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Polarization of massive fermions in a vortical fluid
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Fermions become polarized in a vortical fluid due to spin-vorticity coupling. Such a polarization can be
calculated from the Wigner function in a quantum kinetic approach. By extending previous results for chiral
fermions, we derive the Wigner function for massive fermions up to next-to-leading order in spatial gradient
expansion. The polarization density of fermions can be calculated from the axial vector component of the Wigner
function and is found to be proportional to the local vorticity ω. The polarizations per particle for fermions and
antifermions decrease with the chemical potential and increase with energy (mass). Both quantities approach
the asymptotic value �ω/4 in the large energy (mass) limit. The polarization per particle for fermions is always
smaller than that for antifermions, whose ratio of fermions to antifermions also decreases with the chemical
potential. The polarization per particle on the Cooper-Frye freeze-out hypersurface can also be formulated and
is consistent with the previous result of Becattini et al. [11,27].

DOI: 10.1103/PhysRevC.94.024904

I. INTRODUCTION

In noncentral high-energy heavy-ion collisions, the large
orbital angular momentum present in the colliding system
can lead to nonvanishing local vorticity in the hot and dense
fluid [1–6]. The vorticity induced by global orbital angular
momentum in the fluid can be considered as local rotational
motion of particles [3,4,7,8]. It is closely related to the rapidity
dependence of the v1 flow and shear of the longitudinal flow
velocity inside the reaction plane [5,9,10].

As a result of spin-orbital coupling, quarks and antiquarks
can become polarized along the normal direction of the
reaction plane [1,2,5]. Through hadronization of polarized
quarks and antiquarks, hyperons can also be polarized in the
same direction in the final state [1,2,11]. Measurements of such
global hyperon polarization are feasible through the parity-
violating decay of hyperons [12,13]. Such measurements will
shed light on properties of the vortical structures of the
strongly coupled quark-gluon plasma in high-energy heavy-
ion collisions.

Quark and antiquark polarizations in a vortical fluid are
also closely related to the chiral magnetic and vortical
effects [14–19]. From the solutions of Wigner functions for
chiral or massless fermions in a quantum kinetic approach,
one can derive the axial current j

μ
5 = ρ5u

μ + ξ5ω
μ + ξB

5 Bμ,
where ρ5 is the axial charge density, uμ is the fluid ve-
locity, ωμ ≡ 1

2εμσαβuσ ∂αuβ is the vorticity four-vector, and
Bμ = 1

2εμνλσ uνFλσ is the four-vector of the magnetic field
with Fλρ being the strength tensor of the electromagnetic field.
The coefficients ξ5 and ξB

5 are all functions of temperatures
and chemical potentials μ and μ5 [19]. In a three-flavor quark
matter with u, d, and s quarks and their antiquarks, ξB

5 = 0. In
other words, the axial current in a three-flavor quark matter is
blind to the magnetic field and solely induced by the vorticity.

Such an axial current leads to the local polarization effect [19]
which is also connected to the spin-vorticity coupling for chiral
or massless fermions [20].

In this paper, we will extend our Wigner function method
for massless fermions to massive ones and formulate the
polarization of massive fermions induced by vorticity. In
Sec. II, we will give a brief introduction to the Wigner function
method and derive the equations for the Wigner function
components for massive fermions based on Refs. [21,22]. The
Wigner function components can be determined perturbatively
by gradient expansion. In Sec. III, we will derive the Wigner
function at leading order by definition. Using the projection
method we can extract each component of the Wigner function
at leading order. We will propose the first-order solution for the
axial vector component in Sec. IV by extending the solution
for massless fermions. In Sec. V, we will show that the axial
vector component can be regarded as the spin density in phase
space. We can obtain the polarization density after completion
of momentum integration of the axial vector component in
Sec. VI. We will also formulate the fermion polarization on
the freeze-out hypersurface by extending the Cooper-Frye
formula. We will give a summary of the results in the final
section.

We adopt the same sign conventions for fermion charge Q
as in Refs. [19,20,22,23] and the same sign convention for
the axial vector Aμ ∼ 〈ψ̄γ μγ 5ψ〉 as in Refs. [19,20,23] but
different sign convention from Ref. [22].

