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Background: Deformation energy surfaces map how the total binding energy of a nuclear system depends on
the geometrical properties of intrinsic configurations, thereby providing a powerful tool to interpret nuclear
spectroscopy and large-amplitude collective-motion phenomena such as fission. The global behavior of the
deformation energy is known to be directly connected to the surface properties of the effective interaction used
for its calculation.
Purpose: The precise control of surface properties during the parameter adjustment of an effective interaction
is key to obtain a reliable and predictive description of nuclear properties. The most relevant indicator is the
surface-energy coefficient asurf . There are several possibilities for its definition and estimation, which are not fully
equivalent and require a computational effort that can differ by orders of magnitude. The purpose of this study
is threefold: first, to identify a scheme for the determination of asurf that offers the best compromise between
robustness, precision, and numerical efficiency; second, to analyze the correlation between values for asurf and
the characteristic energies of the fission barrier of 240Pu; and third, to lay out an efficient and robust procedure
for how the deformation properties of the Skyrme energy density functional (EDF) can be constrained during the
parameter fit.
Methods: There are several frequently used possibilities to define and calculate the surface energy coefficient asurf

of effective interactions built for the purpose of self-consistent mean-field calculations. The most direct access is
provided by the model system of semi-infinite nuclear matter, but asurf can also be extracted from the systematics
of binding energies of finite nuclei. Calculations can be carried out either self-consistently [Hartree-Fock (HF)],
which incorporates quantal shell effects, or in one of the semiclassical extended Thomas-Fermi (ETF) or modified
Thomas-Fermi (MTF) approximations. The latter is of particular interest because it provides asurf as a numerical
integral without the need to solve self-consistent equations. Results for semi-infinite nuclear matter obtained
with the HF, ETF, and MTF methods will be compared with one another and with asurf , as deduced from ETF
calculations of very heavy fictitious nuclei.
Results: The surface energy coefficient of 76 parametrizations of the Skyrme EDF have been calculated. Values
obtained with the HF, ETF, and MTF methods are not identical, but differ by fairly constant systematic offsets.
By contrast, extracting asurf from the binding energy of semi-infinite matter or of very large nuclei within the
same method gives the same result within the numerical uncertainties.
Conclusions: Despite having some drawbacks compared to the other methods studied here, the MTF approach
provides sufficiently precise values for asurf such that it can be used as a very robust constraint on surface
properties during a parameter fit at negligible additional cost. While the excitation energy of superdeformed
states and the height of fission barriers is obviously strongly correlated to asurf , the presence of shell effects
prevents a one-to-one correspondence between them. As in addition the value of asurf providing realistic fission
barriers depends on the choices made for corrections for spurious motion, its “best value” (within a given
scheme to calculate it) depends on the fit protocol. Through the construction of a series of eight parametrizations
SLy5s1–SLy5s8 of the standard Skyrme EDF with systematically varied asurf value, it is shown how to arrive at
a fit with realistic deformation properties.

DOI: 10.1103/PhysRevC.94.024335

I. INTRODUCTION

Energy density functional (EDF) methods are versatile
tools for the study of nuclear structure and dynamics [1].
Once a parametrization of the EDF has been constructed
by selecting terms that incorporate the relevant degrees of
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freedom and by carefully fixing each term’s coefficient, it
can be applied to nuclei throughout the chart of nuclei at
the level of static or time-dependent mean-field calculations,
random phase approximation (RPA) and its extensions, or for
the description of large-amplitude motion in the context of the
generator coordinate method.

One popular example is the widely used Skyrme EDF [1–4].
Its further improvement is presently pushed into two major
directions. One concerns the protocol for the adjustment of
its parameters, where the number and diversity of data and
pseudodata considered during the fit are increased and various
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postfit analyses added that allow for the quantification of con-
fidence intervals of model parameters and the estimate of sta-
tistical error bars [5–10]. The other is the setup of more general
forms of the Skyrme EDF containing higher-order terms with
additional parameters [11–17]. Because both developments
substantially increase the numerical cost of the parameters’
adjustment, it is of advantage to have efficient methods to
calculate the data and pseudodata used during the fit.

