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Coulomb breakup of 22C in a four-body model
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1Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Fı́sica, Grupo de Fı́sica Nuclear,

Carrera 45 No. 26-85, Edificio Uriel Gutiérrez, Bogotá D.C. C.P. 1101, Colombia
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Breakup cross sections are determined for the Borromean nucleus 22C by using a four-body eikonal model,
including Coulomb corrections. Bound and continuum states are constructed within a 20C +n + n three-body
model in hyperspherical coordinates. We compute continuum states with the correct asymptotic behavior through
the R-matrix method. For the n + n potential, we use the Minnesota interaction. As there is no precise experimental
information on 21C, we define different parameter sets for the 20C +n potentials. These parameter sets provide
different scattering lengths, and resonance energies of an expected 3/2+ excited state. Then we analyze the 22C
ground-state energy and rms radius, as well as E1 strength distributions and breakup cross sections. The E1
strength distribution presents an enhancement at low energies. Its amplitude is associated with the low binding
energy, rather than with a three-body resonance. We show that the shape of the cross section at low energies
is sensitive to the ground-state properties. In addition, we suggest the existence of a low-energy 2+ resonance,
which should be observable in breakup experiments.
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I. INTRODUCTION

One of the main characteristics of halo nuclei is their
anomalously large radii, in comparison with their isotopic
neighbors. They also present enhanced electric dipole dis-
tributions at low excitation energies, which seems to be an
universal property. However, it is still debated if this property
is related with a resonance behavior [1,2] or if it is an effect
coming from the weak binding of the ground state [3,4].

Among halo nuclei, Borromean nuclei are made of three-
body structures, a core, and two loosely bound nucleons. They
present a weakly bound state only, and no pair core-nucleon
or nucleon-nucleon is bound. Typical examples are 11Li =
9Li +n + n, 6He = 4He +n + n, and 14Be = 12Be +n + n.

22C is the heaviest Borromean nucleus known so far. Tanaka
et al. [5] deduced a very large rms matter radius (rrms =
5.4 ± 0.9 fm), and infer a two-neutron separation energy,
S2n = 0.42 ± 0.94 MeV, using a simplified three-body model.
A recent mass measurement limits S2n to S2n < 300 keV [6].
Little information is known about the ground-state energy of
22C.

In three-body nuclei, the understanding of two-body
subsystems is crucial. 21C is known to be unbound with
little experimental spectroscopic information available. Mosby
et al. [7] give a limit to the scattering length, |a0| < 2.8
fm, through one proton removal from 22N. From this result
and a zero-range renormalized three-body model [8,9], these
authors provide S2n < 70 keV. Even if accurate three-body
models are currently available, the absence of well-established
information on 21C limits three-body calculations of 22C.

Three-body calculations of 22C have been performed in
Refs. [10–13] assuming a 20C +n + n structure for the ground
state. In Ref. [10], 20C +n deep potentials are constructed and
they are determined in such a way that different energies of the
single-particle 0d5/2 state are provided. The Pauli principle is
approximately taken into account considering that the bound
states in the 0s1/2, 0p3/2, 0p1/2, and 0d5/2 orbits simulate the

forbidden states. In Ref. [12], l-independent 20C +n potentials
that do not support forbidden states are used to study, in a
simple approach, the relation between the rrms radius and the
ground state energy of 22C, with the E1 strength distribution.
Different sets of potentials with l-dependent central parts are
considered in Ref. [11] to calculate reaction cross sections of
22C on 12C at 300 MeV/nucleon. The relation between the
scattering length of the 1s1/2 state and the ground state energy
of 22C is shown. However a three-body phenomenological
force [14] is added to the Hamiltonian, which hides the direct
link between the two-body scattering length and the three-body
ground state energy.

Breakup experiments are typically performed at energies
much higher than the Coulomb barrier, where eikonal models
are suitable. They consist in high energy approximations that
reduce the Schrödinger equation, a second-order differential
equation, to a first-order one, which constitutes a strong
simplification in four-body calculations. Assuming a Coulomb
E1 dominated breakup process, the breakup of halo nuclei can
be directly related with the E1 strength distribution through
the equivalent photon method [15]. This method simplifies the
calculation of the breakup excitation function. However, the
inclusion of contributions other than dipole could be important
in analyzing experimental data [2].

