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Effects of projectile resonances on the total, Coulomb, and nuclear breakup cross sections
in the 6Li + 152Sm reaction
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In this paper we analyze the effects of the projectile resonances on the total, Coulomb, and nuclear breakup
cross sections as well as on the Coulomb-nuclear interferences at different arbitrary incident energies. It is
found that these resonances have non-negligible effects on the total, Coulomb, and nuclear breakup cross
sections. Qualitatively, they have no effects on the constructiveness or destructiveness of the Coulomb-nuclear
interferences. Quantitatively, we obtained that these resonances increase by 7.38%, 7.58%, and 20.30% the
integrated total, Coulomb, and nuclear breakup cross sections, respectively at Elab = 35 MeV. This shows that
the nuclear breakup cross sections are more affected by the effects of the projectile resonances than their total
and Coulomb breakup counterparts. We also obtain that the effects of the resonances on the total, Coulomb, and
nuclear breakup cross sections decrease as the incident energy increases.
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I. INTRODUCTION

The study of nuclear reactions involving weakly bound
projectiles on a variety of target masses has significantly
advanced over the past decades, both experimentally and
theoretically [1–10]. Being weakly bound, these nuclei can
easily break into fragments, once in contact with a target or
when going through the Coulomb field of a heavy target,
making the breakup reactions a promising tool to study the
structure of such nuclei. Some of the well-known results as
far as the breakup reactions are concerned are strong bound-
continuum and continuum-continuum couplings, rendering
continuum states to play a rather important role in the breakup
process [11–13]. These couplings can be of two kinds, resonant
couplings and nonresonant couplings, depending on whether
the coupled continuum states contain resonances or do not.
This leads to two types of breakups: resonant and nonresonant
breakups [14–18].

Although a lot of efforts have been made to understand
the effects of the continuum-continuum couplings on other
reaction channels, like elastic scattering and fusion, the effects
of the projectile resonances (or resonant couplings) on breakup
observables like breakup cross sections (total, Coulomb, and
nuclear) is not fully established. In the Continuum-discretized
coupled-channels (CDCC) method [19,20] (widely used to
analyze breakup reactions, and which we also use in this
paper), the inclusion of the resonant continuum states in the
coupling matrix elements is not straightforward, in the sense
that the discretization of resonant bins is more complex than
the discretization of nonresonant bins. The former require
finer bin widths, which in turn increase substantially the size
of the coupling matrix elements and therefore increase the
computational complexities. It is therefore crucial to assess
the importance of the projectile resonances, because their
exclusion when not important would result in a significant
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reduction of the computational load. It is equally important
to verify to which extend the projectile resonances affect the
Coulomb-nuclear interferences, which have been proven to
play a key role in the breakup process [7,21,22].

The resonant and nonresonant breakups of 6Li on various
targets have been investigated in Refs. [14–18,23–25]. The
authors in Refs. [23–25], have investigated the effects of the
6Li resonances on the elastic scattering cross sections in the
6Li + 28Si ,58Ni ,64Zn ,144Sm reactions, for incident energies
below and around the Coulomb barrier have been analyzed. It
was found in Ref. [23], that the exclusion of the resonances
has small effects on the elastic-scattering cross sections for the
two reactions. On the other hand, in Refs. [24,25], pronounced
effects of the resonances were observed at backward angles. In
light of these results, one may wonder whether the resonance
effects on the elastic-scattering cross sections are target-mass
or incident-energy dependent. Moreover, it is interesting to
investigate whether these conclusions can also apply to other
reaction channels, like breakup and fusion cross sections, for
example.

In this paper, we study the qualitative and quantitative
effects of the projectile resonances on the total, Coulomb,
and nuclear breakup cross sections as well as on the Coulomb-
nuclear interferences in the 6Li + 152Sm breakup reaction for a
range of incident energies above the Coulomb barrier. We aim
first to check whether the conclusions of Refs. [23–25] can be
extended to breakup cross sections. Second, we will analyze
the dependence of these effects on the incident energy. The
results will shed more light on the role of the 6Li resonances
in the dynamics of the reactions induced by this nucleus. The
reaction under study has already been analyzed in Ref. [26],
to investigate the role of the projectile breakup on the fusion
cross sections.

