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Applying Bayesian parameter estimation to relativistic heavy-ion collisions:
Simultaneous characterization of the initial state and quark-gluon plasma medium
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We quantitatively estimate properties of the quark-gluon plasma created in ultrarelativistic heavy-ion collisions
utilizing Bayesian statistics and a multiparameter model-to-data comparison. The study is performed using a
recently developed parametric initial condition model, TRENTo, which interpolates among a general class of
particle production schemes, and a modern hybrid model which couples viscous hydrodynamics to a hadronic
cascade. We calibrate the model to multiplicity, transverse momentum, and flow data and report constraints on the
parametrized initial conditions and the temperature-dependent transport coefficients of the quark-gluon plasma.
We show that initial entropy deposition is consistent with a saturation-based picture, extract a relation between
the minimum value and slope of the temperature-dependent specific shear viscosity, and find a clear signal for a
nonzero bulk viscosity.
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I. INTRODUCTION

Simulations based on relativistic viscous hydrodynamics
have been highly successful describing a wealth of bulk
observables in heavy-ion collisions at the Relativistic Heavy-
Ion Collider (RHIC) in Brookhaven, NY and the Large Hadron
Collider (LHC) in Geneva, Switzerland. Initially, the success
of hydrodynamic simulations was primarily qualitative. The
framework elegantly described a number experimental phe-
nomena, for example the existence of large azimuthal particle
correlations, the mass ordering of these correlations, and their
characteristic momentum dependence.

Modern hydrodynamic simulations have greatly expanded
upon the successes of first-generation models. The addition
of dissipative corrections to ideal hydrodynamics [1–6],
event-by-event fluctuations in the colliding nuclei [7,8], and
modern lattice quantum chromodynamics (QCD) calcula-
tions for the quark-gluon plasma (QGP) equation of state
[9–11] are just a few examples of developments which have
dramatically improved the agreement of hydrodynamic models
with experiment.

These developments have positioned hydrodynamic mod-
eling to evolve beyond a qualitative science and quantitatively
extract intrinsic properties of hot and dense QCD matter.
A primary goal of the ongoing effort is to determine the
temperature dependence of QGP transport coefficients such
as the specific shear viscosity η/s, theorized to reach a
lower bound η/s � 1/4π near the QGP phase transition
temperature [12–14]. An estimate of the effective (constant)
QGP shear viscosity needed to fit spectra and flows at RHIC
found 1 � 4πη/s � 2.5 [15], while independent studies have
reported estimates consistent with this range [6,16,17].

The remaining uncertainty in η/s arises largely from the
hydrodynamic initial conditions: different initial condition
models lead to different hydrodynamic flow and hence prefer
different values of η/s. Current efforts to reduce uncertainties

include improving theoretical descriptions of the initial condi-
tions [18,19] and testing respective model predictions against
sensitive new observables [20–22]. The process thus defines
an iterative cycle in which theory calculations are embedded
in hydrodynamic transport simulations, analyzed against a
comprehensive list of bulk observables, and used to generate
testable predictions which inform subsequent refinements to
the theory.

Model optimization and comparison is often complicated
by multiple undetermined and highly correlated input param-
eters. In addition to QGP transport coefficients, simulations
depend on auxiliary inputs such as an effective nucleon
width and QGP thermalization time, all of which must be
simultaneously optimized. Evaluating a model for a single
set of parameters requires thousands of individual event
simulations, so direct optimization techniques quickly become
intractable.

One solution to the model optimization problem is the use
of modern Bayesian methods to estimate the parameters of
computationally intensive models [23–26]. A given model
is first evaluated at a relatively small number of parameter
configurations and the results are interpolated by a Gaussian
process emulator [27]. Then, using the emulator as a stand-in
for the full model, a standard Markov chain Monte Carlo
(MCMC) algorithm exhaustively explores the parameter space
and extracts probability distributions for the optimal values of
each parameter.

Bayesian methods have been applied to heavy-ion collisions
in several previous studies [28–33], including simulations
initialized with a two-component Monte Carlo Glauber (MC-
Glb.) model [34] and the Kharzeev-Levin-Nardi (MC-KLN)
model [35], an implementation of color glass condensate
(CGC) effective field theory [36,37]. Future work could
expand this coverage to additional calculations of QGP initial
conditions in order to systematically constrain each model’s
parameters along with hydrodynamic transport coefficients.
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Once the models are appropriately optimized, the relative
accuracy of the various theory calculations may be quantified
using a model selection criterion such as Bayes factors.

An alternative approach to model-by-model validation is
to optimize parametric initial conditions that are sufficiently
flexible to mimic the behavior of various theory calcula-
tions. This allows the parameter optimization process to
determine the nature of the initial conditions concurrently
with QGP medium properties while propagating any relevant
uncertainties—without imposing the assumptions of a specific
model. It also accelerates the model evaluation cycle by
establishing which theory calculations are most compatible
with the data and informing further refinements. To this end,
several recent studies have successfully used event-averaged
parametric initial conditions to constrain QGP properties
including the equation of state [29–31].

In this work, we extend previous efforts to parametrize and
constrain QGP initial conditions using a recently developed
event-by-event model, TRENTo [38], which is constructed to
interpolate a subspace of all initialization models including
(but not limited to) specific calculations in CGC effective
field theory. We couple the parametric model to viscous
hydrodynamics and a hadronic afterburner and apply Bayesian
methods to simultaneously estimate QGP initial condition and
medium properties.

II. EVOLUTION MODEL

Heavy-ion collision dynamics are modeled in a multistage
approach using relativistic viscous hydrodynamics for the time
evolution of the QGP medium and microscopic Boltzmann
transport to simulate the dynamics of the system after
hadronization.

A. Hydrodynamics and Boltzmann transport

Relativistic hydrodynamics models calculate the time evo-
lution of the QGP medium via the conservation equations

∂μT μν = 0 (1)

for the energy-momentum tensor

T μν = e uμuν − �μν(P + �) + πμν (2)

provided a set of initial conditions for the fluid flow velocity
uμ, energy density e, pressure P , shear stress tensor πμν ,
and bulk viscous pressure �. We use VISH2+1 [5], a stable,
extensively tested implementation of boost-invariant viscous
hydrodynamics which has been updated to handle fluctuating
event-by-event initial conditions [39] and incorporate bulk
viscous corrections with shear-bulk coupling.1 This implemen-
tation calculates the time evolution of the viscous corrections

through the second-order Israel-Stewart equations [40,41]
in the 14-momentum approximation, which yields a set of
relaxation-type equations [42,43]

τ�� + �̇ = −ζθ − δ���θ + λ�ππμνσμν, (3a)

τπ π̇ 〈μν〉 + πμν = 2ησμν − δπππμνθ + φ7π
〈μ
α πν〉α

− τπππ 〈μ
α σ ν〉α + λπ��σμν. (3b)

Here, η and ζ are the shear and bulk viscosities,
parametrized below. For the remaining transport coefficients,
we use analytic results derived in the limit of small but finite
masses [42].

The hydrodynamic equations of motion must be closed
by an equation of state (EoS), P = P (e). We use a modern
QCD EoS based on continuum extrapolated lattice calcu-
lations at zero baryon density published by the HotQCD
collaboration [11] and blended into a hadron resonance gas
EoS in the interval 110 � T � 130 MeV using a smoothstep
interpolation function [44]. The HotQCD EoS, characterized
by the parametrized interaction measure (e − 3P )/T 4, has
been compared to additional state-of-the-art calculations by
the Wuppertal-Budapest collaboration and shown to agree
within published errors [11]. The two parametrizations were
also studied in a recent error analysis at RHIC energies which
quantified the effect of systematic lattice EoS discrepancies
and statistical continuum extrapolation errors on hydrody-
namic observables [44]. The effect of these errors on mean
pT , elliptic flow v2, and triangular flow v3 was found to be
O(1%) and hence is expected to be negligible in the present
analysis.

