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Background: Two new J π = 0+ states are recently observed a few MeV above the Hoyle state (the second 0+

state in 12C). Their characteristics are only briefly discussed in theory and are still mysterious.
Purpose: I give for the first time a comprehensive understanding of the structures of the 0+ states by analyzing
their wave functions and discuss relationship with the Hoyle state, similarities, and differences between the states.
Method: I extend a microscopic α-cluster model called the Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave
function so as to incorporate the 2α + α asymmetric configuration explicitly. The so-called r2-constraint method
to effectively eliminate spurious continuum components is also used.
Results: The 03

+ state is shown to have a very large squared overlap with a single configuration of the extended
THSR wave function in an orthogonal space to the Hoyle state as well as to the ground state. The 04

+ state has
a maximal squared overlap with a single extended THSR wave function with an extremely prolately deformed
shape.
Conclusions: The 03

+ state appears as a family of the Hoyle state to have a higher nodal structure in the internal
motions of the 3α clusters, due to the orthogonalization to the Hoyle state. The 04

+ state dominantly has a
linear-chain structure, where the 3α clusters move freely in a nonlocalized way, like a one-dimensional gas of
the 3α clusters.

DOI: 10.1103/PhysRevC.94.024344

I. INTRODUCTION

Nuclear cluster structure in the Hoyle state, the second
Jπ = 0+ state at 7.65 MeV in 12C, has been discussed for a
long time by many authors [1–17]. Cluster model approaches
play an important role in understanding the structure and have
clarified that it has a well-developed 3α cluster structure with
more dilute density than that of saturation in the ground state,
where α clusters weakly interact with each other in a relative
S wave [1–5]. In the past 15 years, however, understanding
of the Hoyle state structure has been deepened by a new
type of microscopic cluster model wave function, which is
referred to as the Tohsaki-Horiuchi-Schuck-Röpke (THSR)
wave function [18–20]. This wave function retains a structure
in which constituent α clusters are loosely bound like a gas
and occupy identical orbits, and this structured phenomenon
is now called the α condensation. One of the most important
properties for the THSR wave function is to give a single and
optimal configuration that is equivalent to a solution of the
full microscopic three-body problem [21–23]. Since it is well
known that the solutions of the full microscopic three-body
problem via 3α resonating group method (RGM) [2] and
generator coordinate method (GCM) [3] nicely reproduce
many experimental data for the Hoyle state, like the energy,
width, electromagnetic properties, etc., the equivalence leads
to the conclusion that the Hoyle state exists as the α condensate
composed of weakly interacting and gaslike 3α clusters.

Not only the Hoyle state but also some other excited states
in 12C have triggered special interest in recent years. For
example, the second Jπ = 2+ state was theoretically predicted
by the use of the cluster models almost 40 years ago [2,3,5], but
it was very recently confirmed in several experiments [24–28],
with a pioneering work by Itoh et al. as the beginning [29].
Besides the second 2+ state, a new 4+ state was also observed
at 13.3 MeV recently [30]. The new 2+ and 4+ states are

now considered to form a rotational family with the Hoyle
state, though the detailed rotational structure is under question
[31,32]. While in Ref. [31] a simple rotational structure based
on a triangular shape of the 3α clusters is assumed, it is pointed
out in Ref. [32] that this is not simply considered to be an
ordinary rotational band that lies on J (J + 1) line, due to the
α-condensate nature of the Hoyle state, where the third 0+
state (03

+) above the Hoyle state also plays an important role.
New experimental information is also given for the famous

broad 0+ state observed at 10.3 MeV with a width of 2.7 MeV
[29,33–35]. Itoh et al. pointed out that the broad 0+ peak is
decomposed into two peaks, giving the 03

+ and 04
+ states at

1.77 and 3.29 MeV above the 3α threshold, with the widths
of 1.45 and 1.42 MeV, respectively [36]. They also found that
the 04