A four-body eikonal calculation, including Coulomb cor-
rections, has been applied to determine elastic and breakup
cross sections of 6He [16] and 11Li [2] on 208Pb. This model is
more appropriate than the equivalent photon method, which is
traditionally used for experimental [17] and theoretical [18,19]
studies of Coulomb breakup. The present model is more
accurate since: (i) it involves three-body continuum wave
functions with the correct asymptotic behavior; (ii) multi-
polarities different from dipole can be taken into account;
(iii) Coulomb and nuclear effects, and their interference, are
introduced consistently; (iv) E1 strength distributions and the
breakup cross sections are computed separately.

2469-9985/2016/94(2)/024620(8) 024620-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.94.024620


E. C. PINILLA AND P. DESCOUVEMONT PHYSICAL REVIEW C 94, 024620 (2016)

The aim of the present work is to apply a four-body
reaction model to study the Coulomb breakup of 22C. Bound
and continuum states are defined in hyperspherical coordi-
nates [20,21]. Continuum 20C +n + n three-body states are
computed with the correct asymptotic behavior through the
R-matrix method [21]. We calculate the breakup cross section
for a 22C projectile impinging on 208Pb at 240 MeV/nucleon,
an energy typical of the energies available at RIKEN. As
there is still a significant experimental uncertainty on the
binding energy of 22C, we consider different conditions of
the calculations, corresponding to various energies.

Since we do not have precise experimental information on
21C, we construct 20C +n deep l-dependent potentials to study
three-body properties of 22C, the ground-state energy and rrms

radius. The 20C +n potentials are consistent with experimental
information, i.e., the scattering length of a 1s1/2 virtual state
and the energy of a possible 0d3/2 resonance [22] in 21C.

The paper is organized as follows. Section II briefly
describes the four-body eikonal model and the hyperspherical
formalism to construct three-body wave functions. In Sec. III,
we study ground state properties when different 20C +n
potentials are chosen. In Sec. IV, we determine electric dipole
strength distributions and breakup cross sections. Summary
and conclusions are given in Sec. V.

II. THE THREE-BODY MODEL

A. The 22C nucleus in hyperspherical coordinates

Before introducing the eikonal model, let us describe the
three-body model of the projectile used to compute the bound
and scattering states involved in the breakup cross sections.
Here we just outline the three-body model. For details see for
instance Refs. [20,23].

The Hamiltonian for a three-body nucleus, consisting of
three clusters with nucleon numbers Ai , is given by

H3b =
3∑

i=1

p2
i

2mNAi

+
3∑

i<j=1

Vij (ri − r j ), (1)

where mN is the nucleon mass, ri and pi are the space
coordinate and momentum of nucleus i, and Vij an interaction
between the nuclei i and j . For a three-body nucleus made
of a core and of two nucleons, we define the scaled Jacobi
coordinates by

x = 1√
2

(r3 − r2),

(2)

y =
√

2A1

A1 + 2

(
r1 − r2 + r3

2

)
,

r1 being the space coordinate of the core of mass number
A1, and r2 and r3 being the space nucleon coordinates. The
set of coordinates (2) corresponds to the so-called “T-basis”.
The “Y-bases” are defined by cyclic permutations of the
core and nucleon coordinates [20]. Transformations between
the different bases can be performed through Raynal-Revai
coefficients [24].

The hyperspherical coordinates are defined from the scaled
Jacobi coordinates by

ρ2 = x2 + y2, α = arctan
y

x
; 0 � α � π

2
, (3)

where ρ is called the hyper-radius and α the hyperangle.
A partial wave solution of the three-body Schrödinger

equation associated with the Hamiltonian (1), with total
angular momentum J , projection M , and parity π can be
expanded in hyperspherical coordinates as

�JMπ (ρ,�5ρ) = ρ−5/2
∞∑

K=0

∑
γ

χJπ
γK (ρ)YJM

γK (�5ρ). (4)

In Eq. (4), γ stands for γ = (lx,ly,L,S), YJM
γK (�5ρ) is an

hyperspherical harmonics [20] with �5ρ = (�x,�y,α) and
�x , �y are the solid angles of the x and y scaled Jacobi
coordinates, respectively. The function χJπ

γK (ρ) is called hyper-
radial wave function.

The angular momenta are coupled as

|lx − ly | � L � lx + ly,

|S1 − S2| � S � S1 + S2, (5)

|L − S| � J � L + S,

where lx and ly are the orbital quantum numbers associated
with the scaled Jacobi coordinates x and y, and S1 = S2 = 1/2
are the intrinsic spins of the nucleons. The hypermomentum
quantum number K is defined as

K = 2n + lx + ly, (6)

n being a positive integer. In practice the sum in Eq. (4) is
truncated up to a Kmax value and the parity π = (−1)K limits
this sum to even or odd values.