In order to estimate the shear and bulk viscosities, we
parametrize their temperature dependence and define several
variable model inputs. The viscosities are typically expressed
as dimensionless ratios η/s and ζ/s, where s is the entropy
density; for the specific shear viscosity η/s, we use a piecewise
linear parametrization

(η/s)(T ) =
{

(η/s)min + (η/s)slope(T − Tc) T > Tc

(η/s)hrg T � Tc

, (4)

motivated by calculations in low- and high-temperature limits
which demonstrate that η/s has a minimum near the QCD
transition temperature [45–47]. We fix the transition temper-
ature Tc = 0.154 GeV to match the HotQCD EoS [11] and
leave (η/s) hrg, min, and slope as tunable parameters, with the
slope restricted to non-negative values. For the specific bulk
viscosity ζ/s, we use the parametrization [43,48]

(ζ/s)(T ) =

⎧⎪⎨
⎪⎩

C1 + λ1 exp[(x − 1)/σ1] + λ2 exp[(x − 1)/σ2] T < Ta

A0 + A1x + A2x
2 Ta � T � Tb

C2 + λ3 exp[−(x − 1)/σ3] + λ4 exp[−(x − 1)/σ4] T > Tb

(5)

1Bulk viscous corrections and shear-bulk coupling were implemented in VISH2+1 by Liu and Heinz. A first preliminary study involving a
much more restricted set of fit parameters including bulk viscosity was presented at the Quark Matter 2015 conference [33].
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with x = T/T0 and coefficients

C1 = 0.03, C2 = 0.001,

A0 = −13.45, A1 = 27.55, A2 = −13.77,

σ1 = 0.0025, σ2 = 0.022, σ3 = 0.025, σ4 = 0.13,

λ1 = 0.9, λ2 = 0.22, λ3 = 0.9, λ4 = 0.25,

T0 = 0.18 GeV, Ta = 0.995 T0, Tb = 1.05 T0.

Qualitatively, this form peaks near T0 = 180 MeV and falls off
exponentially on either side. To estimate the magnitude of bulk
viscosity, we scale (ζ/s)(T ) by a tunable overall normalization
factor (ζ/s)norm.

As the hydrodynamic medium expands and cools below
the QCD transition temperature Tc, it undergoes a transition
from a deconfined QGP to a hadron resonance gas (HRG).
We therefore convert the medium to an ensemble of particles
and switch from hydrodynamics to a microscopic kinetic
model, which can better handle the late stages of the collision
including species-dependent kinetic freeze-out, hadronic feed-
down dynamics, and nonequilibrium breakup. Kinetic models
also naturally account for hadronic viscosity, obviating the
need to manually specify transport coefficients. Thus, although
the parametrizations for η/s and ζ/s, Eqs. (4) and (5), extend
below Tc, they do not affect the kinetic model. In particular,
the parameter (η/s)hrg only controls the small fraction of
hydrodynamic evolution below Tc and before switching to
the kinetic model, and hence is not expected to strongly affect
the overall model. Such multistage approaches are known as
hybrid models [49–51].

The conversion to particles, or “particlization”, is per-
formed on an isothermal spacetime hypersurface defined by
a prespecified switching temperature Tswitch. Particlization
denotes the conversion of the hadronic medium from macro-
scopic to microscopic degrees of freedom—distinct from the
physical hadronization process—and in principle, may occur
at any temperature within a small window near the QCD
transition temperature, within which both the hydrodynamic
and microscopic models predict the same medium evolution.
To test this postulate, we leave Tswitch as a variable parameter.
As the hydrodynamic medium cools past the switching
temperature, particles are sampled from the Cooper-Frye
formula [52]

E
dNi

d3p
= gi

(2π )3

∫
�

fi(x,p) pμ d3σμ, (6)

where i is an index over species, fi the particle species’
distribution function, and d3σμ a volume element (located
at space-time position x) of the isothermal hypersurface
� defined by Tswitch. We use the iSS sampler [39,53] for
particlization.

The distribution function f includes any nonequilibrium
contributions from shear and bulk viscosities, typically ex-
panded into an ideal part and a viscous correction, f =
f0 + δf , where the ideal part f0 is a Bose or Fermi distribution
and the viscous correction δf = δfshear + δfbulk. We use a
common form for the shear correction [54]

δfshear = f0(1 ± f0)
1

2T 2(e + P )
pμpνπμν. (7)

The bulk viscous correction has a variety of proposed forms,
each of which predicts significantly different behavior when
either the bulk pressure � or momentum p are large [55,56].
Given this uncertainty and the small ζ/s at particlization
[see Eq. (5)], we assume that bulk corrections will be small
and neglect them for the present study, i.e., δfbulk = 0. This
precludes any quantitative conclusions on bulk viscosity, since
we are only allowing bulk viscosity to affect the hydrodynamic
evolution, not particlization. We will, however, be able to
determine whether ζ/s is nonzero. We plan to remedy this
shortcoming in future work, enabling a quantitative estimate
of the temperature dependence of bulk viscosity.

Once the fluid is converted into hadrons, the subsequent
microscopic dynamics are simulated using the ultrarelativistic
quantum molecular dynamics (UrQMD) model as a hadronic
afterburner [57,58]. UrQMD uses Monte Carlo techniques to
solve the Boltzmann equation

dfi(x,p)

dt
= Ci(x,p), (8)

where fi is the distribution function and Ci the collision kernel
for particle species i. The model propagates all produced
hadrons along classical trajectories, and accounts for their
scattering, resonance formation, and decay processes until
all hadrons in the system have ceased interacting. The final
particle data are then postprocessed into observables for
comparison with experiment.

B. Parametric initial conditions

The hydrodynamic equations of motion necessitate initial
conditions for the energy density e, fluid flow velocity uμ,
shear stress tensor πμν , and bulk pressure � at time τ = τ0,
when the system is assumed to have thermalized. These
initial conditions emerge from dynamical processes of the
collision, and are commonly modeled in two stages: initial
state models describe the system immediately after impact at
time τ = 0+, then pre-equilibrium transport models evolve the
system until the thermalization time τ0. Efforts to realistically
model the pre-equilibrium stage include transport dynamics
[18,59–62] motivated by thermalization studies in strong and
weakly coupled field theories [60,63–71].

The importance of pre-equilibrium dynamics was re-
cently studied by initializing hydrodynamic simulations with
a free streaming phase (zero coupling) and switching to
hydrodynamics (strong coupling) after different periods of
time [33,72]. The authors showed that although free streaming
never leads to thermalization, it can be used to bracket
the influence of pre-equilibrium dynamics on the medium
evolution as the pre-equilibrium coupling strength is expected
to fall between the free streaming and hydrodynamic limits.
When bulk viscous effects were neglected, the analysis found
a preference for a brief free streaming phase τfs � 1 fm/c,
but the effect on hydrodynamic bulk observables was small
and modifications to the preferred value of the QGP specific
shear viscosity η/s were less than 10%. Including nonzero
bulk viscosity opened a window for a longer free-streaming
stage with τfs ≈ 2 fm/c and reduced the best-fit value for
the specific shear viscosity by 20%. In real situations where
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the pre-equilibrium coupling strength is necessarily nonzero,
dynamical effects on the extracted transport coefficients are
expected to be even smaller.