+ state dominantly decays into 8Be(2+) + α(D) while
the 03

+ state decays into 8Be(0+) + α(S). Some theoretical
studies consistently reproduce the resonance parameters,
where semimicroscopic [10,15] or nonmicroscopic [37,38] 3α
models are adopted. In particular, in Ref. [10], the authors
applied the complex scaling method (CSM) and analytic
continuation of coupling constant (ACCC) method to the
3α orthogonality condition model (OCM). They suggested
by extrapolation that the 03

+ state has an S-wave dominant
structure with more dilute density than that of the Hoyle state.
The observed decay property and resonance parameters of
the 03

+ and 04
+ states are also reproduced by the recent

calculation by the present author using an extended version
of the THSR wave function, where 8Be +α correlation can
be taken into account [32]. He further showed more directly
by using the THSR wave function that the 03

+ state is a
result of the monopole excitation from the Hoyle state to
have dominantly a higher nodal structure, where the α cluster
orbits around the 8Be(0+) in an S wave with four nodes. He
also showed that the 04

+ state has the largest S2 factor in the
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channel of the α cluster coupling with 8Be(2+) in a D wave.
This is consistent with the previous result of the 3α GCM
calculation [3], where a large reduced width amplitude (RWA)
from the 8Be(2+) + α(D) channel is obtained, although their
calculation fails in reproducing the observed 03

+ state. I
should also mention that the antisymmetrized molecular
dynamics (AMD) and fermionic molecular dynamics (FMD)
calculations reproduce the 04

+ state and predict that the
state dominantly has an intrinsic configuration of bent-armed
shape of the 3α clusters, like a linear-chain structure that was
originally proposed by Morinaga [39], although the observed
03

+ state is also missing in their calculations [13,14,40]. In
Ref. [41], the linear-chain component of the 04

+ state obtained
by the 3α OCM is identified to be the (λ,0) configuration in
the Elliott SU(3) model, which is calculated to be about 56%.

In this paper, I investigate the excited Jπ = 0+ states
obtained in the previous work [32] by using the extended
THSR wave function and the so-called r2-constraint method
[22,42,43]. I focus on how much components concentrate on
a single configuration of the extended THSR wave function
with deformation parameters, and discuss physical natures
of the states. In Sec. II, the original THSR wave function
is explained, and then as its natural extension the extended
THSR wave function is introduced. In Sec. III, the structures
of the 02

+, 03
+, and 04

+ states are discussed. Squared-overlap
surfaces between the states and single configurations of the
THSR wave function in their deformation parameter space are
calculated. Section IV is devoted to the conclusion.

II. THSR WAVE FUNCTION

The original THSR wave function with deformation [19] is
described below:

�THSR(β)

= A
⎡
⎣ 3∏

i=1

exp

⎧⎨
⎩−2

∑
k=x,y,z

(Rik − Xk)2

b2 + 2β2
k

⎫⎬
⎭φ(αi)

⎤
⎦, (1)

= A
⎡
⎣exp

⎧⎨
⎩−

2∑
i=1

μi

∑
k=x,y,z

ξ 2
ik

b2 + 2β2
k

⎫⎬
⎭φ(α1)φ(α2)φ(α3)

⎤
⎦,

with A being the antisymmetrization operator acting on the 12
nucleons, φ(αi) being the internal wave function of the ith α
particle assuming a (0s)4 configuration, as in

φ(αi) ∝ exp

⎡
⎣−

∑
1�j<k�4

(r4(i−1)+j − r4(i−1)+k)2/(8b2)

⎤
⎦, (2)

Ri = ∑4
j=1 r4(i−1)+j /4 and X = ∑12

j=1 rj /12 being the posi-
tion vectors of the ith α particle and of total center-of-mass,
respectively, ξ 1 = R2 − R1 and ξ 2 = R3 − (R1 + R2)/2 be-
ing the Jacobi coordinates between the α particles, and
μi = i/(i + 1). The parameters b and β characterize the size
of the constituent α particle, and the size and shape of the total
nucleus, respectively, though the axial symmetry βx = βy is
assumed throughout this study.