Inserting expansion (4) in the three-body Schrödinger
equation provides the set of coupled differential equations

(TK − E)χJπ
γK (ρ) +

∑
K ′γ ′

V Jπ
γK,γ ′K ′(ρ) χJπ

γ ′K ′(ρ) = 0, (7)

where the kinetic-energy operator is defined as

TK = − �
2

2mN

[
d2

dρ2
− (K + 3/2)(K + 5/2)

ρ2

]
(8)

and V Jπ
γK,γ ′K ′(ρ) is a matrix element of the total potential V12 +

V13 + V23 between hyperspherical harmonics [20].
The hyper-radial bound-state wave functions are obtained

variationally, i.e., through the expansion

χJπ
γK (ρ) =

N∑
i=1

cJπ
γKiϕi(ρ). (9)

We use a Lagrange basis [25] as the set of ϕi . This basis is
made of orthonormal functions that vanish at all points of an
associated mesh except at one. When the Hamiltonian matrix
elements are computed at the Gauss approximation, one gets
analytical matrix elements of the kinetic operator and diagonal
matrix elements of the potential evaluated at the mesh points.
Thus, the use of a Lagrange basis simplifies in great amount
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the numerical calculations since we do not need to perform
integrals for the matrix elements.

Continuum states are defined as in Eq. (8) of Ref. [16].
At large distances, the nuclear potential is negligible. The
hyper-radial wave functions therefore behave as

χJπ
γK(γ ′K ′)(E,ρ) −→

ρ→∞ iK
′+1(2π/κ)5/2

[
H−

γK (κρ)δγ γ ′δKK ′

− UJπ
γK,γ ′K ′H

+
γK (κρ)

]
, (10)

where H±
γK (x) are Hankel functions [26], κ =

√
2mNE/�2

is the wave number, and UJπ
γK,γ ′K ′ is the three-body collision

matrix. Indices K ′γ ′ define the entrance channel. Here, E >
0 is the excitation energy of the projectile defined from the
three-body breakup threshold.

We use the three-body R-matrix method [21] to find the con-
tinuum states with the appropriate asymptotic behavior (10).
This method consists in dividing the configuration space into
two regions, the internal region, where the hyper-radial wave
function is expanded over basis (9), and the external region,
where the wave function is given by Eq. (10). From the match-
ing of the wave functions at the boundary of the two regions
one finds the collision matrix and the coefficients cJπ

γKi that
define the hyper-radial wave function in the internal region.

B. E1 strength distribution

For a system made of a core and two halo neutrons, the
electric dipole operator is defined as

ME1
μ (α,ρ) = eZ1

(
2

(2 + A1)A1

)1/2

ρ sin αY
μ
1 (�y) (11)

with Z1 the charge number of the core.
The distribution of transition probabilities from the bound

state to the continuum through the dipole electric operator (11)
is given by

dB(E1)

dE
= 1

2J0 + 1

∑
SνM0μ

∫
dkxdky δ

[
E − �

2

2mN

(
k2
x + k2

y

)]

× ∣∣〈�(−)

kx ,ky,Sν
(E,x, y)

∣∣M(E1)
μ |�J0M0π0 (x, y)〉∣∣2

,

(12)

where �J0M0π0 (x, y) is the initial ground state defined as in
Eq. (4), with total angular momentum J0, projection on the
z axis M0 and parity π0. The time-reversed continuum state
is represented by �

(−)

kx ,ky,Sν
(E,x, y) [16]. The wave vectors

associated with the x and y scaled Jacobi coordinates are kx ,
ky, respectively, and ν is the projection on the z axis of the
total spin S of the two neutrons.

The Dirac notation in Eq. (12) indicates a six-dimensional
integral over the hyperspherical coordinates. The integrals over
�x and �y can be performed analytically, but the integrals over
α and ρ require a numerical approximation. If we use Lagrange
functions and the Gauss quadrature, the integral over ρ is sim-
ply proportional to a sum over the coefficients of the expansion
of the hyper-radial bound and continuum wave functions.