II. WIGNER FUNCTION FOR MASSIVE FERMIONS

In this section we will give a brief introduction to the Wigner
function and its kinetic equation for massive fermions based on
Refs. [21,22]. There are also other earlier works in the literature
along this line [24,25]. In a background electromagnetic field,
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the quantum mechanical analog of a classical phase-space
distribution for fermions is the gauge invariant Wigner function
Wαβ(x,p) defined by

Wαβ(x,p) =
∫

d4y

(2π )4
e−ipy

〈
ψ̄β

(
x + 1

2
y

)

×PU

(
G,x + 1

2
y,x − 1

2
y

)
ψα

(
x − 1

2
y

)〉
,

(1)

where ψα and ψ̄β are fermionic quantum fields, 〈Ô〉 denotes
the grand canonical ensemble averaging and normal order-
ing, x = (x0,x) and p = (p0,p) are time-space and energy-
momentum four-vectors, respectively, and the gauge link
PU (G,x1,x2) is to ensure the gauge invariance of the Wigner
function and given by

PU

(
G,x + 1

2
y,x − 1

2
y

)

= P exp

[
−iQyμ

∫ 1

0
ds Gμ

(
x − 1

2
y + sy

)]
, (2)

where Gμ is the gauge potential of the classical electromag-
netic field.

The Wigner function in (1) satisfies the following equation
of motion:

(γμKμ − m)W (x,p) = 0, (3)

where the operator Kμ is given by

Kμ = p
μ
W + i� 1

2∇μ, (4)

with

p
μ
W = pμ − �

1
2Qj1(�)Fμν∂p ν,

(5)
∇μ = ∂μ

x − Qj0(�)Fμν∂p ν,

where we have used � ≡ 1
2 �∂p · ∂x with the operator ∂x

in � acting only on the strength tensor Fμν and j0(x) =
sin(x)/x and j1(x) = [sin(x) − x cos (x)]/x2 are spherical
Bessel functions. If Fμν is a constant we have simpler forms
of these operators,

p
μ
W = pμ, ∇μ = ∂μ

x − QFμν∂pν. (6)

The Wigner function is a 4 × 4 matrix in Dirac indices and
can be decomposed into 16 independent generators of Clifford
algebra,

W = 1
4

[
F + iγ 5P + γ μVμ + γ 5γ μAμ + 1

2σμνSμν

]
, (7)

where the generators of Clifford algebra are

�i = 1, γ 5 = iγ 0γ 1γ 2γ 3, γ μ, γ 5γ μ, σμν = i

2
[γ μ,γ ν],

(8)

corresponding to the scalar, pseudoscalar, vector, axial vector,
and tensor components, respectively. The coefficients in the
decomposition (7) can be obtained by projection of corre-
sponding Dirac matrices on the Wigner function and taking

traces,

F = Tr[W ], P = −i Tr[γ 5W ], V μ = Tr[γ μW ],
(9)

Aμ = Tr[γ μγ 5W ], Sμν = Tr[σμνW ].

Substituting Eq. (7) into Eq. (3) with (6) and comparing
common terms in the basis of Clifford algebra, we obtain
the following system of equations:

KμVμ − mF = 0,

KμAμ + imP = 0,

KμF + iKνSνμ − mVμ = 0, (10)

iKμP + 1
2εμβνσKβSνσ + mAμ = 0,

−i(KμVν − KνVμ) − εμναβKαAβ − mSμν = 0.

The real parts of the above equations are

pμVμ − mF = 0,

1
2 �∇μAμ + mP = 0,

pμF − 1
2 �∇νSνμ − mVμ = 0, (11)

− 1
2 �∇μP + 1

2εμβνσpβSνσ + mAμ = 0,

1
2 �(∇μVν − ∇νVμ) − εμναβpαAβ − mSμν = 0.

The imaginary parts are

�∇μVμ = 0,

pμAμ = 0,

1
2 �∇μF + pνSνμ = 0, (12)

pμP + 1
4 �εμβνσ∇βSνσ = 0,

(pμVν − pνVμ) + 1
2 �εμναβ∇αAβ = 0.

From the third and the fifth lines of the imaginary part
equations (13) we obtain,

p · ∇F = 0, (13)

and

�(∇λAρ − ∇ρAλ) − 2εμνλρpμVν = 0, (14)

respectively, where we have multiplied εμνλρ to the equation
and used εμνλρεμναβ = −2(δλ

αδ
ρ
β − δλ

βδρ
α ). Taking contraction

of the above equation with pλ, we obtain

p · ∇Aρ = pλ∇ρAλ = QFρξAξ , (15)

where we have used pμAμ = 0 from the second line of
Eqs. (13).