The extended version of the THSR wave function which I
utilize in this work is a natural extension of the original form,
Eq. (1), as follows:

�THSR(β1,β2)

=NA
⎡
⎣exp

⎧⎨
⎩−

2∑
i=1

μi

∑
k=x,y,z

ξ 2
ik

b2 + 2β2
ik

⎫⎬
⎭φ(α1)φ(α2)φ(α3)

⎤
⎦,

(3)

where the single parameter β is decomposed into β1 and
β2 corresponding to the two Jacobi coordinates, ξ 1 and ξ 2,
and N is a normalization constant. This allows us to include
(8Be +α)-type configuration beyond the original THSR wave
function, where all α clusters are restricted to move in an
identical orbit.

This model wave function provides a picture in which
constituent clusters of a nucleus are trapped into a potential
without any geometrical rigid configuration of the clusters
under the constraint of antisymmetrization. The center-of-
mass wave functions of the constituent clusters are assumed
to have deformable Gaussian shapes with widths that are
variational parameters and characterize the spatial size and
shape of the nucleus. This is mentioned as a so-called container
picture or nonlocalized concept of cluster structures in some
recent publications (see Ref. [20] and references therein).
Not only the gaslike cluster states like the Hoyle state (3α)
and 8Be(2α) but also ordinary cluster states, which had been
believed to have nongaslike localized cluster structures, such
as the inversion doublet band with 16O +α structure [44], 3α
and 4α linear-chain structure [45], 2α + 	 structure in 9

	Be
[46], and 2α + n and 2α + 2n structures in 9Be [47] and
10Be [48], respectively, can all be described by this THSR
ansatz with almost 100% accuracy.

Since the excited states above the Hoyle state were
observed as resonances with non-negligible widths, it is
more likely that the bound-state approximation does not
work well for those states. I therefore use a technique to
effectively eliminate continuum components that get mixed
with the resonances, the so-called r2-constraint method, which
is also used in Refs. [22,32,42,43] and the effectiveness is
already guaranteed. In this technique, by considering the
fact that in calculations of bound states, pseudocontinuum
states are shown to have large root mean square (rms) radii,
compared to those of resonances and bound states, one can
remove effectively the spurious continuum components in the
following way: First I solve the following equation:∑

β ′
1,β

′
2

〈
�THSR

J=0 (β1,β2)
∣∣Ôrms − {R(γ )}2

∣∣�THSR
J=0 (β ′

1,β
′
2)

〉

×g(γ )(β ′
1,β

′
2) = 0, (4)

with Ôrms = ∑12
i=1(r i − X)2/12, and �THSR

J=0 (β1,β2) =
P̂J=0�

THSR(β1,β2), where P̂J=0 is the angular-momentum
projection operator onto J = 0. The eigenstates in Eq. (4) can
be written as

�
(γ )
J=0 =

∑
β1,β2

g(γ )(β1,β2)�THSR
J=0 (β1,β2). (5)
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Next I adopt, as bases to diagonalize Hamiltonian, the
eigenstates belonging to eigenvalues satisfying R(γ ) � Rcut

in Eq. (5), as follows:∑
γ ′

〈
�

(γ )
J=0

∣∣H ∣∣�(γ ′)
J=0

〉
f

(γ ′)
λ = Eλf

(γ )
λ , (6)

and obtain the eigenfunction,

�
(λ)
J=0 =

∑
γ

f
(γ )
λ �

(γ )
J=0. (7)

For the Hamiltonian, the same effective nucleon-nucleon
interaction as used in Ref. [32], Volkov no. 2 force [49], is
adopted, where the strength parameters are slightly modified
[4]. The cutoff radius is now taken to be Rcut = 6.0 fm as in
Ref. [32].

III. RESULTS AND DISCUSSION

In Table I, the calculated observables, energy, α-decay
width, and monopole transition strengths are compared with
the experimental data and those of the other calculations. The
present calculation consistently reproduces the corresponding
experimental data. The rms radius of the 03

+ state is the largest
of the 0+ states and the monopole transition strength between
the 02

+ and 03
+ states is much stronger than that between the

02
+ and 01

+ state (see Ref. [50]). These indicate, as discussed
in Ref. [32], that the 03

+ state is excited by monopole transition
from the Hoyle state to have a higher nodal structure between
8Be and α cluster.