In the past, many authors have discussed the crucial role that
an accurate adjustment of the surface energy coefficient of an
EDF’s parametrization plays for the deformation properties of
nuclei [7,9,18–22]. Generally speaking, when increasing asurf ,
deformation energy surfaces become stiffer, fission barriers
higher, and the excitation energy of fission isomers and other
superdeformed states more elevated. This, in turn can then
be used to fine tune the EDF. First pioneering calculations
of fission properties indicated that the two early Skyrme
parametrizations SIII [23] and SkM [24] give a fission barrier
height for 240Pu that is too high or too low by roughly a factor of
two, respectively. This disagreement clearly exhibited within
semiclassical calculations [25] has triggered the adjustment
of the SkM∗ parametrization, for which the parameters of the
momentum-dependent part of SkM have been modified and
fine-tuned to change the height of the semiclassical fission bar-
rier without changing other properties of infinite nuclear matter
[18]. Even after more than 30 years, SkM∗ is a still-often-used
reference for the description of fission phenomena [26–31].

The aim of the present study is threefold. First, we set up
and benchmark an efficient and robust method to calculate
the surface energy coefficient asurf as defined in Ref. [32] for
modern Skyrme EDFs. Second, we analyze the correlation
between the value for asurf and characteristic energies of the
deformation energy landscape of 240Pu. Third, we outline how
a constraint on the value of asurf can be incorporated into the
parameter adjustment.

This article is organized as follows. In Sec. II we present
the three methods based on a one-dimensional model for
semi-infinite nuclear matter that will be used to evaluate
the surface energy coefficient of the Skyrme EDF: the self-
consistent Hartree-Fock method (HF), the extended Thomas-
Fermi method (ETF), and the modified Thomas-Fermi method
(MTF). Section III recalls the “leptodermous protocol” of
Reinhard et al. [33] to extract the surface energy from an
analysis of very large fictitious nuclei. We use this approach
with the ETF method. A systematic comparison of the results
provided by these four possibilities is presented in Sec. IV. In
Sec. V, we discuss the extent to which the so-extracted surface
energy coefficient is linked to characteristic energies of the
fission barrier of 240Pu. Finally, Sec. VI presents the adjustment
of a series of standard Skyrme parametrizations with system-
atically varied asurf , called SLy5s1–SLy5s8. A summary of our
discussion and perspectives is given in Sec. VII.

II. SURFACE ENERGY IN SEMI-INFINITE
NUCLEAR MATTER

A. The Skyrme EDF

The starting point for the derivation of a Skyrme EDF is
usually an effective two-body interaction with parameters that

may depend on the density of the system. It is important to
recall that this effective interaction is used only as a generator
for the general form of the EDF and allows for writing
the coupling constants that weight these scalars as functions
of a limited number of parameters. It is then common to
disregard certain terms in the functional or to relax some
of the interdependencies between the coupling constants,
which breaks the one-to-one correspondence between the EDF
and the underlying effective interaction used to construct it
[1,11,17,34].

The present standard form of the Skyrme EDF is motivated
by the use of a density-dependent two-body interaction [1],
leading to a bilinear EDF with density-dependent coupling
constants. Most of the parametrizations discussed below are
of that type. However, we also compare with results obtained
for EDFs derived from interactions with two-, three-, and
sometimes even four-body terms but density-independent
coupling constants [16,17,35]. Such functionals are referred
to as trilinear or quartic EDFs, respectively.