From the first and third lines of real part equations (12), we
obtain

(p2 − m2)F = 1
2 �pμ∇νSνμ ≈ 1

2 �QFμνSμν, (16)

where we have neglected the second-order term
�∇ν(pμSνμ) ∼ �

2. Inserting the fifth line into the fourth line
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in Eqs. (12) and neglecting the second-order term �∇μP ∼ �
2,

we obtain

(p2 − m2)Aμ = 1
2 �εμβνσpβ∇νV σ = − 1

2 �QεμβνσF βνV σ

= −�QF̃μσV σ , (17)

where we have neglected the second-order term
�εμβνσ∇ν(pβV σ ) ∼ �

2 following the last line of Eqs. (13).
Here we have used F̃ ρλ = 1

2ερλμνFμν .
From the second, third, and fifth lines of Eqs. (12), the

pseudoscalar, vector, and tensor components are

P = − 1

2m
�∇μAμ, Vμ = 1

m
pμF − 1

2m
�∇νSνμ,

(18)

Sνσ = 1

2m
�(∇νV σ − ∇σV ν) − 1

m
ενσαβpαAβ.

Substituting the above into Eqs. (16) and (17), we obtain a
closed system of on-shell equations for F and Aμ up to O(�).
We now collect all equations for F and Aμ,

pμAμ = 0, p · ∇Aρ = QFρξAξ , p · ∇F = 0,

(p2 − m2)F = − 1

2m
�QFμνε

μναβpαAβ, (19)

(p2 − m2)Aμ = − 1

m
�QF̃μσpσF,

which make a closed system of equations for F and Aμ and
can be solved perturbatively in powers of �. The last two
equations relate the solutions of the lower order to the higher

order. Having F and Aμ, we can determine P, V μ, and Sμν

through Eq. (19).

III. WIGNER FUNCTION COMPONENTS
AT LEADING ORDER

At leading order of an electromagnetic interaction, the
gauge link in the Wigner function in Eq. (1) can be set to
1, then we have following simple form:

Wαβ(x,p) =
∫

d4y

(2π )4
e−ipy

〈
ψ̄β

(
x + y

2

)
ψα

(
x − y

2

)〉
. (20)

We can expand fermionic fields in momentum space using
creation and destruction operators as

ψ(x) = 1√
�

∑
k,s

1√
2Ek

[a(k,s)u(k,s)e−ikx

+ b†(k,s)v(k,s)eikx],

ψ̄(x) = 1√
�

∑
k,s

1√
2Ek

[a†(k,s)ū(k,s)eikx

+ b(k,s)v̄(k,s)e−ikx], (21)

where � is the volume and s = ± denotes the spin state parallel
or antiparallel to the spin quantization direction n in the rest
frame of the particle. By inserting the above into Eq. (20),
we obtain

Wαβ(x,p) = 1

(2π )3
δ(p2 − m2)

{
θ (p0)

∑
s

fFD(Ep − μs)uα(p,s)ūβ(p,s) − θ (−p0)
∑

s

fFD(Ep + μs)vα(−p,s)v̄β (−p,s)

}
, (22)

where we have used 〈a†(p,s)a(p,s)〉 = fFD(Ep − μs) and
〈b†(−p,s)b(−p,s)〉 = fFD(Ep + μs) with the Fermi-Dirac
distribution defined by fFD = 1/(eβx + 1) (β ≡ 1/T , T is
temperature) and μs is the chemical potential for the fermions
with spin state s.

From Eq. (22) we can extract the scalar, vector, and axial
vector components by applying Eq. (10). We extract the scalar
component as

F(0) = Tr[W ] = mδ(p2 − m2)V, (23)

where we have used ū(p,s)u(p,s) = 2m and v̄
(−p,s)v(−p,s) = −2m, and

V ≡ 2

(2π )3

∑
s

[θ (p0)fFD(p0 − μs) + θ (−p0)fFD(−p0 + μs)].

(24)

For the vector component, we have

V
μ

(0) = Tr[γ μW ] = pμδ(p2 − m2)V, (25)

where we have used ū(p,s)γ μu(p,s) = 2(Ep,p) and
v̄(−p,s)γ μv(−p,s) = 2(Ep, − p). For the axial vector com-

ponent, we obtain

A
μ
(0) = Tr[γ μγ 5W ]

= m[θ (p0)nμ(p,n) − θ (−p0)nμ(−p, − n)]

× δ(p2 − m2)A, (26)

where we have defined

A ≡ 2

(2π )3

∑
s

s[θ (p0)fFD(p0 − μs)