As I mentioned in Sec. II, I adopted Volkov no. 2 force as
an effective nucleon-nucleon interaction in this work. I also
checked if the results depend on the choice of the force. For
example, when I adopt Volkov no. 1 force, the energies of
the 02

+, 03
+, and 04

+ states become slightly higher by about
1 MeV, i.e., E − E3α = 1.2, 4.2, and 5.0 MeV, respectively.
However, I confirmed that qualitative features of these states
that will be discussed in this section, such as the behaviours of
squared overlaps, do not change at all.

TABLE I. Energies, widths, rms radii, and monopole transition
strengths. Units of energies and widths are MeV, of radii fm,
M(E0) fm2. Experimental data (Exp.), THSR, OCM1, OCM2, FMC,
and AMD are taken from Refs. [25], [32], [10], [15], [13], [14],
respectively.

Exp. THSR OCM1 OCM2 FMD AMD

E(02
+) − E3α 0.38 0.23 0.76 0.75 0.4 ∼3.5

E(03
+) − E3α 1.77(9) 2.6 1.66 0.79

E(04
+) − E3α 3.29(6) 3.9 4.58 4.59 2.85 ∼6.5

�(02
+) (×10−6) 8.5 7.6 240 880 40

�(03
+) 1.45(18) 1.1 1.48 1.68

�(04
+) 1.42(8) 0.58 1.1 1.0 0.4

Rrms(02
+) 3.7 4.23 3.38 3.27

Rrms(03
+) 4.7

Rrms(04
+) 4.2 3.49 4.62 3.98

M(E0,02
+ → 01

+)5.4(2) 6.3 6.53 6.7
M(E0,03

+ → 02
+) ∼35

M(E0,04
+ → 02

+) ∼1.0 2.0

I also mention that only the THSR ansatz lists rather
complete physical quantities, including the rms radii and
monopole transition strengths, since the wave functions of
both 03

+ and 04
+ states are definitely obtained. As mentioned

in the introduction, the AMD and FMD calculations cannot
reproduce the 03

+ state, and in the OCM + CSM + ACCC
calculation in Ref. [10], denoted as OCM1 in this table, the
wave function of the 03

+ state cannot be obtained.
In Ref. [32], the author investigated the Hoyle band

(02
+,22

+,42
+) and the 03

+ and 04
+ states by using the

extended THSR wave function. All the states obtained in his
calculations are derived as solutions of the Hill-Wheeler equa-
tion, Eq. (7), where many bases of THSR-type configurations
are superposed. This will, however, make it unclear how the
THSR picture mentioned above is realized for those states,
since the superposition of the THSR configurations might
break its original picture. Thus, in order to investigate how the
THSR picture holds for the 0+ states, I calculate the following
two quantities:

Oλ(β1,β2) = ∣∣〈�THSR
J=0 (β1,β2)

∣∣�(λ)
J=0

〉∣∣2
(8)

and

Õλ(β1,β2) = ∣∣〈ÑλP̂λ�
THSR
J=0 (β1,β2)

∣∣�(λ)
J=0

〉∣∣2
. (9)

The former is the squared overlap of the 02
+ (λ = 2), 03

+ (λ =
3), and 04

+ (λ = 4) states in Eq. (7) with the single con-
figuration of the angular-momentum-projected THSR wave
function, �THSR

J=0 (β1,β2). The latter is also the squared overlap
of the 0+ states in Eq. (7) with the single configuration of the
angular-momentum-projected THSR wave function but the
lower 0+ states components are subtracted by the projection
operator, defined as P̂λ ≡ 1 − ∑λ−1

i=1 |�(λ)
J=0〉〈�(λ)

J=0|, from the
single THSR wave function. Ñλ is a normalization constant of
the wave function P̂λ�

THSR
J=0 (β1,β2).

