared per unit length transferred to the parton
from the medium, the so called q̂ parameter. This parameter
represents the average broadening of the original fast parton’s
trajectory resulting from interactions induced by the medium.
It has been suggested [11] that q̂ for a thermal parton can be
related to the shear viscosity to entropy ratio η/s of the QGP
plasma, since it is argued that q̂ is a measure of the coupling
strength of the medium. The relation suggested between these
transport coefficients involves the temperature of the medium
depending on the coupling strength regime, as

T 3

q̂

{
≈ η

s
, weakly coupled

� η
s

, strongly coupled.
(1)

Furthermore, there are collaborative efforts in the theoret-
ical community to extract the jet transport parameter q̂
using different approaches to energy-loss mechanisms for jet
quenching at RHIC and LHC energies [12]. Further recent
phenomenological studies in connection with underlying
anomalies [13] and thermalization of minijets [14] together
with recent theoretical proposals using effective field theory to
describe transport coefficients [15], make evident the need for
elucidating the interplay between these transport coefficients
across the phenomenological landscape of the QGP.
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Since both η/s and q̂ are transport coefficients describing
the exchange of energy and momentum between fast partons
and medium, a pertinent question is whether there is a
quantitative relation between these parameters that can be
extracted from the hydrodynamical picture. In this work we
provide such relation using linear viscous hydrodynamics and
the Cooper-Frye formula to describe the probability to produce
soft partons from the energy-momentum deposited by the fast
partons to the bulk. We show that a nontrivial relation exists for
the case when the medium is considered as nonstatic. In doing
so we also study the scaling of such transport coefficients with
the parton’s traveled length and their total energy lost while
traversing the QGP. The paper is organized as follows. In
Sec. II we derive a relation between the transport coefficients
q̂ and η/s for a static medium. We show that in this case q̂
is independent of η/s. In Sec. III we relax the condition of
studying a static medium introducing a model for the energy
loss that accounts for expansion. We show that under these
conditions a nontrivial dependence between these transport
coefficients emerges. We also study the effects that the position
of the hard scattering and therefore of the path length traveled
by the fast moving partons within the plasma, have on the
extracted values for the transport coefficients. We show that
these coefficients depend on the total energy lost and thus
that triggering on events with a certain energy loss will yield
different values of these parameters. We finally summarize and
conclude in Sec. IV.

II. q̂ AND η/s IN A STATIC MEDIUM

The particle’s multiplicity is given by the Cooper-Frye
formula [16]

E
dN

d3p
= 1

(2π )3

∫
d�μpμ[f (p · u) − f (p0)], (2)

where f (p · u) − f (p0) is the phase-space disturbance pro-
duced by the fast moving parton on top of the equilibrium
distribution f (p0), with �μ and pμ representing the freeze-
out hypersurface and the particle’s momentum, respectively.
The medium’s total four-velocity uμ ≡ u

μ
0 + δuμ is made

out of two parts: the background four-velocity u
μ
0 and the

disturbance δuμ. This last contribution is produced by the
fast moving parton and can be computed using linear viscous
hydrodynamics once the source, representing the parton, is
specified. For a static background (which we assume for the
moment) and in the linear approximation, uμ can be written as

uμ ≡ u
μ
0 + δuμ (3)

=
(

1,
g

ε0
(
1 + c2

s

))
, (4)

where the spatial part of the medium’s four-velocity, u =
g/ε0(1 + c2

s ), is written for convenience in terms of the
momentum density g associated to the disturbance, with ε0 and
cs the static background’s energy density and sound velocity,
respectively. We focus on events at central rapidity, y � 0, and
take the direction of motion of the fast parton to be the ẑ axis
and the beam axis to be the x̂ axis. With this geometry, the
transverse plane is the ŷ-ẑ plane and therefore, the momentum

four-vector for a (massless) particle is explicitly given by

pμ = (E,px,py,pz) (5)

= (pT ,0,pT sin φ,pT cos φ), (6)

where φ is the angle that the momentum vector p makes with
the ẑ axis. We use Bjorken’s geometry thus,

d3p = pT dpT dφdpx,

px = pT sinh y,
(7)

dpx = pT cosh y dy,

E = pT cosh y,

and therefore

E
dN

d3p
= dN

pT dpT dφdy
. (8)