In the present study we neglect pre-equilibrium dynamics,
instead initializing the flow velocity to zero as well as the
viscous terms, which quickly relax to their Navier-Stokes
values [73]. This reduces the initial conditions to a thermal
energy density, which may be provided as an entropy density
and converted via the QCD EoS. We generate event-by-event
initial conditions using the recently developed parametric
model TRENTo [38]. The model begins with a standard
Monte Carlo Glauber formalism, summarized below, and
parametrizes entropy deposition as a function of local par-
ticipant nuclear density.

First, nucleon positions for nuclei A and B are sampled from
a standard uncorrelated Woods-Saxon distribution [74] and
shifted by ±b/2, where b is a minimum-bias impact parameter.
Participants are then determined randomly from the inelastic
collision probability [75]

Pcoll(b) = 1 − exp[−σggTpp(b)],

Tpp(b) =
∫

dx dy Tp(x,y)Tp(x − b,y), (9)

where b is now the impact parameter between two nucleons,
Tp is the nucleon thickness function, and the effective partonic
cross section σgg is fixed to reproduce the inelastic nucleon-
nucleon cross section

σ inel
NN =

∫
2πb db Pcoll(b). (10)

The energy-dependent cross section σ inel
NN = 4.0, 4.2, 6.4,

7.0 fm2 at
√

sNN = 130, 200, 2760, 5020 GeV, respec-
tively [76–78]. For the nucleon thickness function we use a
Gaussian

Tp(x,y) = 1

2πw2
exp

(
−x2 + y2

2w2

)
, (11)

where w is a tunable effective nucleon width.
We now define the participant thickness function

T̃ (x,y) =
Npart∑
i=1

γi Tp(x − xi,y − yi), (12)

which differs from the conventional thickness function T
by including only participant nucleons and weighting each
participant by a random factor γi , sampled from a gamma dis-
tribution with unit mean and variance 1/k, where k is a tunable
shape parameter [79]. These weights are inserted to account
for minimum-bias proton-proton multiplicity fluctuations.

The TRENTo model calculates local entropy density at
midrapidity by applying a function f to the participant
thickness functions:

s(τ0,x,y)|ηs=0 = f (T̃A,T̃B). (13)

We use a functional form motivated by basic physical con-
straints and phenomenological observations [38] known as the
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FIG. 1. Several randomly generated TRENTo Pb+Pb initial
condition events using generalized mean parameter p = 0, nucleon
width w = 0.5 fm, and γ fluctuation factor k = 1.4.

generalized mean:

s ∝
(

T̃
p
A + T̃

p
B

2

)1/p

. (14)

This parametrization introduces a continuous entropy de-
position parameter p which effectively interpolates among
different entropy deposition schemes. For p = (1,0,−1), the
generalized mean reduces to arithmetic, geometric, and har-
monic means, while for p → ±∞ it asymptotes to minimum
and maximum functions:

s ∝

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max(T̃A,T̃B) p → +∞,

(T̃A + T̃B)/2 p = +1 (arithmetic),√
T̃AT̃B p = 0 (geometric),

2 T̃AT̃B/(T̃A + T̃B) p = −1 (harmonic),

min(T̃A,T̃B) p → −∞.

(15)

Perhaps the simplest explanation of this ansatz is to examine
the effect of the mapping on realistic events: Fig. 1 shows
examples of entropy density in the transverse plane for several
typical Pb+Pb events at

√
sNN = 2.76 TeV, while Fig. 2 shows

a cross section of a single event along the direction of the
impact parameter. At each point in the transverse plane there
are two relevant scales of interest: the smaller of the two
participant densities, T̃min = min(T̃A,T̃B), and the larger, T̃max.
In Fig. 2, the gray band marks the region spanned by T̃min

and T̃max, while the blue band and line show the generalized
mean of the participant densities for different values of the
parameter p. We see that decreasing p pulls the generalized
mean towards the minimum of T̃A and T̃B while increasing p
pushes it to the maximum, thus, the generalized mean ansatz
parametrizes asymmetric entropy deposition, or in the parlance
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FIG. 2. Cross section of the participant nucleon density in a
midcentral Pb+Pb collision at

√
sNN = 2.76 TeV as a function of

the transverse coordinate x parallel to impact parameter b. The gray
band indicates the region bounded by the minimum and maximum
values of the local participant thickness functions T̃A and T̃B , while
the blue band indicates the region spanned by the generalized mean
of T̃A and T̃B with parameter −1 < p < 1. The solid blue line shows
an example of a discrete mapping specified by a generalized mean
with p = 0.

of color glass condensate theory, the intensity of saturation
effects on local gluon production.

These local modifications naturally become manifest in
global quantities such as integrated particle yields. When two
heavy ions collide at fixed impact parameter b, their nuclear
densities are shifted by a common offset T (x ± b/2,y) which
increases the average asymmetry of local participant matter.
This asymmetry grows with increasing impact parameter and
is highly correlated with collision centrality. By varying the
generalized mean parameter p, the TRENTo model directly
modulates the attenuation of entropy deposition in peripheral
collisions and provides a parametric handle on the centrality
dependence of charged particle production—similar to the
role of the binary collision fraction α in the two-component
Glauber model.

Figure 3 plots the charged particle density per participant
pair at midrapidity as a function of participant number using
model calculations from TRENTo and experimental data from
PHENIX [76] and ALICE [80,81]. The model curves are
calculated assuming that charged particle multiplicity is pro-
portional to total initial entropy [82], where the proportionality
constant varies with beam energy but is constant for all
collision systems at the same energy. We set the entropy
deposition parameter p = 0, which was previously shown
to provide a good description of proton-proton, proton-lead,
and lead-lead multiplicity distributions as well as lead-lead
eccentricity harmonics at LHC energies [38]. However, this
value and the other parameters used in Fig. 3 have not yet
been systematically optimized—they are for demonstration
purposes only. While p could depend on energy, we see in the
figure that p = 0 provides a good description of the data at all
beam energies and self-consistently describes proton-lead and
lead-lead multiplicities at the same collision energy.

Note that, while the generalized mean parametrizes entropy
deposition in asymmetric regions of the collision (T̃A 	= T̃B),

it asserts a particular scaling in symmetric regions, namely,

f (αT̃ ,αT̃ ) = αT̃ , (16)

for a constant α. This property, known as scale invariance
or homogeneity, is difficult to empirically prove or disprove,
but multiple experimental observations indicate that it holds
to very good approximation. For example, it was demon-
strated that collisions of highly deformed uranium nuclei
exhibit elliptic flow patterns which are incompatible with
a scale-violating binary collision term postulated by the
two-component Glauber ansatz [83–85]. Measurements of
central copper-copper, gold-gold, and uranium-uranium parti-
cle production at RHIC also exhibit approximate participant
scaling [76]. Moreover, the scale invariant constraint serves
as a reasonable approximation for a number of calculations of
the mapping f in Eq. (13) derived from CGC effective field
theory, as we show momentarily. At present, we thus assert
scale invariance as a simplifying postulate, although relaxing
this constraint may further reduce bias and could be considered
in future work.

C. Reproducing existing initial condition models

The aforementioned procedure defines the TRENTo ini-
tial condition model proposed in Ref. [38]. The model is
constructed to achieve maximal flexibility using a minimal
number of parameters and can mimic a wide range of existing
initial condition models. To demonstrate the efficacy of the
generalized mean ansatz, Eq. (14), we now show that the
mapping can reproduce different theory calculations using
suitable values of the parameter p.