+ θ (−p0)fFD(−p0 + μs)], (27)

and used ū(p,s)γ μγ 5u(p,s) = 2msnμ(p,n) and v̄(−p,s)
γ μγ 5v(−p,s) = 2msnμ(−p, − n) with nμ(p,n) given by

nμ(p,n) = �μ
ν (v)nν(0,n) =

(
n · p
m

,n + (n · p)p
m(m + Ep)

)
. (28)

Here �μ
ν(v) is the Lorentz transformation for v = p/Ep and

nν(0,n) = (0,n) is the four-vector of the spin quantization
direction in the rest frame of the fermion. One can check that
nμ(p,n) satisfies n2 = −1 and n · p = 0, so it behaves like
a spin four-vector up to a factor of 1/2. For Pauli spinors
χs and χs ′ in u(p,s) and v(−p,s ′), respectively, we have
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χ
†
s σχs = sn and χ

†
s ′σχs ′ = −s ′n. We can take the massless

limit by setting n = p̂, then we have mnμ(p,n) → (|p|,p)
and mnμ(−p,−n) → (|p|,−p). This way we can recover the
previous result of the axial vector component for massless
fermions [19,23],

A
μ
(0) → δ(p2)

2

(2π )3
pμ

∑
s

s{θ (p0)fFD(p0 − μs)

+ θ (−p0)fFD(−p0 + μs)}, (29)

where s = ± now denote the right-handed and left-handed
fermions.

IV. AXIAL VECTOR COMPONENT AT
NEXT-TO-LEADING ORDER

We start with the solution to the Wigner function for chiral
or massless fermions [19,20,23]. It is well known that in this
case the vector and axial vector components decouple from the
rest of other components. Their solutions can be recombined
into the chiral components of right-handed and left-handed
fermions,

J ρ
(0)s(x,p) = pρfsδ(p2),

J ρ
(1)s(x,p) = − s

2
��̃ρσ pσ

dfs

d(βp0)
δ(p2)

− sQ�F̃ ρλpλfs

δ(p2)

p2
, (30)

where s = ± denote right-hand and left-hand helicities, p0 ≡
u · p, �̃ρσ = 1

2ερσμν∂μ(βuν), F̃ ρλ = 1
2ερλμνFμν , and fs are

distribution functions of chiral fermions defined by

fs(x,p) = 2

(2π )3
[θ (p0)fFD(p0 − μs)

+ θ (−p0)fFD(−p0 + μs)]. (31)

and

dfs

d(βp0)
= 2

(2π )3

[
θ (p0)

d

d(βp0)
fFD(p0 − μs)

− θ (−p0)
d

d(−βp0)
fFD(−p0 + μs)

]
. (32)

Note that in the definition of the dual vorticity tensor �̃ρβ

in Eq. (30) we have included the factor β = 1/T inside ∂μ,
which is different from the convention (without such a factor)
in Refs. [19,20,23]. The chiral components in Eq. (30) are
related to the vector and axial vector components by

V ρ(x,p) = J ρ
+ (x,p) + J ρ

− (x,p),
(33)

Aρ(x,p) = J ρ
+ (x,p) − J ρ

− (x,p).

Now we try to extend Eq. (30) to massive fermions. We
recall that the vector and axial vector components at leading

or zeroth order are given by Eqs. (25) and (26),

V
μ

(0) = pμδ(p2 − m2)V,

A
μ
(0) = m[θ (p0)nσ (p̄,n0) − θ (−p0)nσ (−p̄, − n0)]

× δ(p2 − m2)A, (34)

where V = f+ + f− and A = f+ − f− are given by Eqs. (24)
and (27). Note that we have written relevant quantities in co-
variant forms with fluid velocity: p0 → u · p,(0,p) → p̄α =
pα − (u · p)uα, Ep =

√
m2 − p̄2 = |u · p|. In particular, we

have rewritten nμ(p,n) and nμ(−p,−n) from Eq. (26) as

nμ(p,n) → nμ(p̄,n0)

= −n0 · p̄

m
uμ + n

μ
0 − n0ξ p̄

ξ p̄μ

m(m + Ep)
,

(35)
nμ(−p,−n) → nμ(−p̄,−n0)

= −n0 · p̄

m
uμ − n

μ
0 + n0ξ p̄

ξ p̄μ

m(m + Ep)
,

where nα
0 = (0,n) is the four-vector in the comoving frame

of the fluid cell and satisfies n0 · u = 0. We now propose
the following form for the axial component at first order for
massive fermions based on the solution in Eq. (30),

Aα
(1)(x,p) = −1

2
��̃ασ pσ

dV

d(βp0)
δ(p2 − m2)

−Q�F̃ αλpλV
δ(p2 − m2)

p2 − m2
, (36)

where the first term is induced by the vorticity. We can check
that the above Aα

(1)(x,p) satisfies the first and last equations
of (20). The kinetic equation, the second equation of Eq. (20),
can be imposed for Aα

(1)(x,p). We will show in the next section
that the axial vector can give the spin four-vector, so we can
calculate the polarization density from the vorticity term of
Aα

(1)(x,p) in Eq. (36).