II. FORMALISM OF THE THREE-BODY
CONTINUUM-DISCRETIZED COUPLED CHANNELS

The projectile 6Li is considered as a cluster of alpha particle
and deuteron (6Li → α + d). Therefore, its interaction with an
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inert target is regarded as a three-body system. The projectile
internal Hamiltonian reads

hαd = − �
2

2μαd

d2

dr2
+ Vαd (r), (1)

where μαd is the projectile reduced mass and Vαd (r) the cluster
interacting potential. The cluster’s spin is that of a deuteron
since the spin of the alpha particle is zero. Therefore, the
bound and continuum (scattering and resonant) states of the
projectile, which are eigenstates of the Hamiltonian hαd , are
defined as

�m
β (r) = 1

r
φ

j
k�(r)

[
Y

m�

� (r̂) ⊗ Xms
s

]
jm

, (2)

where β = (k,�,s,j ) represents the relevant quantum numbers
describing the states of the projectile, and Xms

s stands for the
total internal wave function of deuteron. The continuum states
φ

j
k�(r) of Eq. (2) are normalized according to

φ
j
k�(r → ∞) → F�(kr) cos δ�j (k) + G�(kr) sin δ�j (k), (3)

where F� and G� are Coulomb functions [27], and δ�j (k) is the
nuclear phase shift.

The continuum wave functions φ
j
k�(r) are not square

integrable. However, in the CDCC framework, and adopting
the binning method [19,28,29], these wave functions are sliced
into bins of widths �ki = ki − ki−1, averaged over the relative
momentum k. With this method, one obtains discretized
continuum wave functions, which are square integrable and
defined as [29]

ϕβ(r) =
√

2

πWβ

∫ ki

ki−1

gβ(k)φj
k�(k)dk, i = 1,2, . . . ,Nb, (4)

where gβ(k) is some weight function and Wβ =∫ ki

ki−1
|gβ(k)|2dk is the normalization coefficient. The subscript

β becomes β = (i,�,s,j ), where β0 = (0,�0,s,j0) refers to the
ground state. The bin wave functions (4) are associated with
the following bin energies:

εβ = �
2

2μαdWβ

∫ ki

ki−1

k2|gβ(k)|2dk. (5)

The definition of the weight function gβ(k) depends on the bin
states. For non-S-wave nonresonant bins, gβ(k) is commonly
set to gβ(k) = 1. In this case, Eq. (5) becomes

εβ = �
2

2μαd

1

3

(
k2
i + kiki−1 + k2

i−1

)
. (6)

For S-wave bins, it is convenient to use gβ(k) = k, because
this stabilizes the extraction of the three-body transition am-
plitude [28,29], in which case Wβ = �ki

3 (k2
i + kiki−1 + k2

i−1),
and

εβ = �
2k̂i

2μαd

, (7)

where

k̂i = 3

5

(
k4
i + k3

i ki−1 + k2
i k

2
i−1 + kik

2
i−1 + k4

i−1

k2
i + kiki−1 + k2

i−1

)
. (8)

For resonant bins on the other hand, we follow Ref. [30] and
define

gβ =
∣∣∣∣

i
2�

ε(k) − εr + i
2�

∣∣∣∣, (9)

where ε(k) is a continuous intrinsic energy of α-d, and εr

and � are the resonance energy and width, respectively. The
physics behind the discretization in Eq. (4) is explained more
in Ref. [31].