In general, the total energy can be written as the sum of
five terms [1]: the kinetic energy Ekin, a potential energy
functional ESky that models the strong interaction in the
particle-hole channel, a pairing energy functional Epairing, a
Coulomb energy functional ECoulomb, and a correction term
Ecorr that approximately removes the excitation energy owing
to spurious motions caused by broken symmetries,

E = Ekin + ESky + Epairing + ECoulomb + Ecorr. (1)

The model systems that we use to extract the surface properties
are semi-infinite nuclear matter and giant spherical nuclei, for
which only the first two parts of the energy are taken into
account. As a consequence of the Skyrme interaction being a
contact force, the corresponding EDF then can be written in
the form of an integral over a local energy density,

E =
∫

d3r E(r), (2)

E(r) = Ekin(r) + ESky(r), (3)

where the Skyrme part ESky(r) can be further decomposed into
central (EC

t ), spin-orbit (ELS
t ), and tensor (ET

t ) terms,

ESky(r) =
∑
t=0,1

[EC
t (r) + ELS

t (r) + ET
t (r)

]
, (4)

that are either composed entirely of isoscalar densities (t = 0)
or that contain bilinear combinations of isovector densities
(t = 1). The Skyrme energy functional, as such, is constructed
to be an isoscalar.

The physics contained in the Skyrme functional has been
discussed in great detail in the literature [1,11,17,34,36],
and here we use standard notations for local densities and
coefficients of the functional. Its complete form discussed
in these papers contains many terms, only a small subset
of which are present for the systems we consider here. In
particular, all time-odd densities are zero because of the
time-reversal invariance we impose, and many components
of the time-even vector and tensor densities are zero because
of spatial symmetries.
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B. Model of semi-infinite nuclear matter

The surface energy is often extracted from an idealized one-
dimensional model of semi-infinite nuclear matter originally
developed by Swiatecki [37] and revisited in Ref. [32]. One
considers a medium where the local densities are constant
along the x and y directions, but vary along the z direction. The
corresponding profile of the local proton and neutron matter
densities is noted as ρq(z), q = n,p. Deep inside the matter for
z → −∞, one expects that ρ0(z) → ρsat, i.e., the equilibrium
density of infinite nuclear matter, and that E(z) → av , i.e., the
volume energy per particle at saturation. Far outside the matter,
i.e., for z → +∞, one has ρ0(z) → 0. For the sake of compact
notation, we drop the z dependence of the densities from here
on whenever possible.

Within this one-dimensional model, the only nonvanishing
components of the Cartesian spin-current tensor density J0,μν

are J0,xy = −J0,yx . As a consequence, only the J0,z component
of the vector part J0 of the full spin-current tensor as defined
in Refs. [11,36] is nonzero.

We here focus on the discussion of the surface energy
coefficient asurf that is related to the surface energy of
symmetric semi-infinite nuclear matter. In this system, proton
and neutron densities are equal; i.e., ρn(z) = ρp(z) = 1

2ρ0(z),
and similar for the other densities. As a consequence, only
those terms in the EDF that are entirely composed of isoscalar
densities have to be considered. This enormously simplifies
the energy density (2) that can be reduced to1

E = �
2

2m∗
0[ρ0]

τ0 + C
ρ
0 [ρ0]ρ2

0 − C
�ρ
0 (∇ρ0)2

+ 1
2 CJ

0 J2
0 − C∇J

0 J0 · ∇ρ0

+B
ρ
0 ρ3

0 + B
∇ρ
0 ρ0(∇ρ0)2 + 1

2 BJ
0 J2

0ρ + D
ρ
0 ρ4

0 , (5)

where the density-dependent isoscalar effective mass is given
by the ratio

m

m∗
0[ρ0]

= 1 + 2m

�2

(
Cτ

0 ρ0 + Bτ
0 ρ2

0

)
. (6)

The expression for the Skyrme EDF provided by Eq. (5) covers
a vast number of different parametrizations that have been
lately used in the literature. We use a notation where the
coupling constants for the bilinear, trilinear, and quartic terms
are denoted with C0, B0, and D0, respectively.

In the most widely used standard form of the Skyrme
EDF only the bilinear terms are considered, i.e., all B0 =
D0 = 0, and the coupling constant C

ρ
0 is made explicitly

density dependent by multiplying it with [1 + c ρα
0 (r)], where

the parameter c controls the relative weight of the density-
dependent part of the coupling constant.