Perhaps the simplest and oldest model of heavy-ion initial
conditions is the so-called participant or wounded nucleon
model, which deposits entropy for each nucleon that engages
in one or more inelastic collisions [86]. In its Monte Carlo
formulation [87–90], the wounded nucleon model may be
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FIG. 3. Average charged particle density per participant pair
(dNch/dη)/(Npart/2) at midrapidity as a function of participant
number for Pb+Pb, p+Pb, and Au+Au systems at various collision
energies. Lines are TRENTo calculations with generalized mean pa-
rameter p = 0, and symbols are experimental data from PHENIX [76]
and ALICE [80,81]. The average minimum bias participant number
for p+Pb is shifted for clarity.
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mapping is shown with model parameters K = 0.64 and β = 0.8 [19]. Entropy normalization is arbitrary.

expressed in terms of participant thickness functions, Eq. (12),
as

s ∝ T̃A + T̃B . (17)

Comparing to Eq. (15), we see that the wounded nucleon model
is equivalent to the generalized mean ansatz with p = 1.

More sophisticated calculations of the mapping f in
Eq. (13) can be derived from color glass condensate effective
field theory. A common implementation of a CGC based
saturation picture is the KLN model [91–93], in which entropy
deposition at the QGP thermalization time can be determined
from the produced gluon density, s ∝ Ng , where

dNg

dy d2r⊥
∼ Q2

s,min

[
2 + log

(
Q2

s,max

Q2
s,min

)]
, (18)

and Qs,max and Qs,min denote the larger and smaller values of
the two saturation scales in opposite nuclei at any fixed position
in the transverse plane [94]. In the original formulation of the
KLN model, the two saturation scales are proportional to the
local participant nucleon density in each nucleus, Q2

s,A ∝ T̃A,
and the gluon density can be recast as

s ∼ T̃min[2 + log(T̃max/T̃min)] (19)

to put it in a form which can be directly compared with the
wounded nucleon model.

Another saturation model which has attracted recent interest
after it successfully described an extensive list of exper-
imental particle multiplicity and flow observables [19,95]
is the EKRT model, which combines collinearly factorized
pQCD minijet production with a simple conjecture for gluon
saturation [96,97]. The energy density predicted by the model
after a prethermal Bjorken free streaming stage is given by

e(τ0,x,y) ∼ Ksat

π
p3

sat(Ksat,β; TA,TB), (20)

where the saturation momentum psat depends on nuclear
thickness functions TA and TB , as well as phenomenological
model parameters Ksat and β. Calculating the saturation
momentum in the EKRT formalism is computationally in-
tensive, and hence—in its Monte Carlo implementation—
the model parametrizes the saturation momentum psat to

facilitate efficient event sampling [19]. The energy density
in Eq. (20) can then be recast as an entropy density using
the thermodynamic relation s ∼ e3/4 to compare it with the
previous models.

Note that Eq. (20) is expressed as a function of nuclear
thickness T which includes contributions from all nucleons in
the nucleus, as opposed to the participant thickness T̃ . In order
to express initial condition mappings as functions of a common
variable one could, e.g., relate T̃ and T using an analytic
wounded nucleon model. The effect of this substitution on the
EKRT model is small, as the mapping deposits zero entropy if
nucleons are non-overlapping, effectively removing them from
the participant thickness function. We thus replace T with T̃ in
the EKRT model and note that similar results are obtained by
recasting the wounded nucleon, KLN, and TRENTo models
as functions of T using standard Glauber relations.

Figure 4 shows one-dimensional slices of the entropy de-
position mapping predicted by the KLN, EKRT, and wounded
nucleon models for typical values of the participant nucleon
density sampled in Pb+Pb collisions at

√
sNN = 2.76 TeV.

The vertically staggered lines in each panel show the change
in deposited entropy density as a function of T̃A for several
constant values of T̃B , where the dashed lines are the entropy
density calculated using the various models and the solid lines
show the generalized mean ansatz tuned to fit each model. The
figure illustrates that the ansatz reproduces different initial
condition calculations and quantifies differences among them
in terms of the generalized mean parameter p. The KLN model,
for example, is well described by p ∼ −0.67, the EKRT
model corresponds to p ∼ 0, and the wounded nucleon model
is precisely p = 1. Smaller, more negative values of p pull
the generalized mean toward a minimum function and hence
correspond to models with more extreme gluon saturation
effects.

The three models considered in Fig. 4 are by no means
an exhaustive list of proposed initial condition models, see,
e.g., Refs. [90,100–104]. Notably absent, for instance, is the
highly successful IP-Glasma model which combines IP-Sat
CGC initial conditions with classical Yang-Mills dynamics to
describe the full pre-equilibrium evolution of produced glasma
fields [18,59,105]. The IP-Glasma model lacks a simple
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FIG. 5. Eccentricity harmonics ε2 and ε3 as a function of impact
parameter b for Pb+Pb collisions at

√
sNN = 2.76 TeV calculated

from IP-Glasma and TRENTo initial conditions. IP-Glasma events
are evaluated after τ = 0.4 fm/c classical Yang-Mills evolution [18];
TRENTo events after τ = 0.4 fm/c free streaming [72,98] and using
parameters p = 0 ± 0.1, k = 1.6, and nucleon width w = 0.4 fm to
match IP-Glasma [99].

analytic form for initial energy (or entropy) deposition at the
QGP thermalization time and so cannot be directly compared
to the generalized mean ansatz. In lieu of such a comparison,
we examined the geometric properties of IP-Glasma and
TRENTo through their eccentricity harmonics εn.

We generated a large number of TRENTo events using
entropy deposition parameter p = 0, Gaussian nucleon width
w = 0.4 fm, and fluctuation parameter k = 1.6, which were
previously shown to reproduce the ratio of ellipticity and
triangularity in IP-Glasma [38]. We then free streamed [72,98]
the events for τ = 0.4 fm/c to mimic the weakly coupled pre-
equilibrium dynamics of IP-Glasma and match the evolution
time of both models. Finally, we calculated the eccentricity
harmonics ε2 and ε3 weighted by energy density e(x,y)
according to the definition

εne
inφ = −

∫
dx dy rneinφe(x,y)∫

dx dy e(x,y)
, (21)

where the energy density is the time-time component of
the stress-energy tensor after the free streaming phase, T 00.
The resulting eccentricities, pictured in Fig. 5, are in good
agreement for all but the most peripheral collisions, where
subnucleonic structure becomes important. This similarity
suggests that TRENTo with p ∼ 0 can effectively reproduce
the scaling behavior of IP-Glasma, although a more detailed
comparison would be necessary to establish the strength of
correspondence illustrated in Fig. 4.

Additionally, a participant quark model has been proposed
to describe the multiplicity and transverse-energy distributions
of a variety of collision systems without a binary collision
term [76,106]. The model can be recast using an analytic
Glauber formalism to construct an effective entropy deposition
mapping in the form of Eq. (13). However, the resulting
mapping cannot be encapsulated by a single value of the
parameter p, so we do not attempt to support or exclude the
participant quark model in the present analysis.

III. PARAMETER ESTIMATION

With the full evolution model in hand, a number of impor-
tant model parameters—related to both initial-state entropy
deposition and the QGP medium—remain undetermined.
These parameters typically correlate among each other and
affect multiple observables, hence, if we wish to describe a
wide variety of experimental observables, the only option is a
simultaneous fit to all parameters. However, it is not feasible to
do this directly, since simulating observables at even a single
set of parameter values requires thousands of individual events
and significant computation time.