The construction of the bin wave functions allows one to
expand three-body CDCC wave function as follows:

CDCC
JM (r,R) = 1

R

∑
β,L

χLJ
β (R)FβL(r,R̂), (10)

where the channel wave function FβL(r,R̂) is given by

FβL(r,R̂) = [
iL�̂m

β (r) ⊗ Y
ML

L (R̂)
]
JM

, (11)

with

�̂m
β (r) = 1

r
ϕβ(r)

[
i�Y

m�

� (r̂) ⊗ Xms
s

]
jm

, (12)

where ϕβ(r) is given by Eq. (4).
The CDCC wave function (10) is an eigenstate of the three-

body Hamiltonian

H3B = TR + hαd + Vαt

(
R + 2

6 r
) + Vdt

(
R − 4

6 r
)
, (13)

where

TR = − �
2

μpt

d2

dR2
, (14)

with μpt being the projectile-target reduced mass. In Eq. (13),
Vαt and Vdt are the alpha-target and deuteron-target potentials,
respectively. The substitution of the expansion (10) into
the three-body Schrödinger equation involving the Hamilto-
nian (13) leads to a set of coupled equations for the coefficients
χLJ

β (R), reading[
TR + ULJ

ββ (R) + εβ − E
]
χLJ

β (R)

−
∑
β �=β ′

iL−L′
ULL′J

ββ ′ (R)χL′J
β ′ (R) = 0, (15)

where

TR = − �
2

2μpt

(
d2

dR2
− L(L + 1)

R2

)
, (16)

and ULJ
ββ (R), ULL′J

ββ ′ (R) are respectively the diagonal and off-
diagonal potential matrix elements given by

ULL′J
ββ ′ (R) = 〈FβL(r,R̂)|Vpt |Fβ ′L′(r,R̂)〉, (17)

where Vpt = Vαt (Rαt ) + Vdt (Rdt ), with

R2
αt = R2 + 1

9 r2 + 2
3Rrz,

(18)
R2

dt = R2 + 4
9 r2 − 4

3Rrz,

with z being the cosine of the angle between vectors r and R.
After a numerical evaluation of the potential matrix elements,
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FIG. 1. Resonance structure in the � = 2 (jπ = 1+, 2+, 3+)
continuum states. The filled and open triangle experimental data
points are taken from Ref. [34], and the solid circular data points
are from Ref. [35].

the coupled equations (15) are solved subject to the usual
boundary conditions at R → ∞,

χLJ
β (R) → i

2
[H−

β (KβR)δββ ′ − H+
β (KβR)Sββ ′(Kβ)], (19)

where H±
β (KβR) are Coulomb Hankel functions [27],

and Sββ ′ (Kβ) is the breakup S matrix, with Kβ =
[2μpt (E + εβ)/�

2]1/2, from which the breakup observables
are obtained as described; for example, in Ref. [28].

III. DETAILS OF THE CALCULATIONS

The projectile ground-state separation energy is ε0 =
−1.47 MeV, with quantum numbers n = 2, � = 0, and
jπ = 1+ [32]. Its continuum states exhibit three res-
onances in the � = 2 (jπ = 1+,2+,3+) partial waves,
with experimental energies and widths, (ε1+ ; �1+ ) =
(4.18 MeV; 1.5 MeV),(ε2+ ; �2+ ) = (2.84 MeV; 1.7 MeV) and
(ε3+ ; �3+ ) = (0.716 MeV; 0.024 MeV), respectively [33]. The
parameters of the Woods–Saxon Vαd (r) potential used to
generate the projectile ground state are V0 = 78.46 MeV,
r0 = 1.15 fm, a0 = 0.7 fm. To reproduce the three resonances,
the depth V0 is adjusted to V0 = 80.0 MeV and a spin-orbit
term of VSO = 2.5 MeV fm2 is added. All these parameters
are taken from Ref. [33], which we check by plotting in
Fig. 1 the phase shifts against the excitation energies, where a
fair agreement between the experimental resonances and our
calculations is observed, especially for jπ = 3+. The other
potential parameters needed in the calculations are those of
Vαt and Vdt potentials, which are listed in Table I. The CDCC
model space parameters (related to the bin discretization and

TABLE I. Alpha-target and deuteron-target optical potential
parameters used in the calculations. Ri = riA

1/3
T , where AT is the

target mass.