For simplicity we consider a freeze-out hypersurface of
constant time,

d�μ = (d3r,0,0,0). (9)

Therefore, using Eqs. (2) and (8), the particle momentum
distribution around the direction of motion of a fast moving
parton is given by

dN

pT dpT dφd2r
= �τ (�y)2

(2π )3
pT [f (p · u) − f (p0)] (10)

with �τ the freeze-out time interval, d2r the surface element
in the transverse plane, and where we have assumed a
perfect correlation between the space-time rapidity η and y
to substitute �η by �y. We assume that the equilibrium
distribution is of the Boltzmann type. Assuming that the energy
density and temperature are related through Boltzmann’s law

ε ∝ T 4, (11)

one gets

δT

T0
= δε

4ε0
, (12)

where T0 is the background medium’s temperature and δT is
the change in temperature caused by the passing of the fast
parton.

Since for the validity of linearized hydrodynamics, both
δε and g need to be small quantities compared to ε0, we can
expand the difference f (p · u) − f (p0) to linear order

f (p · u) − f (p0) �
(

pT

T0

)
exp[−pT /T0]

×
(

δε

4ε0
+ gy sin φ + gz cos φ

ε0
(
1 + c2

s

) )
. (13)

It is worth mentioning that using viscous hydrodynamics,
coupled to the Cooper-Frye formula to obtain the hadron
spectra, requires an adequate treatment of the corrections to
the equilibrium phase-space distribution, due to both shear and
bulk viscosity. In fact, it is well known that not accounting for
these effects radically alters the pT shape of v2 [17]. However,
for the current work where the main purpose is to explore the
dependence of transport coefficients on energy loss and path
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length in a simple yet quantitative framework, we ignore such
effects. A path to improve the quantitative aspects of these
results goes along the inclusion of the above effects.

The energy and momentum densities, δε and gi , can be
found as the solution of the linearized viscous hydrodynamical
equations once the source representing the fast moving parton
is specified. The current associated to the source is given by

J ν(r,t) =
(

dE

dx

)
vνδ3(x − vt), (14)

where (dE/dx) is the energy loss per unit length. δε and gi

are given then by

δε =
(

1

4π

)(
dE

dx

)(
2v

3�s

)2( 9

8v

)
Iδε(α,β) (15)

and

gi =
(

1

4π

)(
dE

dx

)(
2v

3�s

)2

Igi
(α,β), (16)

where the integrals Iδε and Igi
are dimensionless functions

representing the collected energy-momentum deposited by the
source term when moving through the medium and are given
in Refs. [18] in terms of dimensionless variables α and β
which encode the distance to the source, in units of the sound
attenuation length [19]

�s ≡ 4η

3ε0
(
1 + c2

s

) . (17)

Therefore, the particle momentum distribution around the
direction of motion of a fast moving parton is given, in the
linear approximation, by

dN

pT dpT dφd2r
= �τ (�y)2

(2π )3

p2
T

T0
exp [−pT /T0]

×
(

δε

4ε0
+ gy sin φ + gz cos φ

ε0
(
1 + c2

s

) )
. (18)

The probability density P(pT ,r,φ) is obtained from the
above equation dividing by the total number of particles
produced, N , which in turn is obtained integrating over all
phase space. Therefore

P(pT ,r,φ) = 1

N

dN

pT dpT d2r
. (19)

Note that the average momentum squared carried by the
disturbance, transverse to the direction of the fast parton’s
motion is given by

〈q2〉 ≡
∫

d2r

∫
dpT pT 2

∫ π/2

0
dφ P(pT ,r,φ)p2

T sin2 φ,

(20)

where in the integration over the angle between the fast parton
and the produced particles we have implemented the condition
to consider that these last move in the forward direction,
namely, the direction of the fast parton.