To overcome this limitation, we employ a Bayesian method
for parameter estimation with computationally expensive
models [23–26]. Briefly, the model is evaluated at a relatively
small O(102) number of parameter points, the output is
interpolated by a Gaussian process emulator, and the emulator
is used to systematically explore the parameter space with
Markov chain Monte Carlo methods. This section summarizes
the methodology; see Ref. [32] for a complete treatment.

A. Model parameters and observables

We choose a set of nine model parameters for estimation.
Four control the parametric initial state:

(1) the overall normalization factor,
(2) entropy deposition parameter p from the generalized

mean ansatz Eq. (14),
(3) γ shape parameter k, which sets nucleon multiplicity

fluctuations in Eq. (12), and
(4) Gaussian nucleon width w from Eq. (11), which

determines initial-state granularity.

The remaining five are related to the QGP medium:

(5−7) the three parameters (η/s hrg, min, and slope) in
Eq. (4) that set the temperature dependence of the
specific shear viscosity,

(8) normalization prefactor for the temperature depen-
dence of bulk viscosity Eq. (5), and

(9) particlization temperature Tswitch.

This parameter set will enable simultaneous characteriza-
tion of the initial state and medium, including any correlations.
Table I summarizes the parameters and their corresponding

TABLE I. Input parameter ranges for the initial condition and
hydrodynamic models.

Parameter Description Range

Norm Overall normalization 100–250
p Entropy deposition parameter −1 to +1
k Multiplicity fluct. shape 0.8–2.2
w Gaussian nucleon width 0.4–1.0 fm
η/s hrg Const. shear viscosity, T < Tc 0.3–1.0
η/s min Shear viscosity at Tc 0–0.3
η/s slope Slope above Tc 0–2 GeV−1

ζ/s norm Prefactor for (ζ/s)(T ) 0–2
Tswitch Particlization temperature 135–165 MeV
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TABLE II. Experimental data to be compared with model calculations.

Observable Particle species Kinematic cuts Centrality classes Ref.

Yields dN/dy π±, K±, pp̄ |y| < 0.5 0–5, 5–10, 10–20, . . . , 60–70 [107]

Mean transverse momentum 〈pT 〉 π±, K±, pp̄ |y| < 0.5 0–5, 5–10, 10–20, . . . , 60–70 [107]

Two-particle flow cumulants vn{2} |η| < 1 0–5, 5–10, 10–20, . . . , 40–50
all charged [108]

n = 2,3,4 0.2 < pT < 5.0 GeV n = 2 only: 50–60, 60–70

ranges, which are intentionally wide to ensure that the optimal
values are bracketed.

Having designated the model parameters and ranges, we
generated a 300 point maximin2 Latin hypercube design [109]
in the nine-dimensional parameter space and executed O(104)
minimum-bias Pb+Pb events at each of the 300 points.
Each event consists of a single “bumpy” (i.e., Monte Carlo
sampled) initial condition and hydrosimulation followed by
multiple samples of the freeze-out hypersurface. The number
of samples is roughly inversely proportional to the event’s
particle multiplicity so that total particle production is constant
across all events—typically ∼5 samples for central events
and up to 100 for peripheral events. This strategy leads to
consistent statistical uncertainties across all parameter points
and centrality classes.

Parameter estimation relies on observables that are sensitive
to varying the model inputs. For example, bulk viscosity
suppresses radial expansion, so a meaningful estimate of the
(ζ/s)(T ) normalization parameter requires some measure of
radial flow such as the mean transverse momentum. Indeed,
previous work has shown that finite bulk viscosity is necessary
to simultaneously fit both mean transverse momentum and
anisotropic flow [43].

For the present study we compare to the centrality depen-
dence of identified particle yields dN/dy and mean transverse
momenta 〈pT 〉 for charged pions, kaons, and protons as
well as two-particle anisotropic flow coefficients vn{2} for
n = 2, 3, 4. Table II summarizes the observables including
kinematic cuts, centrality classes, and experimental data,
which are all from the ALICE experiment, Pb+Pb collisions at√

sNN = 2.76 TeV [107,108]. These observables characterize
the lowest-order moments of the transverse momentum and
flow distributions; including higher-order quantities such as
mean-square momenta 〈p2

T 〉 [33] and four-particle cumulants
vn{4} [110] could enable a more precise fit.

When computing simulated observables, we strive to repli-
cate experimental methods as closely as possible. We selected
the same centrality classes as the corresponding experimental
data by sorting each design point’s minimum-bias events by
charged-particle multiplicity dNch/dη at midrapidity (|η| <
0.5) and dividing the events into the desired percentile bins.
We computed identified dN/dy and 〈pT 〉 by simple counting
and averaging of the desired species at midrapidity (|y| < 0.5);
no additional steps are necessary since the experimental data
are corrected and extrapolated to zero pT [107]. Finally,

2A “maximin” design maximizes the minimum distance between
points, thereby reducing large gaps and tight clusters.

we calculated flow coefficients for charged particles within
the kinematic range of the ALICE detector using the direct
Q-cumulant method [111].

The top row of Fig. 8 (located later in Sec. IV) shows the
final observables for each of the 300 design points; their large
spreads arise from the wide input parameter ranges.

B. Gaussian process emulators

Central to the parameter estimation method is a statistical
surrogate model that interpolates the model input parameter
space and provides fast predictions of the output observables
at arbitrary inputs. We use Gaussian process emulators [27]
as flexible, non-parametric interpolators. Essentially, this
amounts to assuming that the model follows a multivariate
normal distribution with mean and covariance functions
determined by conditioning on actual model calculations.

The full evolution model takes vectors x of n = 9 inputs
and produces a number of outputs (each centrality bin of each
observable is an output). For the moment consider only a
single output, e.g., pion dN/dy in 20–30% centrality (the
specific observable does not matter), and call it y. We have
already evaluated the model at m = 300 design points, i.e.,
an m × n design matrix X = {x1, . . . ,xm}, and obtained the
corresponding m outputs y = {y1, . . . ,ym}. Now, we assume
that the model is a Gaussian process with some covariance
function σ and condition it on the training data (X,y), yielding
predictions for the outputs y∗ at some other points X∗ within
the design range. The predictive distribution for y∗ is the
multivariate normal distribution

y∗ ∼ N (μ,�),

μ = σ (X∗,X)σ (X,X)−1y,

� = σ (X∗,X∗) − σ (X∗,X)σ (X,X)−1σ (X,X∗),

(22)

where μ is the mean vector and � the covariance matrix,
and the notation σ (·,·) indicates a matrix from applying the
covariance function to each pair of inputs, e.g.,

σ (X,X) =

⎛
⎜⎝

σ (x1,x1) · · · σ (x1,xm)
...

. . .
...

σ (xm,x1) · · · σ (xm,xm)

⎞
⎟⎠. (23)

Thus, we obtain both the mean predicted output and corre-
sponding uncertainty at any desired input point. Generally,
the uncertainty is small near explicitly calculated points and
wide in gaps, reflecting the true state of knowledge of the
interpolation.

The covariance function σ quantifies the correlation be-
tween pairs of input points. We use a typical Gaussian
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function

σ (x,x′) = σ 2
GP exp

[
−

n∑
k=1

(xk − x ′
k)2

2�2
k

]
+ σ 2

n δxx′ , (24)

which yields smoothly varying processes with continuous
derivatives, making it a common choice for well-behaved
models. This form has several variable hyperparameters: the
overall variance of the Gaussian process σ 2

GP, the correlation
lengths for each input parameter �k , and the noise variance σ 2

n

which allows for statistical error. These hyperparameters may
be estimated from the training data by numerically maximizing
the likelihood function

log P = −1

2
yᵀ�−1y − 1

2
log |�| − m

2
log 2π (25)

with � = σ (X,X), i.e., the covariance function applied to the
inputs. This expression consists of a least-squares fit to the
data (first term), a complexity penalty to prevent overfitting
(second term), and a normalization constant (third term).