C. Four-body eikonal wave functions

In the following we briefly describe the four-body Coulomb
corrected eikonal model. For details we refer the reader to
Ref. [16]. Let us consider a three-body projectile impinging
on a target at energies much higher than the Coulomb barrier.
Then, the time-independent four-body Schrödinger equation
in scaled Jacobi coordinates is given by

H4b
(R,x, y) = ET 
(R,x, y) (13)

with

H4b = H3b − �
2

2μPT

�R + VPT (R,x, y), (14)

where H3b is the internal Hamiltonian of the three-body
projectile given by Eq. (1). The relative coordinate between
the center of mass of the projectile and the center of mass of
the target is R = (b,Z), with b its transverse component. The
reduced mass of the projectile-target system is μPT , and the
total energy ET is

ET = �
2

2μPT

k2 + E0, (15)

where E0 is the ground state energy of the projectile. The initial
projectile-target relative wave vector is denoted by k which is
defined along the Z coordinate.

The projectile-target interaction VPT is given by

VPT = VcT + VnT + VnT , (16)

where VcT and VnT are the core-target and neutron-target
potentials, respectively.

At high energies, we can assume that the solution of the
Schrödinger equation (13) can be written as


(R,x, y) = eikZ
̂(R,x, y). (17)

From factorization (17) and performing the adiabatic approx-
imation that consists in replacing H3b by E0 [3], we get the
eikonal wave function


̂eik.(R,x, y) = exp

(
− i

�v

∫ Z

−∞
dZ′ VPT (b,Z′,x, y)

)

×�J0M0π0 (x, y) (18)

with v the initial relative velocity between the target and the
projectile. The breakup cross sections are proportional to the
breakup T -matrix which is obtained from the eikonal wave
function (18) and is given by [16]

Tfi = i�v

∫
d2b e−iq ·bSSν(E,kx,ky,b), (19)

where q = k′ − k is the transferred wave vector, k′ is the final
projectile-target relative wave vector, and SSν(E,kx,ky,b) are
the eikonal breakup amplitudes

SSν =
(

A1 + 2

A1

)3/4〈
�

(−)

kx ,ky ,Sν

∣∣eiχ(b,bx ,by )|�J0M0π0〉. (20)

In Eq. (20), χ (b,bx,by) is the eikonal phase defined as

χ (b,bx,by) = − 1

�v

∫ ∞

−∞
dZ VPT (R,Z,x, y), (21)
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where bx and by are the transverse part of the scaled Jacobi
coordinates. The Coulomb tidal eikonal phase leads to a
logarithmic divergence of the breakup cross section [3].
This problem is overcome by replacing the first order of its
exponential expansion by its corresponding first order of the
perturbation theory (see Refs. [27,28]).

In practice the eikonal phase is expanded in multipoles and
the excitation functions dσ/dE can be written as a sum of
different partial wave contributions [16].

III. 22C GROUND STATE

In this section, we investigate 22C properties (ground-state
energy and rms radius) for various 20C +n potentials. These
potentials provide different scattering lengths, and different
energies of a possible 3/2+ resonance in 21C [13,22,29].

In three-body calculations, n-n and a core-n potentials are
needed. The n-n potential is taken as the central part of the
Minnesota interaction [30] with a mixture parameter u = 1.
The 20C +n potential is chosen as in Ref. [11]:

V20C+n(r) = −V l
0f (r) + Vls l · s

1

r

d

dr
f (r) (22)

with f (r) = 1/[1 + exp( r−Rc

a
)]. Parameters a = 0.65 fm and

Rc = 3.393 fm are taken from Ref. [11]. The depth Vls is
fixed to 35 MeV, which is close to the values of Ref. [10].
This depth is chosen to bind the 0d5/2 state at least at the
neutron separation energy of 20C (2.93 MeV). To simulate
these different potentials, we vary the depth of the 20C +n
s and d waves, V l=0

0 and V l=2
0 . For all other partial waves,

we adopt V l
0 = 42 MeV. These potentials take partly account

of the Pauli principle, as they contain one forbidden state
in the 0s1/2, 0p3/2, 0p1/2, and 0d5/2 orbitals. In the three-
body calculations, the forbidden states are removed by a
supersymmetric transformation [31].

For the 20C +n + n calculation, the ground-state wave
functions (4) are truncated at a maximum hypermomentum
Kmax = 40. The hyper-radial wave functions are expanded
in a Lagrange-Legendre basis [32]. The rms matter radius
is calculated with

〈r2〉22C = 20

22
〈r2〉20C + 1

22
〈ρ2〉, (23)

where 〈ρ2〉 is the mean squared hyper-radius and
√

〈r2〉20C =
2.98 ± 0.05 fm is the experimental rms radius of 20C [33].