Using Eqs. (18) and (19), 〈q2〉 can be explicitly written as

〈q2〉 = 1

N

�τ (�y)2

(2π )3

120T 5
0

ε0

×
∫

d2r

[
π

8
δε + (4/3)gy + (2/3)gz(

1 + c2
s

) ]
. (21)

Since N is in turn given by

N =
∫

d2r

∫
dpT pT 2

∫ π/2

0
dφ P(pT ,r,φ)

= �τ (�y)2

(2π )3

6T 3
0

ε0

∫
d2r

[
π

4
δε + 2gy + 2gz(

1 + c2
s

) ]
, (22)

we finally get

〈q2〉 = 20 T 2
0

∫
d2r

[
π
8 δε + (4/3)gy+(2/3)gz

(1+c2
s )

]
∫

d2r
[

π
4 δε + 2gy+2gz

(1+c2
s )

] . (23)

Can 〈q2〉 be identified with the average momentum squared
given to the fast parton by the medium and therefore with
q̂ upon dividing by the medium’s length? The question is
pertinent in the sense that the above calculation refers to the
average momentum squared given to the medium by the fast
parton. If the parton’s change in energy is small the main effect
on the fast parton is a deflection of its original trajectory. This
deflection comes along with energy and momentum deposited
within the medium via radiation or collisional processes.
As a result of energy and momentum conservation during
these processes, the momentum put into the medium should
compensate the momentum given to the fast parton. In other
words, one could expect that the collected overall momentum
(squared) should correspond to the equivalent quantity gained
by fast parton in the transverse direction. Therefore, since in
a hydrodynamical picture, the energy-momentum is described
in terms of δε and g, we can write, for the parameter q̂,

q̂ = 〈q2〉
L

, (24)

where 〈q2〉 is given by Eq. (23).
Note that for the static case thus discussed, the expression

for q̂ is essentially independent of η/s. This happens because
given the explicit factorization of �s and thus of η/s in
Eqs. (15) and (16), the remaining dependence of η/s cancels
between numerator and denominator in Eq. (23) since the
numerical coefficients accompanying δε and the components
of g are practically the same. Since the assumption of a static
medium is not entirely realistic, we now proceed to study
whether an expanding medium makes q̂ to depend on η/s.

III. q̂ AND η/s IN AN EXPANDING MEDIUM

A full-fledged hydrodynamical computation of q̂ in an
expanding medium requires a numerical treatment. Let us
instead attempt a phenomenological description based on
modeling the way the medium gets diluted during the first
stages of the collision due to longitudinal expansion [20]. A
fast moving parton loses energy depending on the evolving
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gluon density that it traverses along its path through the
medium, such that

�E =
〈
dE

dx

〉
1d

∫ ∞

τ0

dτ
τ − τ0

τ0 ρ0
ρg(τ,b,r + n̂τ ), (25)

where the gluon density ρg is related to the nuclear geometry
of the produced medium as

ρg(τ,b,r,n̂) = τ0 ρ0

τ

πR2
A

2A
[TA(|r + n̂τ |) + TA(|b − r − n̂τ |)].

(26)

Here ρ0 is the central gluon density, TA the nuclear thickness
function, RA the nuclear radius and A the atomic number, b
the impact parameter of the collision, r the transverse plane
location of the hard scattering where the partons are produced,
and n̂ the direction in which the produced hard parton travels
in the medium. The average number of scatterings 〈n〉 is given
in the model by

〈n〉 =
∫ ∞

τ0

dτ
1

λ0 ρ0
ρg(τ,b,r,n̂τ ), (27)

where λ0 is the parton mean free path for a constant density ρ0.
Since we want to consider the most central collisions, hereafter
we set b = 0. The one dimensional energy loss 〈dE/dx〉1d is
parametrized as〈

dE

dx

〉
1d

= ε0

[
E

μ0
− 1.6

]1.2[
7.5 + E

μ0

]−1

, (28)

where E is the energy of the fast moving parton. The mean free
path for a constant density ρ0 is taken as λ0 = 0.25 fm. The
parameter ε0 is related to λ0 by ε0λ0 = 0.5 GeV. We work with
a value μ0 = 1.5 GeV. These parameters are tuned to describe
LHC data on RAA [21].