V. ENERGY-MOMENTUM AND SPIN TENSOR OR
VECTOR DENSITY FROM THE WIGNER FUNCTION

The symmetrized Lagrange density for a free Dirac particle
is

L = ψ̄
(

1
2 iγ μ

↔
∂ μ −m

)
ψ, (37)

where
↔
∂ =→

∂ − ←
∂ . The energy-momentum tensor can be

obtained

T μν = ∂L

∂(∂μψ)
∂νψ + ∂νψ† ∂L

∂(∂μψ†)
− gμνL

= 1

2
iψ̄γ μ

↔
∂

ν

ψ − gμνψ̄

(
1

2
iγ μ

↔
∂ μ −m

)
ψ. (38)

When taking the ensemble average of T μν , we will use
the Dirac equation and assume all fields are on shell.
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So we have

〈T μν(x)〉 = 1

2
i〈ψ̄(x)γ μ

↔
∂

ν

x ψ(x)〉 − gμν

〈
ψ̄

(
1

2
iγ α

↔
∂ α −m

)
ψ

〉

=
∫

d4p pνTr(γ μW ) − gμν

∫
d4p[pμTr(γ μW ) − m Tr(W )]

=
∫

d4p pνV μ, (39)

where we have used pμVμ = mF , the first line of Eqs. (12), and

Wαβ(x,p) =
∫

d4y

(2π )4
e−ipy

〈
ψ̄β

(
x + y

2

)
ψα

(
x − y

2

)〉

lim
y→0

∂μ
y

〈
ψ̄β

(
x + y

2

)
ψα

(
x − y

2

)〉
= 1

2

〈[
∂μ
x ψ̄β(x)

]
ψα(x) − ψ̄β(x)∂μ

x ψα(x)
〉

= i

∫
d4p pμWαβ(x,p). (40)

The spin tensor density is defined by

Mαβ(x) = ψ†(x) 1
2σαβψ(x) = 1

2 Tr[γ0σ
αβψ(x)ψ̄(x)]. (41)

Taking the ensemble average of the spin tensor, we can also
express it in terms of the Wigner function,

〈Mαβ(x)〉 = 1

2
lim
y→0

Tr

[
γ0σ

αβψ

(
x − y

2

)
ψ̄

(
x + y

2

)]

= 1

2

∫
d4p Tr[γ0σ

αβW (x,p)]. (42)

Then we can define the spin tensor component in the Wigner
function as

Mαβ(x,p) ≡ 1
2 Tr[γ0σ

αβW (x,p)]

= 1
2 [−ε0αβρAρ + igα0Tr(γ βW ) − igβ0Tr(γ αW )],

(43)

where we have used γ μσ να = i(gμνγ α − gμαγ ν) +
εμναλγ 5γλ. If we take αβ = ij (spatial indices), we have a

simple relation,

Mij (x,p) = − 1
2εijkAk(x,p) = 1

2εijkAk(x,p), (44)

where εijk is three-dimensional antisymmetric tensor. The
above property can also be seen by the spatial components
of Aμ(x),

Ai(x) = ψ̄(x)γ iγ 5ψ(x)

= ψ†(x)γ 0γ iγ 5ψ(x) = ψ†(x)�iψ(x), (45)

where �i = diag(σi,σi) with σi being the Pauli matrices.
Thus we recognize that Ai(x,p)/2 corresponds to the spin
vector component of the Wigner function from which we can
calculate the polarization density.