In Fig. 1, we show the dependence of the ground-state
energy E0 (defined from the 20C +n + n threshold) and of the
radius as a function of the 3/2+ resonance energy ER , and for
various scattering lengths a0 of 21C. The scattering length is
directly related to V l=0

0 , and is computed with the method of
Ref. [34]. We consider three values: a0 = −2.8 fm, consistent
with the data of Ref. [7], and two other values, larger by one and
two orders of magnitude (a0 = −47.6 fm and a0 = −490.7
fm). These choices permit us to cover a reasonable interval.
The corresponding potential depths V l=0

0 are 29.8, 33.0, and
33.5 MeV, respectively. The amplitude V l=2

0 determines the
resonance energy ER .
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FIG. 1. 22C energy E0 (a) and rms radius (b) as a function of the
0d3/2

21C resonance energy ER , and for different scattering lengths
a0 (in fm). The circles refer to the three potential sets.

Figure 1 suggests that a very low separation energy can be
obtained with a small a0 only, which is consistent with the
analysis of Mosby et al. [7], who deduce S2n < 70 keV from
the measured scattering length |a0| < 2.8 fm. In parallel, the
large rms radius (5.4 ± 0.9 fm) observed by Tanaka et al. [5]
requires a binding energy close to zero. The value deduced
by the authors (S2n = 0.42 ± 0.94 MeV) presents a very large
error bar, but large separation energies can be ruled out from
the rms value.

From this first analysis, a satisfactory agreement with the
available experimental data can be obtained with V l=0

0 =
29.8 MeV and V l=2

0 = 47.8 MeV. These values are consistent
with a large rms radius [5], with a small binding energy [5–7],
and with the experimental 21C scattering length [7]. Of
course, large uncertainties exist for the binding energy, but
the coherence of the different data sets favors a small value
(S2n ∼ 0.1 MeV). In these conditions, a 3/2+ resonance is
found in 21C at ER = 0.83 MeV, with a width of 0.09 MeV.
The existence of this 21C resonance, in parallel with the particle
stability of the ground state was suggested in Ref. [29], in
the framework of a microscopic cluster model. Preliminary
experimental data [35] seem to confirm this prediction.

In addition to the 20C +n potential mentioned before, and
hereafter referred to as “set 1”, we select two other sets, which
are given in Table I. Set 2 corresponds to the same scattering
length, but the 22C binding energy is larger, as suggested in
Ref. [5]. With set 3, we illustrate a possibly larger scattering
length. These potentials are indicated by circles in Fig. 1, and
will be used in the next section to compute breakup cross
sections.
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TABLE I. Parameter sets of the 20C +n system. Energies are in
MeV, and lengths in fm.

V l=0
0 V l=2

0 E0 a0 ER

set 1 29.8 47.8 −0.10 −2.8 0.83
set 2 29.8 48.4 −0.47 −2.8 0.59
set 3 33.0 47.5 −0.46 −47.6 0.92

In Fig. 2, we illustrate the convergence of the 22C ground
state energy with Kmax. The most weakly bound state (set
1) converges more slowly. A convergence better that 0.01
MeV (3%) is achieved around Kmax = 40. Bound-state wave
functions are computed relatively fast and large Kmax values
can be adopted. However, continuum three-body states are
much more demanding in terms of computer times [21], and a
compromise must be adopted.

Table II shows the main contributions in the 22C ground-
state wave function. These weights are defined as

CJπ
γ =

∑
K

〈
χJπ

γK

∣∣χJπ
γK

〉
�

∑
Ki

∣∣cJπ
γKi

∣∣2
, (24)

where coefficients cJπ
γKi are defined by Eq. (9), and where

we have used the properties of the Lagrange functions for
the matrix elements. The sensitivity with the choice of the
“Y basis” (“shell model like basis”) and “T basis” (“cluster
model like basis”) is shown. The 22C wave function obtained
with set 2 presents a different structure. In the Y basis,
which emphasizes the 21C structure, the d-wave component is
strongly dominant (72.8%), which is consistent with the low
resonance energy. We therefore expect different E1 strengths
and breakup cross sections with this parameter set.