In order to incorporate an expanding medium into the
hydrodynamical description of the computation of q̂ we
approximate the average energy loss per unit length that
appears in Eqs. (15) and (16) with the energy loss given by
the above described model divided by the in-medium length L
traveled by the fast moving parton, namely,(

dE

dx

)
= �E

L(r,n̂)
, (29)

where �E is given by Eq. (25). Note that with this choice
the current J ν(x,t) in Eq. (14) is still constant in space-time,
however its amplitude depends on the parton’s energy and
on the matter density in the expanding medium. We take for
L(r,n̂) the geometrical distance from the point where the hard
scattering took place to the sharp edge of the interaction region,
namely,

L(r,n̂) = 1
2

(√
R2

A − r2 sin ϕ − r cos ϕ
)
, (30)

where r = |r| and ϕ is the angle between r and n̂. With this
choice we account for the fact that within a diluting medium
the mean free path L(r,n̂)/〈n〉 becomes larger than in the static
case.

After these changes, Eqs. (15) and (16) become

δε =
(

1

4π

)(
�E

L(r,n̂)

)(
2v

3�s

)2( 9

8v

)
Iδε(α,β) (31)

and

gi =
(

1

4π

)(
�E

L(r,n̂)

)(
2v

3�s

)2

Igi
(α,β), (32)

To compute q̂ we now generate a sample of parton events at
random positions r, moving in random directions n̂ within the
medium. This sample is obtained using MadGraph 5 [22] for
2 → 2 parton events in p + p collisions at

√
sNN = 2.76 TeV

that subsequently lose energy according to the model thus
described. In this manner we produce a distribution of events
characterized by values of �E, L(r,n̂), and 〈n〉. Therefore q̂
can be obtained for instance as a function of �E by classifying
events with a given amount of energy lost, regardless of where
the hard scattering took place or the direction of motion of the
fast parton, as

q̂�E =
20 T 2

0

∫
d2r

(
π
8 δε + (4/3)gy+(2/3)gz

(1+c2
s )

)
�E∑

�E L(r,n̂)
∫

d2r
(

π
4 δε + 2gy+2gz

(1+c2
s )

)
�E

. (33)

Alternatively, q̂ can also be obtained as a function of the
location of the hard scattering, regardless of the direction the
parton traveled or the amount of energy lost. It is worth noting
that the general connection between q̂ and viscosity is provided
by Eq. (33). This equation represents the way the viscosity
driven energy-momentum deposited in the medium is related
to q̂. Therefore, an improved framework where bulk viscosity
is included, can also be incorporated.

Notice that the model can also be used to estimate η/s since
we know that this transport coefficient is proportional to the
ratio of the medium’s mean free path to the thermal wavelength
[4,23]. The model gives, event by event,

η

s
∼ T

L(r,n̂)

〈n〉 , (34)

where 〈n〉 is given by Eq. (27). Again, we can classify events
with a given energy loss, also regardless of where the hard
scattering took place or the direction of motion of the fast
parton or as a function of the location of the hard scattering,
regardless of the direction the parton traveled or the amount
of energy lost. In this way we can correlate events with a
total amount of energy loss to the corresponding value of η/s
which characterizes the amount of medium traversed by the
fast parton. It is important to notice that Eq. (34) encodes the
temperature dependence of η/s: An explicit linear dependence
given that η/s is inversely proportional to a thermal length, and
an implicit dependence coming from the average number of
scatterings, that in turn depends on the one-dimensional energy
loss per unit length, ε0. Phenomenologically, one expects
that when the temperature increases, ε0 does as well. This
we have accounted for by increasing ε0 when increasing the
temperature. However, we have not modelled the temperature
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FIG. 1. q̂ as a function of �E for the away-side particle for different trigger particle energy loses. The left (right) panel corresponds to a
QGP temperature T0 = 350 (T0 = 450) MeV and a corresponding ε0 = 2 (ε0 = 4) GeV/fm in the one dimensional energy loss model.

dependence of ε0. To have a better idea of the overall
temperature dependence of the transport coefficients, we study
three values of the temperature and two values for ε0.

Since the total energy lost by the fast parton bears a relation
with the amount of medium the parton traversed, we can
also study the transport coefficients classifying the events
in terms of the value of r where they were produced. On
general grounds one expects that, modulo the influence of the
expanding medium, partons that travel a larger path length
loose more energy.

Figure 1 shows q̂ as a function of the energy lost by the
away-side particle for the cases where the trigger particle loses
the indicated amount of energy. Hereby, for this and the rest
of the figures, the left (right) panel corresponds to a QGP
temperature T0 = 350 (T0 = 450) MeV computed with ε0 =
2,4 GeV/fm in the one dimensional energy loss model. Notice
that the q̂ values are widespread and have a strong dependence
on the amount of energy lost both by the trigger and the away-

side particles, making it difficult to assign a unique value of
this parameter to characterize the plasma.