To this point we have considered only a single output.
Gaussian processes are fundamentally scalar functions, but
the model produces many outputs, all of which must be
emulated. This is readily solved by transforming the output
data into orthogonal and uncorrelated linear combinations
called principal components, then emulating each component
with an individual Gaussian process.

Let p be the number of model outputs, that is, given an
m × n design matrix X, the model produces an m × p output
matrix Y . The principal components Z are then computed by
the linear transformation

Z = √
m YU, (26)

where U are the eigenvectors of the sample covariance matrix
Y ᵀY . The Gaussian processes predict principal components
Z∗ at input points X∗ which are then transformed back to

physical space as

Y∗ = 1√
m

Z∗Uᵀ. (27)

Often, the p model outputs are strongly correlated and
so a much smaller number of principal components q � p
account for most of the model’s variance. Thus one can use
only q components, reducing a high-dimensional output space
to a few one-dimensional problems with negligible loss of
information. We use q = 8 principal components, retaining
over 99.5% of the variance from the original p = 68 outputs.

To validate the performance of the emulators, we generated
an independent 50 point Latin hypercube design from the
original design space, evaluated the full model at each
validation point, and compared the explicit model calculations
to emulator predictions. Figure 6 confirms that the emulators
faithfully predict true model calculations. The predictions need
not agree perfectly at every point; ideally the residuals would
be normally distributed with mean zero and variance predicted
by the Gaussian processes.

C. Bayesian calibration

The final step in the parameter estimation method is
to calibrate the model parameters to optimally reproduce
experimental observables, thereby extracting probability dis-
tributions for the true values of the parameters. According to
Bayes’ theorem, the probability for the true parameters x� is

P (x�|X,Y,yexp) ∝ P (X,Y,yexp|x�)P (x�). (28)

The left-hand side is the posterior: the probability of x� given
the design X, computed observables Y , and experimental data
yexp. On the right-hand side, P (x�) is the prior probability—
encapsulating initial knowledge of x�—and P (X,Y,yexp|x�) is
the likelihood: the probability of observing (X,Y,yexp) given a
proposal x�.
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FIG. 7. Posterior distributions for the model parameters from calibrating to identified particles yields (blue, solid lines, lower triangle) and
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The likelihood may be quickly computed using the principal
component Gaussian process emulators constructed in the
previous subsection:

P = P (X,Y,yexp|x�)

= P (X,Z,zexp|x�)

∝ exp
{− 1

2 (z� − zexp)ᵀ�−1
z (z� − zexp)

}
, (29)

where z� = z�(x�) are the principal components predicted by
the emulators, zexp is the principal component transform of the
experimental data yexp, and �z is the covariance (uncertainty)
matrix. As in previous work [29,32], we assume a constant
fractional uncertainty on the principal components, so that the
covariance matrix is

�z = diag
(
σ 2

z zexp
)

(30)
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with σz = 0.10 in the present study. This is a simple ansatz
intended to conservatively account for the various sources
of uncertainty in the experimental data, model calculations,
and emulator predictions. It certainly limits the meaning of
quantitative uncertainties in the final estimated parameters and
is an obvious target for improvement in future studies.

We place a uniform prior on the model parameters, i.e.,
the prior is constant within the design range and zero outside.
Combined with the likelihood (29) and Bayes’ theorem (28),
we can easily evaluate the posterior probability at any point in
parameter space.

Posterior distributions are typically constructed using
Markov chain Monte Carlo (MCMC) methods. MCMC
algorithms generate random walks through parameter space
by accepting or rejecting proposal points based on the
posterior probability; after many steps the chain converges to
the desired posterior.

We use the affine-invariant ensemble sampler [112,113],
an efficient MCMC algorithm that uses a large ensemble of
interdependent walkers. We first run O(106) steps to allow
the chain to equilibrate, discard these “burn-in” samples, then
generate O(107) posterior samples.

IV. RESULTS

The primary result of this study is the posterior distribution
for the model parameters, Fig. 7. In fact, this figure contains
two posterior distributions: one from calibrating to identified
particle yields dN/dy (blue, lower triangle), and the other
from calibrating to charged particle yields dNch/dη (red, upper
triangle). We performed the alternate calibration to charged
particles because the model could not simultaneously describe

all identified particle yields for any parameter values, as will
be demonstrated shortly.

In Fig. 7, the diagonal plots are marginal distributions
for each model parameter (all other parameters integrated
out) from the calibrations to identified (blue) and charged
(red) particles, while the off-diagonals are joint distributions
showing correlations among pairs of parameters from the
calibrations to identified (blue, lower triangle) and charged
(red, upper triangle) particles. Operationally, these are all
histograms of MCMC samples.

We discuss the posterior distributions in detail in the
following subsections. First, let us introduce several ancillary
results.

Table III contains quantitative estimates of each parameter
extracted from the posterior distributions. The reported values
are the medians of each parameter’s distribution, and the
uncertainties are highest-posterior density3 90% credible
intervals. Note that some estimates are influenced by limited
prior ranges, e.g., the lower bound of the nucleon width w.

Figure 8 compares simulated observables (see Table II) to
experimental data. The top row has explicit model calculations
at each of the 300 design points; recall that all model param-
eters vary across their full ranges, leading to the large spread
in computed observables. The bottom row shows emulator
predictions of 100 random samples from the identified particle
posterior distribution (these are visually indistinguishable for
the charged particle posterior). Here, the model has been cal-
ibrated to experiment, so its calculations are clustered tightly

3The highest-posterior density credible interval is the smallest range
containing the desired fraction of the distribution.
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FIG. 9. Posterior distribution of the TRENTo entropy deposition
parameter p introduced in Eq. (14). Approximate p values are
annotated for the KLN (p ≈ 0.67 ± 0.01), EKRT (p ≈ 0.0 ± 0.1),
and wounded nucleon (p = 1) models.

around the data—although some uncertainty remains since
the samples are drawn from a posterior distribution of finite
width. Overall, the calibrated model provides an excellent
simultaneous fit to all observables except the pion/kaon yield
ratio, which (although it is difficult to see on a log scale)
deviates by roughly 10–30%. We address this deficiency in the
following subsections.

A. Initial condition parameters

The first four parameters are related to the initial condition
model. Proceeding in order:

The normalization factor is not a physical parameter but
nonetheless must be tuned to fit overall particle production.
Both calibrations produced narrow posterior distributions,
with the identified particle result located slightly lower
to compromise between pion and kaon yields. There are
some mild correlations between the normalization and other
parameters that affect particle production.

The TRENTo entropy deposition parameter p introduced
in Eq. (14) has a remarkably narrow distribution, with the
two calibrations in excellent agreement. The estimated value
is essentially zero with approximate 90% uncertainty ±0.2,
meaning that initial state entropy deposition is roughly propor-
tional to the geometric mean of participant nuclear thickness
functions, s ∼

√
T̃AT̃B . This confirms previous analysis of the

TRENTo model which demonstrated that p ≈ 0 simultane-
ously produces the correct ratio between initial state ellipticity
and triangularity and fits multiplicity distributions for a variety
of collision systems [38]. We observe little correlation between
p and any other parameters, suggesting that its optimal value
is mostly factorized from the rest of the model.