In Fig. 1, I show the contour map of the squared overlap
Oλ=2(βx = βy, βz) in two-parameter space βx = βy and βz

with β = β1 = β2. One can see that maximum value of the
squared overlap amounts to 0.79 at βx = βy = 5.8 fm and
βz = 1.1 fm. While this large value indicates that the Hoyle
state is expressed by a single configuration of the THSR
wave function with β1 = β2, the Hoyle state is orthogonal
to the ground state, and therefore the orthogonality condition
should be imposed on the THSR wave function to describe the
Hoyle state. I then calculate the second quantity of the squared
overlap discussed above, Õλ=2(βx = βy, βz) with β = β1 =
β2. Figure 2 shows the contour map in two-parameter space
β1 = β2 = (βx = βy, βz). The maximal value is found to be
0.992 at (βx = βy, βz) = (5.0, 1.5 fm), which is surprisingly
large value, almost 100%. This large value was already found
before in Refs. [21,23] with the THSR ansatz of β1 = β2, but
I should note that in the present case this large value is also
obtained in the calculation with larger model space β1 	= β2,
where 2α and α asymmetric configuration is allowed for.
The fact that nevertheless this large value is again obtained
strongly suggests that in the Hoyle state the 3α particles,
democratically, without a strong 8Be +α correlation, take an
identical motion, so that the 3α condensate state is realized.
One can also find that the region denoted by dotted curve in
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FIG. 1. Contour map of the squared overlap Oλ(β1 = β2) in
Eq. (8) with λ = 2, i.e., for the 02

+ state, in two parameter space,
β1 = β2 = (βx = βy, βz). Black solid curves are drawn in a step of
0.1 and red dotted curves, which cover the region of Oλ(β1 = β2) �
0.81, are in a step of 0.01.
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FIG. 2. Contour map of the squared overlap Õλ(β1 = β2) in
Eq. (9) with λ = 2, i.e., for the 02

+ state, in two parameter space,
β1 = β2 = (βx = βy, βz). Black solid curves are drawn in a step of
0.1 and red dotted curves, which cover the region of Õλ(β1 = β2) �
0.91, are in a step of 0.01.
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FIG. 3. Contour map of the squared overlap Oλ(β1 = β2) in
Eq. (8) with λ = 3, i.e., for the 03

+ state, in two parameter space,
β1 = β2 = (βx = βy, βz). Black solid curves are drawn in a step of
0.1 and red dotted curves, which cover the region of Oλ(β1 = β2) �
0.11, are in a step of 0.01.

red, where the squared overlap is more than 0.91, is widely
ranged from prolately βx = βy < βz to oblately βx = βy > βz

deformed shapes, passing through the spherical one βx = βy =
βz, with large βx = βy, βz values. This supports the idea that
the Hoyle state does not have any definite intrinsic shape but
have a gaslike configuration of the 3α particles.

I should also note that the projection operator P̂λ=2, which
removes the ground-state component with compact structure,
plays a role as a repulsive force to prevent the 3α clusters
from being resolved and to form well-developed 3α cluster
structure for the Hoyle state, due to its orthogonality condition.
This is essentially the same as the situation of 8Be, where the
antisymmetrization operator A removes the Pauli forbidden
states, to construct a structural repulsive core between the two
α clusters.

Next I show the contour map of the squared overlap for the
03

+ state, Oλ=3(βx = βy, βz) in Fig. 3 and Õλ=3(βx = βy, βz)
in Fig. 4 in two-parameter space βx = βy and βz. In Fig. 3, the
contour lines more than 0.1 are denoted by dotted ones in red,
in a step of 0.01. One can see that the 03

+ state does not have
any squared overlap that is more than 0.1 in internal region of
βx = βy and βz. It only has at most 0.19 in an outside region
around βx = βy = 7 fm, βz = 7 fm. I also checked the squared
overlap in the model space of β1 	= β2, i.e., Oλ=3(β1,β2) in
four-parameter space, but no large squared overlap more than
0.19 was obtained.