To study a possible geometrical effect caused by the amount
of effective medium traveled by the partons on the value
of q̂, Figs. 2 and 3 show q̂ for the trigger and associate
particles, respectively, as a function of the distance r where
the hard scattering took place measured from the center of
the interaction region. Notice that q̂ has a similar behavior for
trigger and associate particles. There is a strong dependence of
the value of q̂ on r . The largest value occurs at a distance that
maximizes the medium density as this last expands. Notice
that contrary to the case when ε0 = 2 GeV/fm, the case
ε0 = 4 GeV/fm shows a pronounced maximum for q̂ around
r = 1.4 fm. This behavior can be understood by realizing that
for the considered energy in the collision

√
sNN = 2.76 TeV,

the average transverse momentum of the produced partons in
the hard scattering is of order 15 GeV. For ε0 of order 1–2
GeV/fm partons lose on average 3–5 GeV which is small
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3

3.5

4

4.5

5
(b)  = 2.76 TeVNNs

 Trigger particle

 = 450 MeV0 T

 = 2 GeV/fm0∈

 = 4 GeV/fm0∈

FIG. 2. q̂ for the trigger particle as a function of the distance r where the hard scattering took place. The left (right) panel corresponds to a
QGP temperature T0 = 350 (T0 = 450) MeV for the two values of ε0 = 2, 4) GeV/fm in the one dimensional energy loss model.
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FIG. 3. q̂ for the away-side particle as a function of the distance r where the hard scattering took place. The left (right) panel corresponds
to a QGP temperature T0 = 350 (T0 = 450) MeV and a corresponding ε0 = 2 (ε0 = 4) GeV/fm in the one dimensional energy loss model.

compared to the 15 GeV that partons were produced with on
average. Therefore, since 1–2 GeV is not the patron’s most
likely value, the behavior of q̂ is pretty much flat as a function
of r , which is tantamount to �E given that partons lose more
energy the more medium they travel. On the other hand, for
ε0 of order 4 GeV/fm, partons lose on average 10 GeV which
is a quantity comparable to the average momentum they were
produced with. Since q̂ is basically the average momentum
(squared) given from the partons to the medium and partons
that traveled more medium (small to intermediate r) lose more
energy, then, for bins with those values of r there should be
a maximum in q̂ since on average the majority of partons are
produced with that value of momentum.

We can also study the behavior of η/s either as a function
of the energy lost or as a function of the amount of effective
medium traveled by the partons. Figure 4 shows η/s as a
function of �E of the away-side particle for the cases where
the trigger particle loses the indicated amount of energy. Notice

that as the trigger particle loses more energy, the away side
particle energy loss starts at higher values, as expected. η/s is
larger for the case where the trigger particle loses less energy.
For all events but the ones where 0.5 < �Etrigger < 2 GeV
the η/s values cluster around 0.2 (0.3) for the left (right)
panel. In this case we have checked the behavior of �E is
dominated by events where the trajectory is tangential to the
medium’s surface, where, though L is small, the amount of
traversed medium is also small and so is the average number
of scatterings. In all cases η/s reaches limiting values which
depend on the amount of energy lost by the trigger particle.
Though the spread in values is less marked than for the case
of q̂, there is still a mild dependence on the energy loss by the
trigger particle.

Figures 5 and 6 show η/s as a function of r for the trigger
and associate particles, respectively. Notice that the value of
this transport coefficient is more or less constant as a function
of the location of the scattering center, where the fast parton
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FIG. 4. η/s as a function of �E for the away-side particle for different trigger particle energy loses. The left (right) panel corresponds to a
QGP temperature T0 = 350 (T0 = 450) MeV and a corresponding ε0 = 2 (ε0 = 4) GeV/fm in the one dimensional energy loss model.
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FIG. 5. η/s for the trigger particle as a function of the distance r where the hard scattering took place. The left (right) panel corresponds
to a QGP temperature T0 = 350 (T0 = 450) MeV and a corresponding ε0 = 2 (ε0 = 4) GeV/fm in the one dimensional energy loss model.

is created. This can be understood from recalling that from
Eq. (34) η/s is the ratio of the medium’s traveled length to
the average number of scatterings, scaled by the medium’s
temperature. Since the average number of scatterings is
proportional to the traveled length, η/s is constant modulo
the effect of the varying density as the medium expands.
Also, η/s decreases (increases) with r for trigger (associate)
particles. This can be understood as an effect caused by the
amount of medium traversed by the corresponding particle. A
trigger (associate) particle emitted close to the surface travels
on average less (more) medium and this gets reflected in the
behavior of η/s with r .