Further, recall that the p parameter smoothly interpolates
among different classes of initial condition models; Fig. 9
shows an expanded view of the posterior distribution along
with the approximate p values for the other models in Fig. 4.
The EKRT model (and presumably IP-Glasma as well) lie
squarely in the peak—this helps explain their success—while
the KLN and wounded nucleon models are considerably
outside.

The distributions for the multiplicity fluctuation parameter
k are quite broad, indicating that it’s relatively unimportant for
the present model and observables. Indeed, these fluctuations
are overwhelmed by nucleon position fluctuations in large
collision systems such as Pb+Pb.

The Gaussian nucleon width w has fairly narrow distri-
butions mostly within 0.4–0.6 fm. It appears we did not
extend the initial range low enough and so the posteriors
are truncated; however we still resolve peaks at ∼0.43 and
∼0.49 fm for the identified and charged particle calibrations,
respectively. Since the distributions are asymmetric, the
median values are somewhat higher than the modes. The
quantitative estimates and uncertainties are in good agreement
with the gluonic widths extracted from deep inelastic scattering
data at HERA [114–116] and support the values used in
EKRT and IP-Glasma studies [18,19]. We also observe
striking correlations between the nucleon width and QGP
viscosities—this is because decreasing the width leads to
smaller scale structures and steeper gradients in the initial state.
So, e.g., as the nucleon width decreases, average transverse
momentum increases, and bulk viscosity must increase to
compensate. This explains the strong anticorrelation between
w and ζ/s norm.

B. QGP medium parameters

The shear viscosity parameters (η/s)min,slope set the temper-
ature dependence of η/s according to the linear ansatz

(η/s)(T ) = (η/s)min + (η/s)slope(T − Tc) (31)

for T > Tc. The full parametrization Eq. (4) also includes
a constant (η/s)hrg for T < Tc; this parameter was included
in the calibration but yielded an essentially flat posterior
distribution, implying that it has little to no effect. This is
not surprising, since hadronic viscosity is largely handled
by UrQMD, not the hydrodynamic model. Therefore, we
omit (η/s)hrg from the posterior distribution visualizations and
tables.

Examining the marginal distributions for η/s min and slope,
we see a clear preference for (η/s)min � 0.15 and a slight
disfavor of steep slopes; however, the marginal distributions
do not paint a complete picture. The joint distribution shows a
salient correlation between the two parameters, hence, while

TABLE III. Estimated parameter values (medians) and uncer-
tainties (90% credible intervals) from the posterior distributions
calibrated to identified and charged particle yields (middle and right
columns, respectively). The distribution for Tswitch based on charged
particles is essentially flat, so we do not report a quantitative estimate.

Calibrated to:

Parameter Identified Charged

Normalization 120.+8.
−8. 132.+11.

−11.

p −0.02+0.16
−0.18 0.03+0.16

−0.17

k 1.7+0.5
−0.5 1.6+0.6

−0.5

w [fm] 0.48+0.10
−0.07 0.51+0.10

−0.09

η/s min 0.07+0.05
−0.04 0.08+0.05

−0.05

η/s slope [GeV−1] 0.93+0.65
−0.92 0.65+0.77

−0.65

ζ/s norm 1.2+0.2
−0.3 1.1+0.5

−0.5

Tswitch [GeV] 0.148+0.002
−0.002 −
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indicates the prior range for the linear (η/s)(T ) parametrization
Eq. (31), the blue line is the median from the posterior distribution,
and the blue band is a 90% credible region. The horizontal gray line
indicates the KSS bound η/s � 1/4π [12–14].

neither η/s min nor slope are strongly constrained indepen-
dently, a linear combination is quite strongly constrained.
Figure 10 visualizes the complete estimate of the temperature
dependence of η/s via the median min and slope from the
posterior (for identified particles) and a 90% credible region.
This visualization corroborates that the posterior for (η/s)(T )
is markedly narrower than the prior and further reveals
that the uncertainty is smallest at intermediate temperatures,
T ∼ 200–225 MeV. We hypothesize that this is the most
important temperature range for the present observables at√

sNN = 2.76 TeV—perhaps it is where the system spends
most of its time and hence where most anisotropic flow
develops, for instance—and thus the data provide a “handle”
for η/s around 200 MeV. Data at other beam energies and other,
more sensitive observables could provide additional handles
at different temperatures, enabling a more precise estimate of
the temperature dependence of η/s.

This result for (η/s)(T ) supports several recent findings us-
ing other models: a detailed study using the EKRT model [19]
showed that a combination of RHIC and LHC data prefer
a flat or shallow high-temperature slope, while an analysis
using a three-dimensional constituent quark model [117]
demonstrated that a similar flat or shallow slope best describes
the rapidity dependence of elliptic flow at RHIC. In addition,
the estimated temperature-averaged shear viscosity is consis-
tent with the (constant) η/s = 0.095 reported [43] using the
IP-Glasma model and the same bulk viscosity parametrization,
Eq. (5). Finally, the present result remains compatible (within
uncertainty) with the KSS bound η/s � 1/4π [12–14].

One should interpret the estimate of (η/s)(T ) depicted in
Fig. 10 with care. We asserted a somewhat restricted linear
parametrization reaching a minimum at a fixed temperature,
and evidently may not have extended the prior range for
the slope high enough to bracket the posterior distribution;
these assumptions, along with the flat 10% uncertainty [see
Eq. (30)], surely affect the precise result. And in general, a

credible region is not a strict constraint—the true function
may lie partially or completely (however improbably) outside
the estimated region. Yet the overarching message holds: we
find the least uncertainty in η/s at intermediate temperatures,
and estimate that its temperature dependence has at most a
shallow positive slope.

For the ζ/s norm [the prefactor for the parametrization
Eq. (5)], the calibrations yielded clearly peaked posterior
distributions located slightly above one. Hence, the estimate
is comfortably consistent with leaving the parametrization
unscaled, as in Ref. [43]. As noted in the previous subsection,
there is a strong anticorrelation between ζ/s norm and the
nucleon width. We also observe a positive correlation with η/s
min, which initially seems counterintuitive. This dependence
arises via the nucleon width: increasing bulk viscosity requires
decreasing the nucleon width, which in turn necessitates
increasing shear viscosity to damp out the excess anisotropy.
Given the previously mentioned shortcomings in the current
treatment of bulk viscosity (neglecting bulk corrections at
particlization, lack of a dynamical pre-equilibrium phase),
we refrain from making any quantitative statements. What is
clear, however, is that a nonzero bulk viscosity is necessary to
simultaneously describe transverse momentum and flow data.

The distributions for the particlization temperature Tswitch

have by far the most dramatic difference between the two
calibrations. The posterior from identified particle yields
shows a sharp peak centered at T ≈ 148 MeV, just below Tc =
154 MeV; but with charged particle yields, the distribution
is nearly flat. This is because the final particle ratios—
while somewhat modified by scatterings and decays in the
hadronic phase—are largely determined by the thermal ratios
at the particlization temperature. So, when we require the
model to describe identified particle yields, Tswitch is tightly
constrained; on the other hand, lacking these data there is
little else to determine an optimal switching temperature.
This reinforces the original hybrid model postulate—that both
hydro- and Boltzmann transport models predict the same
medium evolution within a temperature window [49–51].

Note that, while we do see a narrow peak for Tswitch, the
model cannot simultaneously fit pion, kaon, and proton yields;
in particular, the pion/kaon ratio is 10–30% low. The peak
thus arises from a compromise between pions and kaons—not
an ideal fit—so we do not consider the quantitative value of
the peak to be particularly meaningful. This is a long-standing
issue in hybrid models [118] and therefore likely indicates
a more fundamental problem with the particle production
scheme rather than one with this specific model.