The J2
0 terms bilinear in the spin-current density are called

“tensor terms” in what follows. For a majority of the widely
used parametrizations the coupling constant CJ

0 of the tensor

1Note that no unique definition of the coupling constant CJ
t of the

tensor terms can be found in the literature. We use here the convention
of Ref. [11]. Others might differ by a factor two.

terms is set to zero, such that ET
t = 0 in Eq. (4). Many past

semiclassical and HF calculations of semi-infinite nuclear
matter, however, have neglected these terms also for those
parametrizations for which they are to be taken into account.

The possibility of replacing the density dependence of C
ρ
0

with trilinear (B0 �= 0) and quartic (D0 �= 0) terms, and where
all coupling constants are derived from an underlying Skyrme
2 + 3 + 4-body Hamiltonian, has been considered recently
with the goal of constructing well-defined EDFs for use in
beyond-mean-field methods [16,17]. This extended form of
the Skyrme EDF is also considered in the present work.

The assumptions made when setting up the Skyrme
EDF have been discussed in great detail in the literature
[1,4,11,17,34,36] and are not recapitulated here. Neither do
we repeat the discussion concerning the different possible
definitions for the surface energy. For a detailed discussion, we
refer to the original articles of Myers and Swiatecki [38,39]
and the more recent ones by Pearson et al. [40,41], Brack
et al. [25], Kolehmainen et al. [42], Centelles et al. [43], and
Douchin et al. [44].

C. Hartree-Fock calculations

The first one of the methods we use to calculate semi-infinite
nuclear matter is the self-consistent mean-field approximation,
usually called HF, with a treatment along the lines of
Refs. [32,40]. In this case, one considers the quantity [32]

EL =
∫ +L

−L

dzE(z), (7)

which represents the energy per unit of surface for a piece
of semi-infinite nuclear matter described by a density which
is constant in the x and y directions and extends from −L
to +L in the z direction with the conditions ρ0(−L) = ρsat

and ρ0(L) = 0 for L → +∞. After solving the mean-field
equations, the surface energy coefficient, denoted as aHF

surf , can
be extracted using

aHF
surf = lim

L→∞
4πr2

0

∫ +L

−L

dz[E(z) − avρ0(z)], (8)

with the parameter r0 being defined through the condition
4
3 πr3

0 ρsat = 1.
As a particular feature of such quantal calculation, one

observes so-called “Friedel oscillations” [45,46] of the density
ρ0(z) in the vicinity of the surface inside the matter. Because
these oscillations are only very slowly damped, a reliable
calculation of aHF

surf requires quite large an interval in the z
direction.

Our HF values for asurf often differ slightly from those given
by other groups in the past [18,47–51]; see the Supplemental
Material [52]. On the one hand, this underlines the numerical
difficulties of determining a precise value for asurf . On the
other hand, as said before, the contribution from the J2 tensor
terms, which are present for a subset of the parametrizations,
has been omitted in most of the earlier published work.
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D. Semiclassical calculations

As a second method to determine asurf we use the semiclas-
sical ETF approach up to order �

4 [25]. Values obtained with
this method are denoted as aETF

surf in what follows.
In this semiclassical framework, the local densities ρq(z)

are modeled by a three-parameter modified Fermi function.
The kinetic and spin-current densities entering the total energy
density E(z) are obtained from an expansion of the so-called
single-particle Bloch density matrix in powers of � around
its Thomas-Fermi value as originally proposed by Wigner and
Kirkwood. In short, the Bloch density matrix is the coordinate-
space representation of the statistical operator eβĥ constructed
from the HF single-particle Hamiltonian ĥ expressed in its
eigenbasis [53] and related to the usual coordinate-space
representation of the density matrix ρ(r,r′) through a Laplace
transform [25,53]. Ultimately, this leads to expressions for τ0

and J0 as functions of the local density ρ0 and its derivatives,
where it is customary to separate the contributions of different
(even) power in � in the expansion

τ0 = τ
[0]
0 + τ

[2]
0 + τ

[4]
0 , (9)

J0 = J[2]
0 + J[4]