IV. E1 STRENGTH DISTRIBUTIONS AND BREAKUP
CROSS SECTIONS

A. Three-body phase shifts

We use the three-body R-matrix method to determine
20C +n + n continuum states [21]. As the number of channels

FIG. 2. Convergence of the 20C +n + n ground state energy E0

with the maximum hypermomentum Kmax for the potential sets 1
(circles), 2 (filled squares), and 3 (open squares).

TABLE II. Partial weights CJπ
γ (in %) of the main components

of the 20C +n + n ground state wave function potentials. The
calculations are performed in the T and Y bases.

T basis
(S,L,lx,ly) set 1 set 2 set 3

(0,0,0,0) 67.2 55.3 82.3
(0,0,2,2) 1.7 2.5 1.0
(1,1,1,1) 29.1 39.7 15.8
(1,1,3,3) 1.5 1.9 0.7

Y basis
(S,L,l1,l2) set 1 set 2 set 3
(0,0,0,0) 35.0 19.7 59.2
(0,0,1,1) 6.3 4.8 5.2
(0,0,2,2) 26.1 32.1 17.3
(0,0,3,3) 1.2 1.0 1.2
(1,1,2,2) 29.9 40.7 16.0

in Eq. (7) increases rapidly with Kmax, this truncation value
is lower for continuum states than for bound states. We adopt
here Kmax = 30,25,20 for the J = 0+,1−,2+ partial waves,
respectively. This convergence problem has been discussed
in previous papers [2,21]. In particular, we discussed the
convergence of the E1 strength in Ref. [36]

As the electromagnetic matrix elements involved in the
breakup cross sections are sensitive to the long-range part
of the wave functions, we use large Lagrange bases with a
channel radius a ≈ 90 fm and a number of functions N ≈ 100.
To determine the scattering matrix UUUJπ [see Eq. (10)], the R
matrix is propagated up to 400 fm [21], owing to the long
range of the potentials in hyperspherical coordinates. Several
tests have been performed to check that the final results are
insensitive to the basis choice, provided it extends to large
distances with high accuracy.

As the breakup cross sections are expected to be dominated
by the E1 contribution, the 1− partial wave essentially
defines the continuum. The corresponding J = 1− phase
shifts are shown in Fig. 3(a). The scattering matrix takes
large dimensions, equal to the number of (γK) values [for
J = 1− (Kmax = 25), the size is 260 × 260]. Accordingly, the
scattering matrix is first diagonalized [21], and the largest
eigenphases are shown in Fig. 3. Sets 1 and 2 present similar
phase shifts, as they correspond to the same scattering length.
With set 3, however, a structure appears around 0.5 MeV.

Figures 3(b) and 3(c) show the phase shifts associated with
the 0+ and 2+ partial waves, which may affect the breakup
cross sections. This is particularly true in the presence of
resonances. The 2+ phase shift presents a narrow resonance
between 0.5 and 1.2 MeV, regardless of the potential. Set 2
provides an additional narrow resonance below 0.5 MeV, but
is not shown in the figure since it just corresponds to a sharp
increase of 180◦. The presence of a 2+ resonance is consistent
with the shell-model picture, where a 2+ state is predicted,
based on a (1s1/2)−1(0d3/2) configuration.

B. E1 strength distribution

We present in Fig. 4 the E1 strength distribution for the
three potential sets. Here we consider various options for the
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FIG. 3. Three-body 20C +n + n eigenphases for J = 1− (a), J =
0+ (b), and J = 2+ (c). With set 2, a sharp 2+ resonance below
0.5 MeV is not shown (see text for details).

FIG. 4. Electric dipole strengths distributions of 22C. The colors
correspond to the three potential sets for the ground state. The
continuum state is defined by set 1 (solid lines), set 2 (dashed lines),
or set 3 (dotted lines).

22C ground state, and for the 20C +n + n continuum states.
Using potentials adapted to the partial wave Jπ is frequent in
three-body models. It represents a way to compensate for the
three-body approximation in light exotic systems.

From Fig. 4, it turns out that the structure of the ground
state plays the dominant role. Sets 1 and 3 provide similar E1
distributions, whereas set 2 leads to a flat curve, with a structure
around 1.5 MeV. The reduction of the strength distribution with
sets 2 and 3 is directly related to the larger binding energy
(see Table I). As the matrix elements in Eq. (12) involve an
important contribution from large distances, the larger binding
energy of the ground state makes the wave function smaller
at large distances. The sensitivity to the continuum state is
weaker: in each case, sets 1 and 2 provide almost identical
strength distributions, whereas set 3 slightly decreases the peak
energy, with an enhancement of the amplitude.