VI. POLARIZATION FROM THE AXIAL
VECTOR COMPONENT

We can now calculate the polarization of massive fermions
from the axial vector component obtained in Sec. V. At leading
order, we can obtain the polarization density by integrating Aα

(0)
in Eq. (26) or (34) over the four-momentum,

�α
(0)(x) = 1

2

∫
d4p Aα

(0)(x,p)

= 1

2
m

∫
d3p

(2π )3

1

Ep

∑
s

s

[
nα(p̄,n0)

1

eβ(Ep−μs ) + 1
− nα(−p̄, − n0)

1

eβ(Ep+μs ) + 1

]

= −1

2
uα

∫
d3p

(2π )3

n0 · p̄

Ep

∑
s

s

[
1

eβ(Ep−μs ) + 1
− 1

eβ(Ep+μs ) + 1

]

+
∫

d3p

(2π )3

m

2Ep

[
nα

0 − (n0 · p̄)p̄α

m(m + Ep)

] ∑
s

s

[
1

eβ(Ep−μs ) + 1
+ 1

eβ(Ep+μs ) + 1

]
. (46)
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If μs = μ does not depend on s, we see immediately that �α = 0. In this case the nonvanishing polarization can only come from
the first-order contribution from the vorticity term of Aα

(1)(x,p) in Eq. (36),

�α(x) = �α
(1)(x) = −1

4

∫
d4p ��̃ασ pσ

dV

d(βp0)
δ(p2 − m2)

= 1

2

∫
d3p

(2π )3
��̃ασ 1

Ep

{
pσ |p0=Ep

eβ(Ep−μ)

[eβ(Ep−μ) + 1]2
− pσ |p0=−Ep

eβ(Ep+μ)

[eβ(Ep+μ) + 1]2

}

= 1

2
�ωα

∫
d3p

(2π )3

{
eβ(Ep−μ)

[eβ(Ep−μ) + 1]2
+ eβ(Ep+μ)

[eβ(Ep+μ) + 1]2

}
, (47)

where we have removed the spin dependence in the chemical potential μs = μ and we have used the fact that the spatial part of
pσ gives a vanishing momentum integral. We see that the polarization density is proportional to the vorticity vector ωα = �̃ασ uσ

and is the sum over contributions from fermions and antifermions.
We can also obtain the polarization density from the second (electromagnetic-field) term of Aα

(1)(x,p) in Eq. (36),

�α
B(x) = 1

2
�Q

∫
d4p F̃ αλpλV

d

dp2
0

δ(p2 − m2)

= −1

4
�Q

∫
d4p F̃ αλuλ

dV

dp0
δ(p2 − m2)

= 1

2
�QβBα

∫
d3p

(2π )3

1

Ep

{
eβ(Ep−μ)

[eβ(Ep−μ) + 1]2
− eβ(Ep+μ)

[eβ(Ep+μ) + 1]2

}
, (48)

where we have used δ′(x) = −δ(x)/x and that the spatial
part of pσ gives vanishing momentum integral. Also we have
dropped the complete derivative term which is vanishing at the
boundary in momentum space.

We see from Eqs. (47) and (48) that there is a correspon-
dence between �α(x) from the vorticity and �α

B(x) from the
magnetic field: Epωα ↔ QβBα . Note that there is a factor
β in the definition of ωα, ωα ≡ (1/2)εαρμνuρ∂μ(βuν). At
zero temperature, the antifermion parts in Eqs. (47) and (48)
are vanishing, and the momentum integrals can be carried
out analytically from the Fermi sphere distribution. The
correspondence at zero temperature now becomes μωα ↔
QβBα , where the β factor cancels the one in the definition
of ωα so the correspondence does not have temperature
dependence. From such a correspondence, we see that �α

B(x)
always comes with the charge Q whereas �α(x) does not,
therefore the contributions from fermions and antifermions
in �α(x) have the same sign whereas they have opposite
signs in �α

B(x) since fermions and antifermions carry opposite
charges.

In this paper we consider only the polarization induced
by the vorticity since it lasts longer and is stronger than the
magnetic effect in the later stage of hydrodynamical evolution
for massive hadrons.

To estimate the magnitude of �μ(x) for fermions from
Eq. (47), we can carry out the momentum integral in
the comoving frame. After completing the integral over
the momentum direction, we obtain the spin-polarization
density,

�(x) = �ω
1

4π2

∫ ∞

0
d|p||p|2 eβ(Ep∓μ)

[eβ(Ep∓μ) + 1]2
(49)

for fermions (−) and antifermions (+). The particle number
density for fermions and antifermions is given by

ρ(x) = 2
∫

d3p

(2π )3

1

eβ(Ep∓μ) + 1

= 1

π2

∫ ∞

0
d|p| |p|2

eβ(Ep∓μ) + 1
. (50)

The integrated polarization per particle �(x)/ρ(x) for
fermions or antifermions can be obtained by completing the
momentum integrals in Eqs. (49) and (50). We can also define
the unintegrated ones with momentum dependence, which is
given by the following formula in the comoving frame:

�(x,p)

ρ(x,p)
= �

ω

4

eβ(Ep∓μ)

eβ(Ep∓μ) + 1
, (51)

where we have defined �(x,p) ≡ d�(x)/d|p| and ρ(x,p) ≡
dρ(x)/d|p|.