Figure 7 shows the relation between η/s and q̂ for the away-
side particle, for different trigger particle energy loses. This
relation can obtained from Eqs. (33) and (34) since for a given
�E bin we have both a value of η/s and of q̂. As the trigger
particle loses more energy, the away side particle energy loss

starts at higher values. Also, for all events but the ones where
0.5 < �Etrigger < 2 GeV, the η/s values cluster around 0.15,
0.2, and 0.3 for T0 = 250,350,450 MeV, respectively, as q̂
varies. The effect of going from ε0 = 2 GeV/fm (left panels)
to ε0 = 4 GeV/fm (right panels) at fixed T0 renders a greater
q̂, while η/s is slightly enhanced. Once again, the behavior of
�E in this mentioned case is dominated by events where the
trajectory is tangential to the medium’s surface, where both
L and 〈n〉 are small. We see that, though the dependence of
η/s on q̂ is nontrivial due to effects caused by the expanding
medium, different q̂ values are described by more or less
the same value of η/s. Overall, the milder dependence of
η/s on events with different �E or coming from different
locations r makes this transport coefficient to be a more
accurate quantity to characterize the expanding plasma than
q̂. We can see that when the temperature and ε0 decrease, the
transport coefficients correspondingly decrease.
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FIG. 6. η/s for the away-side particle as a function of the distance r where the hard scattering took place. The left (right) panel corresponds
to a QGP temperature T0 = 350 (T0 = 450) MeV and a corresponding ε0 = 2 (ε0 = 4) GeV/fm in the one dimensional energy loss model.
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FIG. 7. Relation between η/s and q̂ for the away-side particle, for different trigger particle energy loses. The relation is obtained by plotting
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IV. SUMMARY AND CONCLUSIONS

In conclusion we have shown that a nontrivial behavior
of the transport coefficients q̂ and η/s with the the location
of the hard scattering and with the energy lost characterizing
the events is obtained for an expanding medium. To obtain
this behavior we resorted to model the amount of energy and
momentum given to the medium by a fast moving parton
in terms of linear viscous hydrodynamics and the amount
of particles produced by this energy-momentum in terms of
the Cooper-Frye formula. This procedure allows to obtain a
probability distribution to compute the transport coefficients.
To include the effect of an expanding medium we resorted to
the model advocated in Ref. [20] tuned to describe LHC data
[21]. The fast moving partons are produced in 2 → 2 parton
events in p + p collisions with

√
sNN = 2.76 TeV. This allows

to characterized events where particles lose a given amount of
energy or are produced at a given location within the medium.

The study shows that the expanding medium cannot be
characterized by single values of q̂ or η/s, though the second
one of these coefficients shows a milder dependence on r or
�E. These results show that for conditions present in nuclear
collisions at high energies, it is important to characterize the
events in terms of a given observable, such as the amount of
energy loss (missing pt ), before extracting a particular value
for the transport coefficients. Furthermore, a major result from

the present analysis is the finding that η/s has a nontrivial
path length and trigger energy loss dependence. As can be
inferred from Fig. 7, given that η/s reaches a limiting value as
a function of q̂, the former can be extracted in a more reliable
manner for events where the trigger particle has lost an energy
larger than 2 GeV. From Fig. 6 it can also be seen that η/s is
more or less constant for events where there is a small path
length. This means that this quantity can also be more reliably
extracted for events with a larger eccentricity. These findings
can potentially be relevant for the ongoing efforts to extract
reliable values for these transport coefficients and to highlight
the appropriate class of events where this program can be
better implemented. In particular, our findings mean that the
extraction of reliable values of η/s can be better achieved by
looking at events with an energetic jet [24].
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