α/d + t V W rR rI aR aI rC Ref.
(MeV) (MeV) (fm) (fm) (fm) (fm) (fm)

α + t 60.50 18.72 1.436 1.343 0.607 0.735 1.404 [36]
d + t 91.48 24.81 1.150 1.344 0.925 0.579 1.250 [37]

TABLE II. CDCC model space parameters required for
convergence.

�max λmax εmax rmax �r Lmax Rmax �R

(�) (MeV) (fm) (fm) (�) (fm) (fm)

3 4 8 180 0.1 1000 600 0.06

numerical integration) are given in Table II. We verified that
these parameters are enough to guarantee the convergence of
the results.

The interval [0,εmax] is discretized into bin states of
widths �ε = 0.5 MeV for the � = 0 (jπ = 1+) and � =
1 (jπ = 0−,1−,2−) partial waves, whereas for the � = 3 (jπ =
2−,3−,4−) partial wave we adopt �ε = 1 MeV. For resonant
bins where finer widths are required, we resort to the
discretization of Ref. [33], where for the jπ = 3+ resonance,
�ε = 0.1299 MeV below, �ε = 0.5208 MeV above, and
�ε = 0.1 MeV inside the resonance. For the jπ = 1+,2+
resonances, �ε = 0.4 MeV below and inside and �ε =
0.5 MeV above these resonances. In order to analyze the
effects of the resonances on the total, Coulomb, and nuclear
breakup cross sections, we remove the resonant couplings in
the potential matrix elements by treating the � = 2 partial wave
as any other nonresonant partial wave, and it is discretized
similar to the � = 0,1 partial waves, i.e., �ε = 0.5 MeV, for
all jπ = 1+, 2+, and 3+ partial waves and the resulting bins
are normalized accordingly. Although this procedure might not
completely remove the effect of resonances, we believe that
this work will shed more light into the effects of the resonances
on the breakup cross sections. Our numerical calculations are
performed by using FRESCO [38].

IV. RESULTS AND DISCUSSION

A. Differential total, Coulomb, and nuclear breakup
cross sections

We start by considering effects of the resonances on the
differential total, Coulomb, and nuclear breakup cross sec-
tions. The results obtained for the total breakup are presented
in Fig. 2 for Elab = 35 MeV, 45 MeV and those for Elab =
50 MeV, 60 MeV in Fig. 3. Qualitatively, looking at Fig. 2(a),
one observes that, in the presence of resonances (resonant
breakup), the breakup cross section (full line) is slightly
dominant at backward angles, whereas in the absence of
resonances (nonresonant breakup), the breakup cross section
(dotted line) is dominant at 10◦ � θ � 40◦ and peaks around
30◦, while at θ � 10◦, the two breakup cross sections are
hardly distinguishable. A similar trend is observed in Fig. 2(b),
although here the peak around 15◦ is less pronounced.
Considering the results obtained for Elab = 50 MeV, 60 MeV
[Figs. 3(a) and 3(b)], it is noticed that one can still draw
similar conclusions as for Elab = 35 MeV, 45 MeV, but the
breakup cross sections are less affected by the resonances.
We can conclude that the effects of the resonances are to
slightly decrease (increase) the total breakup cross section at
forward (backward) angles. Similar conclusions were reached
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FIG. 2. Resonant and nonresonant differential total breakup cross
sections at (a) Elab = 35 MeV and (b) Elab = 45 MeV.

in Refs. [23,24], on the elastic scattering cross sections and
on the breakup cross sections in Ref. [15] (see Fig. 2 of this
reference). A further look at Figs. 3(a) and 3(b) shows clearly
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FIG. 3. Resonant and nonresonant differential total breakup cross
sections at (a) Elab = 50 MeV and (b) Elab = 60 MeV.
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FIG. 4. Resonant and nonresonant differential Coulomb breakup
cross sections at (a) Elab = 35 MeV and (b) Elab = 45 MeV.

that the resonance effects decrease with the increase of the
incident energy.