At zero temperature, the spin-polarization density in (49)
and the particle number density in (50) for the antifermions are
vanishing, and the fermion parts can be worked out following
the Fermi sphere distribution,

�T =0(x) = 1

4π2
�β−1ωμ

√
μ2 − m2θ (μ − m),

ρT =0(x) = 1

3π2
(μ2 − m2)3/2θ (μ − m). (52)

We can also obtain from Eq. (48) the polarization density from
electromagnetic fields at zero temperature,

�B,T =0(x) = 1

4π2
�QB

√
μ2 − m2θ (μ − m). (53)
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FIG. 1. The unintegrated polarization per particle defined in Eq. (51) for (a) fermions and (b) antifermions at momentum p in the unit of
the local vorticity �ω as functions of βEp and βμ.

We can see the correspondence between �T =0(x) and
�B,T =0(x) is μω ↔ QβB. The integrated polarization per
particle �(x)/ρ(x) for fermions at zero temperature has a
simple form

�T =0(x)

ρT =0(x)
= 3

4
�β−1ω

μ

μ2 − m2
θ (μ − m), (54)

which is a decreasing function of μ. Note that the factor β−1

in Eqs. (52) and (54) is to cancel the factor β in the definition
of ω so that there is no temperature dependence in the results.

The numerical results for the unintegrated polarization per
particle in Eq. (51) in the unit of the local vorticity �ω are
shown in Fig. 1 in the ranges of βEp = [0,10] and βμ = [0,4].
At fixed values of energy βEp, we see that �(x,p)/ρ(x,p)
is a decreasing (increasing) function of βμ for fermions
(antifermions), but it always increases with βEp at fixed βμ
for both fermions and antifermions. The numerical results for
the ratio of �(x,p)/ρ(x,p) for fermions to antifermions,

R = [�(x,p)/ρ(x,p)]fermion

[�(x,p)/ρ(x,p)]antifermion
(55)

are shown in Fig. 2. We see that �(x,p)/ρ(x,p) for fermions
is always less than that for antifermions, i.e., R < 1 and R
decreases with βμ and increases with βEp. When βEp is very
large, the Fermi-Dirac distributions become Boltzmann ones,
and �(x,p)/ρ(x,p) reaches its asymptotic value 1/4 (in the
unit of �ω) for both fermions and antifermions, which leads to
R → 1.

The numerical results for the integrated polarization per
particle �(x)/ρ(x) for fermions (left panel) and antifermions

0

5

10

ΒEp
0

1
2

3
4

ΒΜ

0.0

0.5

1.0

R

FIG. 2. The ratio R of polarization per particle in Eq. (55) for
fermions to antifermions as a function of βEp and βμ.

(right panel) are shown in Fig. 3 as functions of βm and βμ.
The numerical results for the ratio of �(x)/ρ(x),

R = [�(x)/ρ(x)]fermion

[�(x)/ρ(x)]antifermion
(56)

are shown in Fig. 4. In the left panel we show R as a function
of βm and βμ, whereas in the right panel we show R at
three values of βμ as functions of βm. The dependences of
�(x)/ρ(x) on βm and βμ are similar to �(x,p)/ρ(x,p) on
βEp and βμ, but the variation in the values of �(x)/ρ(x) on
βm is much smaller than �(x,p)/ρ(x,p) as shown in Figs. 1
and 2.

We see that R < 1, i.e., the polarization per particle for
fermions is always less than that for the antifermions. This
behavior is consistent with the observation in the STAR
Collaboration experiment [26]. Also R decreases with μ at
fixed m. Such behaviors are based on the following facts:
(a) �(x) is actually proportional to the susceptibility ∂ρ/∂μ
and increases or decreases for fermions and antifermions with
βμ just as ρ(x); (b) �fermion/�antifermion and ρfermion/ρantifermion

are all increasing functions of βμ; (c) �fermion/�antifermion is
less than ρfermion/ρantifermion and increases slower with βμ than
ρfermion/ρantifermion.