However, this situation changes drastically when I consider
the THSR model space of its single configuration that is
orthogonal to the Hoyle state as well as to the ground state,
i.e., P̂λ=3�

THSR
J=0 , where the projection operator is defined
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FIG. 4. Contour map of the squared overlap Õλ(β1 = β2) in
Eq. (9) with λ = 3, i.e., for the 03

+ state, in two parameter space,
β1 = β2 = (βx = βy, βz). Black solid curves are drawn in a step of
0.1 and red dotted curves, which cover the region of Õλ(β1 = β2) �
0.81, are in a step of 0.01.

as P̂λ=3 = 1 − |�(λ=1)
J=0 〉〈�(λ=1)

J=0 | − |�(λ=2)
J=0 〉〈�(λ=2)

J=0 |. Then in
Fig. 4, I show the squared overlap Õλ=3(βx = βy, βz) in
two-parameter space, β1 = β2 = (βx = βy, βz). The contour
lines more than 0.8 are denoted by dotted ones in red, in a
step of 0.01. One can see that contrary to Fig. 3, very large
squared overlap appears in the internal region. The largest
one amounts to 0.89 at (βx = βy, βz) = (4.1, 1.6 fm). One
can also see that this large value quickly decreases toward
around (βx = βy, βz) = (5.0, 1.5 fm), which corresponds to
the point giving the maximum squared overlap for the Hoyle
state in Fig. 2. This is of course due to the effect of the
orthogonalization operator P̂λ=3. These results clearly indicate
that in order to describe the 03

+ state, the orthogonalization
to the Hoyle state as well as to the ground state is the most
essential. This implies that the 03

+ state is intimately related
to the Hoyle state, like its family. Due to this orthogonalization,
the 03

+ state is considered to exist as an excitation mode from
the Hoyle state with respect to the internal motions of the 3α
clusters.

In the previous paper Ref. [32], for the 03
+ state, the large

RWA of 8Be(0+) + α(S) component with a higher node than in
the Hoyle state is calculated. Also as shown in Table I, the much
larger monopole strength from the Hoyle state than a single-
particle strength, ∼35 fm2, is obtained. From these results,
it was concluded that the 03

+ state is a result of the strong
monopole transition from the Hoyle state, to have a higher
nodal structure. These results are consistent with the present
results, giving the interpretation that the monopole transition
or vibration mode is brought about by the orthogonalization to
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FIG. 5. Contour map of the squared overlap Õλ(β1,β2) in Eq. (9)
with λ = 3, i.e., for the 03

+ state, in two-parameter space, β1 = (βx =
βy, βz), where the maximal values of Õλ(β1,β2) obtained by varying
β2 are shown. The region of Õλ(β1,β2) � 0.7 is only shown in a step
of 0.025 of the contour lines.

the Hoyle state, to necessarily provide the higher nodes in the
internal motions of the 3α clusters.

In order to further investigate how the 03
+ state contains

the 8Be +α correlation, I then calculate the squared overlap
in four-parameter space, Õλ=3(β1, β2). For a given β1 value,
the maximal squared overlap obtained by varying β2 value
is shown in the contour map of Fig. 5, as a function of two
parameters β1 = [(β1)x = (β1)y, (β1)z]. The region giving
more than the squared overlap of 0.7 is only shown in
Fig. 5 with contour lines in a step of 0.025. While the
largest value appears at an oblately deformed region, like
Fig. 4, it is also found that there appear two maxima in the
prolately deformed region, which are about 0.81, at β1 =
[(β1)x = (β1)y, (β1)z] = (0.1, 4.8 fm) and β1 = [(β1)x =
(β1)y, (β1)z] = (1.7, 4.3 fm). The corresponding β2 values
are β2 = [(β2)x = (β2)y, (β2)z] = (3.4, 4.3 fm) and β2 =
[(β2)x = (β2)y, (β2)z] = (3.5, 4.0 fm), respectively. Since
β1 and β2 correspond to the deformation parameters of 8Be
and the remaining α-cluster motion, respectively, and 8Be is
expressed to have prolately deformed value for β1, the large
squared overlap values indicate that the 03

+ state has sizable
8Be +α correlation, which is also consistent with the previous
calculation of the 8Be +α RWA.