This result confirms the conclusion of Ershov et al. [12]
who use a simplified 20C +n potential. Clearly an experimental
measurement of the strength distribution would provide strong
constraints on models, and therefore on the ground-state
properties.

It is worth mentioning that the low-energy peak in the E1
strength is an effect of the low binding of the ground state (as
we can see from Fig. 4) and it is not a resonance effect [4]. If
the peak was related with a 1− resonance, it should show up
at the same energy independently of the ground state.

C. Breakup cross sections

We study the 22C breakup on a 208Pb target at
240 MeV/nucleon. The n-208Pb optical potential at 240 MeV
is taken from Ref. [37]. The core-target potential is the
“tρρ” optical potential [38,39] with αNN = 0.54 and σNN =
2.75 fm2. These values are interpolated from Ref. [38]. We
take the matter and charge densities of the 20C core and 208Pb
target from Ref. [40]. The integrals involved in Eq. (19) are
solved as indicated in Ref. [16] with similar conditions. We
checked that the cross sections are weakly sensitive to the
potentials.

For the continuum, we consider the J = 0+,1−,2+ partial
waves, and we adopt the same potentials as for the ground
state. Even if the monopole term is expected to be small, this
choice avoids any nonorthogonality problem in the 0+- 0+
component. The cross sections with the three parameter sets are
presented in Fig. 5. As expected, their shapes are similar to the
dipole strength distributions of Fig. 4. The dotted lines of Fig. 5
represent the cross sections with the dipole component only.
In general, this contribution is strongly dominant. However, a
small monopole term is present at low energies. In addition,
the calculation predicts a narrow 2+ resonance which is clearly
observed in the breakup cross section. For sets 1 and 3, the
2+ resonances are supported by the phase shifts of Fig. 3.
For set 2, the very narrow resonance (� � 15 keV) around
0.5 MeV shows up as a sharp increase of 180◦, and was
therefore not presented in the phase shift. The existence of
a 2+ resonance seems very likely, and could be observed in
breakup experiments if the energy resolution is sufficiently
high.
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FIG. 5. Total breakup cross sections of 22C on 208Pb at
240 MeV/nucleon with different 20C +n potentials. The dashed lines
represent the cross sections with the dipole contribution only (see text
for details).

V. SUMMARY AND CONCLUSIONS

We have studied the Coulomb breakup of 22C at
240 MeV/nucleon in a four-body eikonal model [16], where
bound and continuum wave functions of the projectile are de-
scribed in hyperspherical coordinates. This model has no free
parameters, once the core + n and n + n potentials, necessary
in the three-body model, and the core+target and n+target
potentials, needed in the reaction framework, are fixed.

In contrast with studies on 6He [16] and 11Li [2] two main
difficulties are faced in the study of the breakup of 22C: (i) The
lack of precise experimental information of its ground state, (ii)
the absence of precise knowledge of the spectroscopy of 21C.
Besides, the very low binding energy of the 22C ground state,
|E0| � 0.3 MeV (in comparison with E0 = −0.97 MeV for
6He, and E0 = −0.37 MeV for 11Li) provides a more extended
wave function that makes the calculations of electromagnetic
matrix elements even more time consuming.

We studied 22C properties for three 20C +n potentials which
provide plausible scattering lengths and energy of a possible
0d3/2 resonance [29,35]. If we consider a scattering length
close to the experimental limit, |a0| < 2.8 fm of Ref. [7], we
improve the prediction given from a three-body zero range
model [7]. Our calculation is more precise since it includes
finite range two-body interactions. Therefore the limit |a0| <
2.8 fm implying S2n < 70 keV must be considered carefully.

On the other hand, the position and strengths of the
peaks of the dipole strength are significantly affected by the
ground-state energy. If a extremely weakly bound state of
22C exists, it should show up from the large strength and very
shifted position of the peak to low energies in the experimental
breakup cross section.

Our calculation also predicts a 2+ narrow resonance
between 0.5 and 1 MeV. Although the predicted energy may
depend on the conditions of the calculations, the existence of a
2+ resonance is expected from simple shell-model arguments.
It could be observable in breakup experiments.

As a general statement, we have shown that the breakup
cross section is sensitive to several 22C and 21C properties.
Consequently, experimental data would strongly help to
constrain these properties in theoretical models.
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