The Coulomb breakup cross sections are reported in
Figs. 4 and 5. Both figures show that the resonances increase
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FIG. 5. Resonant and nonresonant differential Coulomb breakup
cross sections at (a) Elab = 50 MeV, (b) Elab = 60 MeV.
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FIG. 6. Resonant and nonresonant differential nuclear breakup
cross sections at (a) Elab = 35 MeV, (b) Elab = 35 MeV.

the breakup cross sections at backward angles, and as the
incident energy increases, their effects are negligible at
forward angles (θ � 40◦ for Elab = 45 MeV, and θ � 30◦
for Elab = 50, 60 MeV). Looking at the total and Coulomb
breakup results, we can conclude that the projectile resonances
affect qualitatively both the total and Coulomb breakup cross
sections in a similar way.

The nuclear breakup cross sections are presented in Figs. 6
and 7. It is seen that, for Elab � 45 MeV, the resonant
nuclear breakup cross sections are dominant at forward angles.
Compared with the total and Coulomb breakup cross sections,
one notices that the nuclear breakup cross sections are more
affected by the resonances, especially at forward angles.

B. Coulomb-nuclear interferences

The above results obtained for the total, Coulomb, and
nuclear differential breakup cross sections imply that the
projectile resonances would have non-negligible effects on
the Coulomb-nuclear interferences. However, these results do
not provide enough information on the constructiveness or
destructiveness of these interferences. In this section, we focus
on the qualitative effects of the resonances on the differential
Coulomb-nuclear interferences. To this end, we first define
the differential Coulomb-nuclear interferences of the angular
distributions as

dσ int

d�
= dσ tot

d�
−

(
dσ coul

d�
+ dσ nucl

d�

)
, (20)

which are constructive where dσ int

d�
� 0 and destructive where

dσ int

d�
� 1. These interferences are plotted in Figs. 8 and 9 for
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FIG. 7. Resonant and nonresonant differential nuclear breakup
cross sections at (a) Elab = 50 MeV, (b) Elab = 50 MeV.

Elab = 35, 45 MeV and Elab = 50, 60 MeV, respectively.
The two figures show that, at forward angles (θ � 30◦ for
Elab = 35 MeV, θ � 20◦ for Elab = 45 MeV, θ � 10◦ for
Elab = 50 MeV and Elab = 60 MeV) and in the presence
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FIG. 8. Resonant and nonresonant Coulomb-nuclear interfer-
ences for (a) Elab = 35 MeV and (b) Elab = 45 MeV.
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FIG. 9. Resonant and nonresonant Coulomb-nuclear interfer-
ences for (a) Elab = 50 MeV and (b) Elab = 60 MeV.

of the resonances, the Coulomb-nuclear interferences are
exclusively constructive. At backward angles, on the other
hand, they are destructive. It is seen that this destructiveness
decreases as the incident energy increases, such that for
Elab = 60 MeV, dσ int

d�

 0 at θ � 80◦. It is noticed that the

absence of the resonances does not affect the constructiveness
or destructiveness of the Coulomb-nuclear interferences. One
concludes that the resonances do not have any qualitative
effects on the Coulomb-nuclear interferences. However, we
notice clear quantitative effects, which are discussed in the
next section.

C. Angular-integrated total, Coulomb, and nuclear
breakup cross sections

To gain more insight into this study, we analyze the
quantitative effects of these resonances on the total, Coulomb
and nuclear breakup cross sections, as well as on the Coulomb-
nuclear interferences. To this end, the differential breakup
cross sections of the angular distributions are numerically

integrated by using

σ x = 2π

∫ θmax

0

dσx

dθ
sin θdθ, x ≡ tot, coul, nucl, (21)

after the use of d� = 2π sin θdθ . The angular-integrated
breakup cross sections for the four incident energies are
summarized in Table III. In this table, σ x

R and σ x
NR represent

the breakup cross section with and without resonances, respec-
tively and σ int stands for the Coulomb-nuclear interferences.
The quantities �tot, �coul, �nucl, and �int (in percentage),
defined as �x = (1 − σ x