Finally I discuss the structure of the 04
+ state. As I

mentioned in the introduction, in the AMD, FMD, and 3α
GCM calculations, the 03

+ state may be missing and only the
04

+ state was obtained. The dominant intrinsic configuration of
the 04

+ state in the AMD and FMD calculations shows a bent-
armed structure of the 3α clusters, resembling the linear-chain
structure. On the other hand, in the OCM + CSM + ACCC
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FIG. 6. Contour map of the squared overlap Oλ(β1 = β2) in
Eq. (8) with λ = 4, i.e., for the 04

+ state, in two-parameter space,
β1 = β2 = (βx = βy, βz). Black solid curves are drawn in a step of
0.1 and red dotted curves, which cover the region of Oλ(β1 = β2) �
0.41, are in a step of 0.01.

and 3α GCM calculations, the 04
+ state has a structure in

which the α cluster predominantly couples in a D wave with
the 8Be(2+) core. The same result is also given by the RWA
analysis in the present ansatz in Ref. [32]. The problem is
whether the interpretation of the linear-chain-like structure
for the 04

+ state is reasonable or not, since the AMD and
FMD calculations cannot reproduce the 03

+ and 04
+ state

simultaneously. Actually it was recently reported by Suhara
et al. that the orthogonality condition to the lower states plays
an important role for the survival of the linear-chain structure
state in 12C [51].

In Fig. 6, I show the contour map of the squared overlap
for the 04

+ state, Oλ=4(βx = βy, βz), in two-parameter space,
β1 = β2 = (βx = βy, βz). The contour lines giving more than
0.4 are denoted by dots in red, in a step of 0.01. This contour
map has a characteristic feature, where the strongly prolate
deformation is only allowed to have a non-negligible squared
overlap amplitude. Except for this prolately deformed region,
the squared overlap is less than 0.1. The largest value is 0.47,
which is not so large but clearly indicates the 3α linear-chain
structure. I can consider this situation as follows: It is shown
that the extremely prolately deformed THSR wave function has
very small overlap with the other shaped THSR wave function
(see Fig. 2 in Ref. [22]). Since the configuration space other
than the extremely prolately-deformed region is already used
by the Hoyle state and the 03

+ state (see Figs. 1 and 3), as well
as by the ground state for the more compact region, the 04

+
state has no choice but using the remaining configuration, to
result in having the extremely prolately deformed shape, i.e.,
linear-chain structure. I also mention that this feature of the 04

+

0
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-4 -2 0 2 4
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FIG. 7. Intrinsic density profile generated from the THSR wave
function before angular-momentum projection, with β1 = β2 =
(βx = βy, βz) = (0.6, 6.7 fm), which gives the maximal squared
overlap, 0.47, in Fig. 6.

state is quite different from the behavior of the Hoyle state, in
which the β parameter space giving the large squared overlap
is widely spanned as shown in Fig. 1. While the feature for the
Hoyle state implies that any definite intrinsic wave function
for this state is difficult to be uniquely determined, the feature
of the 04

+ state allows for the definite intrinsic shape.
The parameter values giving the maximal squared overlap

is calculated to be β1 = β2 = (0.6, 6.7 fm), which is close
to β1 = β2 = (0.1, 5.1 fm), which was obtained in a rather
ideal one-dimensional situation in Ref. [45]. In Ref. [45], it is
discussed that largely prolately deformed THSR wave function
shows one-dimensional α condensate of 3α clusters, which is
fairly different from the ordinary picture of the linear-chain
state with rigid-body 3α-cluster configuration arranged in a
line in a spatially localized way. Thus I can say that the present
04

+ state has the one-dimensional α condensate structure by
around 50%, where the 3α clusters are loosely trapped into a
prolately deformed potential like a one-dimensional gas.

Figure 7 shows the intrinsic density profile generated from
the single THSR wave function, before angular-momentum
projection, with β1 = β2 = (0.6, 6.7 fm), which gives the
maximal squared overlap in Fig. 6. This density distribution
shows a clear linear-chain structure of the 3α clusters, i.e.,
localized α clusters, with an extended long tail along the
z direction. As is discussed in Ref. [45], this comes from
the inter-α Pauli repulsion, as a kinematical effect, which
makes this object look like localized clustering. However,
dynamics prefers a one-dimensional gas, according to the
potential picture and the character of the THSR wave function
mentioned above. This is particularly expressed as the long
tail elongated along the z direction in this figure.
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FIG. 8. Contour map of the squared overlap Õλ(β1 = β2) in
Eq. (9) with λ = 4, i.e., for the 04

+ state, in two-parameter space,
β1 = β2 = (βx = βy, βz), in a step of 0.1.