In the massless case, the momentum integrals in Eqs. (49)
and (50) can be worked out, so we obtain the quantities for
fermions (+) and antifermions (−),

�m=0(x) = −�ω
1

2π2
Li2(−e±βμ),

ρm=0(x) = − 2

π2
Li3(−e±βμ), (57)[

�(x)

ρ(x)

]
m=0

= �ω
1

4

Li2(−e±βμ)

Li3(−e±βμ)
,

where the polylogarithm function is defined by the power series
Lis(z) = ∑∞

k=1 zk/ks . Figure 5 shows the numerical results for
[�(x)/ρ(x)]m=0 for fermions and antifermions and their ratio
R defined by Eq. (56) as functions of βμ.

If we consider the Cooper-Frye description of hadron
freeze-out in hydrodynamic evolution, we can rewrite the
polarization density in Eq. (47) by replacing the momentum
integral with the one on the freeze-out hypersurface. For
fermions, we pick up the first term in the second line of Eq. (47)
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FIG. 3. The integrated polarization per particle �(x)/ρ(x) for (a) fermions and (b) antifermions in the unit of the local vorticity �ω as
functions of βm and βμ.
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FIG. 4. The ratio R of the integrated polarization per particle in Eq. (56) for fermions to antifermions. (a) R as a function of βm and βμ.
(b) R as functions of βm at three values βμ = 0.5,1,2 corresponding to short-dashed, long-dashed, and solid lines, respectively.
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FIG. 5. (a) The integrated polarization per particle �(x)/ρ for massless fermions (solid line) and antifermions (long-dashed line) in the
unit of �ω as functions of βμ. (b) The ratio R of the integrated polarization per particle in Eq. (56) for fermions to antifermions as a function
of βμ.
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and define the polarization spectra in momentum space as

d�α(p)

d3p
≈ �

2mEp

∫
d�λp

λ�̃ασ pσfFD(x,p)[1 − fFD(x,p)],

(58)

where pμ denotes the on-shell four-momentum and we have
pμ = (Ep,p) in the comoving frame. The particle number
distribution for fermions is given by

fFD(x,p) = 1

eβ(x)[u(x)·p−μ] + 1
. (59)

In Eq. (58), we note that �α(p) is the polarization of fermions
with the momentum p and has the unit �. We can verify that the
Lorentz transformation rule for both sides of Eq. (58) are the
same. The particle number spectra for fermions in momentum
space emitting on the freeze-out hypersurface can be defined
as

dρ(p)

d3p
= 2

Ep

∫
d�λp

λfFD(x,p), (60)

where the factor 2 is from two spin orientations. Then we obtain
the polarization per particle for fermions with the momentum
p,

Pα(p) ≡ d�α(p)/d3p

dρ(p)/d3p

= �

4m

∫
d�λp

λ�̃ασpσfFD(x,p)[1 − fFD(x,p)]∫
d�λpλfFD(x,p)

.

(61)

Equation (61) is a covariant expression for the polarization
vector per particle which is the same as the result by Becattini
et al. [27]. For antifermions, we can flip the sign of the chemical
potential μ → −μ in the above formula. We see from Eq. (47)
that the total polarization is the sum of fermion and antifermion
contributions.

VII. SUMMARY AND CONCLUSION

We have extended our previous works on the Wigner
function for chiral or massless fermions to that for massive

fermions. The Wigner function at leading order is derived from
its definition by setting the gauge link to 1 and by expanding
the free form of the fermionic quantum fields in momentum
space. Then all components of the Wigner function can be
extracted by projecting the corresponding Dirac matrices and
taking traces. The axial vector component at next-to-leading
order for massive fermions can be obtained by extending that
for massless fermions and satisfies the required equations. We
have shown that the axial vector component behaves like a spin
four-vector in phase space up to a factor of 1/2. The polariza-
tion density can be computed by integration of the axial vector
component over momentum. Our numerical results show that
the polarization per particle decreases or increases with the
(temperature-normalized) chemical potential for fermions or
antifermions at fixed (temperature-normalized) energy (mass),
whereas it always increases with the (temperature-normalized)
energy (mass) at the fixed (temperature-normalized) chemical
potential. We have found that the polarization per particle for
fermions is always less than that for antifermions. At the large
energy (mass) limit the polarization per particle approaches
the asymptotic value �ω/4 for both fermions and antifermions
following the Boltzmann distribution. We have also formulated
the polarization per particle for fermions with the specific
momentum on the Cooper-Frye freeze-out hypersurface in
a hydrodynamic description, which is consistent with the
previous result of Becattini et al. [11,27].
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