NR/σ x
R) × 100%, are used to estimate

the effects of the projectile resonances on the total, Coulomb,
and nuclear breakup cross sections and on the Coulomb-
nuclear interferences. Starting with the breakup cross sections,
the results show that, for the total and nuclear breakups,
the contributions of the resonances to the integrated breakup
cross sections decrease as the incident energy increases.
For the total breakup, we observe that the breakup cross
sections are increased by 7.38% owing to the resonances for
Elab = 35 MeV and by less than 7% for the other incident
energies. For the nuclear breakup, on the other hand, it can be
seen that the resonances increase the breakup cross sections
by 20.30%, for Elab = 35 MeV and by less than 16% for the
other incident energies. For the Coulomb breakup, however,
we notice that the breakup cross sections are increased by
3.66% from Elab = 35 MeV to Elab = 45 MeV and decreased
by 2.92% from Elab = 45 MeV to Elab = 60 MeV, and overall
effects are less than 12%. These numbers show again that
the effects of the projectile resonances are more pronounced
on the nuclear breakup cross sections than on its total and
Coulomb breakup counterparts, as already stated. Moreover,
in light of these results, it can be predicted that, for higher
incident energies, the effects of the resonances could be rather
negligible on the three different breakup cross sections.

Finally, the results obtained for the Coulomb-nuclear
interferences show that these interferences are exclusively de-
structive at all the incident energies, regardless of whether the
resonances are included. This destructiveness is strengthened
as the incident energy increases. This indicates again clearly
that the resonances have no qualitative effects on the Coulomb-
nuclear interferences, as already pointed out. Quantitatively,
one can see that these interferences are increased from
13.82% to 15.25% from Elab = 35 MeV to Elab = 45 MeV,
from which it drops to 10.16% for Elab = 60 MeV. This is
also an indication that higher incident energies would amount

TABLE III. Energy-integrated resonant and resonant total, Coulomb and nuclear breakup cross sections (in barns), as well as the Coulomb-
nuclear interferences.

Energy With resonances Without resonances Estimated resonances contributions

σ tot
R σ coul

R σ nucl
R σ int

R σ tot
NR σ coul

NR σ nucl
NR σ int

NR �tot �coul �nucl �int

35 MeV 5.667 8.467 2.512 −5.312 5.249 7.825 2.002 −4.578 7.38% 7.58% 20.30% 13.82%
45 MeV 7.169 15.656 3.912 −12.399 6.696 13.896 3.308 −10.508 6.60% 11.24% 15.44% 15.25%
50 MeV 7.656 18.642 4.510 −15.496 7.176 16.698 3.895 −13.417 6.27% 10.43% 13.64% 13.42%
60 MeV 8.345 22.675 5.456 −19.786 7.862 20.788 4.849 −17.775 5.79% 8.32% 11.12% 10.16%
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to negligible resonance effects on the Coulomb-nuclear
interferences.

V. CONCLUSIONS

In this paper we investigate in detail the effects of the
projectile resonances on the total, Coulomb, and nuclear
breakup cross sections as well as on the Coulomb-nuclear
interferences for the 6Li + 152Sm reaction at different incident
energies. To achieve this, we removed the resonant bins from
the coupling matrix by discretizing the � = 2 resonant partial
wave as any other nonresonant partial wave and the bins were
normalized accordingly. The results showed that the projectile
resonances have non-negligible effects on the total, Coulomb,
and nuclear breakup cross sections. The nuclear breakup
cross sections are more affected by these resonances than the
total and Coulomb breakup cross sections. Qualitatively, these

resonances do not have any effects on the constructiveness or
destructiveness of the Coulomb-nuclear interferences.

Quantitatively, we find that these resonances increase
by 7.38%, 7.58%, and 20.30% the total, Coulomb, and
nuclear integrated breakup cross sections, respectively for
Elab = 35 MeV. For the same incident energy, the Coulomb-
nuclear interferences are increased by 13.82% and remain
exclusively destructive regardless of whether these resonances
are included. It is also obtained that these effects decrease
as the incident energy increases. We then conclude that, for
higher energies, the resonance effects on the total, Coulomb,
and nuclear breakup cross section, as well as on the Coulomb-
nuclear interferences could be negligible.
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