Finally I show in Fig. 8 the contour map in the orthogonal
space, Õλ=4(βx = βy, βz) as usual, in two-parameter space
β1 = β2 = (βx = βy, βz). The largest squared overlap value
increases up to 0.81 and the β1 = β2 value to give the
maximum slightly moves toward spherical region, which is
(1.1, 6.6 fm), but still shows very strongly prolately deformed
shape. On the one hand, this large value again supports that
the 04

+ state has a linear-chain shape. On the other hand,
the second and third maxima also appear at (4.6, 0.8 fm)
and (3.5, 3.6 fm), where the maximal values are 0.71 and

0.68, respectively. The former and the latter correspond to the
oblately deformed shape and the spherical shape, respectively.
This may suggest that due to the orthogonalization operator
P̂λ=4, some other correlations to unstabilize the linear-chain
structure, like a bending mode, which allows for a spherical
shape at a certain probability, take part, as is discussed in
Ref. [51].

IV. CONCLUSION

In conclusion, I investigated the excited Jπ = 0+ states
in 12C by using the extended THSR wave function with the
r2-constraint method. In particular, I focused on the 03

+ and
04

+ states, which were recently found experimentally. The
physical properties of the states, relationship with the Hoyle
state, and similarities and differences between them were
discussed by calculating the squared overlap with the single
configurations of the extended THSR wave function. The 03

+
state was found to appear as a result of the orthogonalization
to the Hoyle state as well as to the ground state, so that the
strong monopole transition or vibrational transition is induced.
The state is considered to be a family of the Hoyle state with
a higher nodal structure in internal motions of the 3α clusters.
The 04

+ state was shown to have a linear-chain structure as
a dominant configuration, where the 3α clusters move rather
freely in a much elongated way along the z axis, i.e., like a
one-dimensional gas, though the density distribution shows a
localized 3α linear-chain structure, due to the inter-α Pauli
repulsion. Besides the linear-chain configuration, some other
correlations like a bending mode also seem to be mixed.
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[10] C. Kurokawa and K. Katō, Phys. Rev. C 71, 021301(R) (2005);
Nucl. Phys. A 792, 87 (2007).

[11] Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke,
Eur. Phys. J. A 28, 259 (2006).

[12] K. Arai, Phys. Rev. C 74, 064311 (2006).
[13] M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann–Cosel,

and A. Richter, Phys. Rev. Lett. 98, 032501 (2007).
[14] Y. Kanada-En’yo, Prog. Theor. Phys. 117, 655 (2007).
[15] S.-I. Ohtsubo, Y. Fukushima, M. Kamimura, and E. Hiyama,

Prog. Theor. Exp. Phys. (2013) 073D02.
[16] Y. Fukuoka, S. Shinohara, Y. Funaki, T. Nakatsukasa, and

K. Yabana, Phys. Rev. C 88, 014321 (2013).
[17] M. Freer and H. O. U. Fynbo, Prog. Part. Nucl. Phys. 78, 1

(2014); and references therein.
[18] A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Phys. Rev.
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J. Äystö, Phys. Rev. Lett. 91, 082502 (2003); H. O. U. Fynbo
et al., Nucl. Phys. A 738, 59 (2004); Nature (London) 433, 136
(2005).

[35] C. Aa. Diget et al., Nucl. Phys. A 760, 3 (2005).
[36] M. Itoh et al., J. Phys.: Conf. Ser. 436, 012006

(2013).
[37] R. Lazauskas and M. Dufour, Phys. Rev. C 84, 064318

(2011).
[38] S. Ishikawa, Phys. Rev. C 90, 061604(R) (2014).
[39] H. Morinaga, Phys. Rev. 101, 254 (1956); Phys. Lett. 21, 78

(1966).
[40] T. Neff and H. Feldmeier, Nucl. Phys. A 738, 357

(2004).
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