C. Verification of high-probability parameters

As a final verification of emulator predictions and the
model’s accuracy, we calculated a large number of events
using high-probability parameters and compared the resulting
observables to experiment. We chose two sets of parameters
based on the peaks of the posterior distributions, listed in
Table IV. These values approximate the “most probable”
parameters and the corresponding model calculations should
optimally fit the data.
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FIG. 11. Model calculations using the high-probability parameters listed in Table IV. Solid lines are calculations using parameters
based on the identified particle posterior, dashed lines are based on the charged particle posterior, and points are data from the ALICE
experiment [107,108]. Top row: calculations of identified or charged particle yields dN/dy or dNch/dη (left), mean transverse momenta 〈pT 〉
(middle), and flow cumulants vn{2} (right) compared to data. Bottom: ratio of model calculations to data, where the gray band indicates ±10%.

We evaluated O(105) minimum-bias events (no emulator)
for each set of parameters and computed observables, shown
along with experimental data in Fig. 11. Solid lines represent
calculations using parameters based on the identified particle
posterior while dashed lines are based on the charged particle
posterior. Note that these calculations include a peripheral
centrality bin (70–80%) that was not used in parameter
estimation.

We observe an excellent overall fit; most calculations are
within 10% of experimental data, the notable exceptions being
the pion/kaon ratio (discussed in the previous subsection)
and central elliptic flow, both of which are general problems
within this class of models. Total charged particle production
is nearly perfect—within 2% of experiment out to 80%
centrality—indicating that the issues with identified particle
ratios arise in the particlization and/or hadronic phases, not
in initial entropy production. The v2 mismatch in the most
central bin is a manifestation of the experimental observation
that elliptic and triangular flow converge to nearly the same
value in ultracentral collisions [108,119], a phenomenon that
hydrodynamic models have yet to explain [120,121].

TABLE IV. High-probability parameters chosen based on the
posterior distributions and used to generate Fig. 11. Pairs of values
separated by slashes are based on identified/charged particle yields,
respectively. Single values are the same for both cases.

Initial condition QGP medium

norm 120. / 129. η/s min 0.08
p 0.0 η/s slope 0.85 / 0.75 GeV−1

k 1.5 / 1.6 ζ/s norm 1.25 / 1.10
w 0.43 / 0.49 fm Tswitch 0.148 GeV

V. SUMMARY AND CONCLUSIONS

We have used Bayesian methodology to quantitatively
estimate initial condition and transport properties of the
QGP medium produced in relativistic heavy-ion collisions.
We coupled a parametric initial condition model to viscous
hydrodynamics and a hadronic afterburner, calibrated the full
model to a variety of bulk observables, and established a
number of salient constraints on model parameters, including
a relation between the minimum value and slope of the
temperature-dependent shear viscosity, a clear signal for a
nonzero bulk viscosity, and a robust constraint on initial state
entropy deposition.

The parametric initial condition model used in this analysis,
TRENTo, smoothly interpolates among various physically
reasonable entropy deposition schemes, ranging from a
wounded nucleon model to specific calculations in color
glass condensate effective field theory. This flexibility is ideal
for model-to-data comparison, since it allows the analysis
framework to optimize the initial conditions with minimal
theoretical assumptions.

The heavy-ion collision transport dynamics were simulated
using an event-by-event hybrid model with viscous hydrody-
namics for the early hot and dense stage and a microscopic
hadronic afterburner for the later dilute stage. The hydrody-
namic model uses a modern continuum extrapolated lattice
equation of state and implements temperature-dependent shear
and bulk viscous corrections. To constrain the viscosities,
we parametrized their temperature dependence with several
tunable model parameters for optimization.

With the full evolution model in hand, we applied Bayesian
methods to estimate its various input parameters. We evaluated
the model at several hundred points in parameter space, cal-
culated bulk observables at each point, and trained a Gaussian
process emulator to interpolate the model calculations. Then,
we used a Markov chain Monte Carlo (MCMC) algorithm
to systematically explore parameter space—with the emulator
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acting as a stand-in for the complete model—and calibrate
the model to optimally reproduce experimental data, thereby
extracting posterior probability distributions for all parameters
and their correlations.

The primary results of this work are the posterior distri-
butions, shown in Fig. 7, and the corresponding quantitative
estimates of each parameter, presented in Table III. These
distributions contain a wealth of information about QGP initial
condition and medium properties; here we summarize the key
features:

(1) Based on the TRENTo initial condition parametriza-
tion, we find that initial entropy deposition is ap-
proximately proportional to the geometric mean of
local participant nuclear densities. This scaling is
functionally similar to the notably successful EKRT
and IP-Glasma models.

(2) The preferred Gaussian nucleon width is roughly 0.5 ±
0.1 fm, consistent with values extracted from HERA
deep inelastic scattering data.

(3) For the temperature-dependent specific shear viscosity
(η/s)(T ), we asserted a linear parametrization reaching
its minimum at the QCD phase transition temperature.
The data cannot individually constrain both the min-
imum value and the slope, but do constrain a linear
combination, as shown in Fig. 10. The uncertainty
on η/s is smallest at intermediate temperatures, T ∼
200–225 MeV; we hypothesize that this is the most
important temperature range at

√
sNN = 2.76 TeV,

and that including data from additional beam energies
would enable a more precise estimate of (η/s)(T ).

(4) We observe a clear preference for a nonzero bulk
viscosity, which is necessary to simultaneously de-
scribe transverse momentum and flow data. We refrain
from making any quantitative statements given current
limitations in the treatment of bulk viscosity.

(5) The result for the particlization temperature (when
the model switches from hydrodynamics to hadronic
afterburner) depends strongly on the observables used
for calibration. When fitting to identified pion, kaon,
and proton yields, the temperature is tightly constrained
just below the QCD transition temperature. On the
other hand, when the identified yields are replaced
with total charged particle yields, there is essentially
no preference within the considered range. This implies
that both stages of the hybrid model simulate the same

medium evolution near the QGP transition, but not the
same hadronic chemistry.

The aforementioned parameter estimates allow us to assess
the performance of a systematically optimized model. To
this end, we evaluated the full model using high-probability
parameters based on the posterior distributions. The resulting
charged particle yields, mean transverse momenta, and flow
cumulants agree with experiment at the 10% level, as shown
in Fig. 11.

In future work, we plan to include data from multiple beam
energies—we anticipate that a combined analysis of data at√

sNN = 200 GeV, 2.76 TeV, and 5.02 TeV will enable a
precise extraction of temperature-dependent QGP transport
coefficients. We will also consider new, sensitive observables
such as correlations between flow harmonics of different order.

We will implement several improvements to the physical
models, including a free streaming stage for pre-equilibrium
dynamics and bulk viscous corrections at particlization. These
changes will especially improve estimates of the specific bulk
viscosity ζ/s.

Finally, we plan to improve the treatment of experimental
and model uncertainties, essential for rigorous quantitative
uncertainties on estimated parameters.

Note added. All code used in this study is publicly
available: the TRENTo initial condition model at qcd.phy.
duke.edu/trento, the iEBE-VISHNU package at u.osu.edu/
vishnu, UrQMD at urqmd.org, the workflow for generating
events at github.com/jbernhard/heavy-ion-collisions-osg, and
the source for this manuscript including all figures and tables
at github.com/Duke-QCD/trento-paper-2.
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