0 . (10)

The complete expressions for τ
[0]
0 (which is simply the kinetic

energy of a noninteracting Fermi gas), τ
[2]
0 , τ

[4]
0 , J[2]

0 , and J[4]
0 ,

have been given by Brack et al. [25] and more recently by
Bartel et al. [54]. Note that, in the case where tensor terms are
included in the Skyrme EDF, the standard expressions given
in the early articles have to be modified taking into account
the results of Bartel et al. [55] for the contribution of the J2

terms. Minimizing the surface energy as calculated with an
expression equal to the one given by Eq. (8), one obtains the
parameters of the assumed Fermi-type density profiles from
which the surface energy coefficients can then be calculated.

E. Modified Thomas-Fermi approximation

The ETF approximation provides expressions for the
kinetic and spin-current densities in terms of the nucleon
density and its derivatives. The MTF approximation developed
by Krivine and Treiner [56] consists in using an ETF expansion
limited to order �

2, where the coefficients are modified
to simulate the order �

4 as well as the �
2 effective mass

contributions. The MTF form of the kinetic and spin-current
densities can then be written as

τ
[2]
0 = αk2

F ρ0 + β
(∇ρ0)2

ρ0
+ γ�ρ0 + τ

[2(so)]
0 , (11)

τ
[2(so)]
0 = 1

2

(
2m∗

0[ρ0]

�2
W0

)2

ρ0, (12)

J[2]
0 = −2m∗

0[ρ0]

�2
ρ0 W0, (13)

with the coefficients α = 3
5 , β = 1

18 , and γ = 1
3 , chosen for

a reasonable reproduction of the total energy of finite nuclei
[56]. In local density approximation, the Fermi momentum
is given by kF = ( 3

2π2ρ0)1/3 and the spin-orbit field W0 is
defined as usual as W0 = ∂E/∂J0.

The coefficients α and γ of the MTF expressions thus keep
their values obtained from ETF, whereas the value of β is
changed from 1/36 (obtained within ETF) to 1/18 (used in the
MTF method).

The interest of the MTF method is that in the case of
symmetric semi-infinite matter, the approximations provided
by Eqs. (11), (12), and (13) lead to an analytically solvable
Euler-Lagrange equation for the density profile without the
need for carrying out a variational calculation numerically. It
is noteworthy that the entire density profile is varied in the MTF
method, whereas in the ETF approach only the parameters of
a predefined Fermi function are optimized to give the lowest
binding energy.

Following the derivation outlined in Ref. [57], the semiclas-
sical energy density of symmetric matter can then be simply
written as the sum of two terms,

E = hv[ρ0] + hs[ρ0]
(∇ρ0)2

ρ0
, (14)

where

hv[ρ0] = C
ρ
0 ρ2

0 + B
ρ
0 ρ3

0 + D
ρ
0 ρ4

0 + α
�

2

2m∗
0

k2
F ρ0, (15)

hs[ρ0] = �
2

2m
β + dρ0 + gρ2

0 + Vso[ρ0]ρ2
0 , (16)

with

d = (β − γ )Cτ
0 − C

�ρ
0 , (17)

g = (β − 2γ )Bτ
0 + B

∇ρ
0 , (18)

Vso[ρ] = −1

2

(
C∇J

0

)2

Q[ρ0]
. (19)

Compared to what is found elsewhere in the literature, the
expressions (15) and (16) have been complemented to take
into account the possible three- and four-body contributions
to the Skyrme EDF (5), as introduced in Refs. [16,17]. In
addition, to take into account the tensor terms in the Skyrme
EDF, the vector spin-current density is obtained through the
protocol of Bartel et al. [55], which leads to a redefinition of
the Vso[ρ] term,

J[2] = C∇J
0

Q[ρ0]
∇ρ0, (20)

Q[ρ0] = �
2

2m∗
0[ρ0]

+ CJ
0 ρ0 + BJ

0 ρ2
0 , (21)

which, compared to the original work by Treiner and Krivine
[57], contains additional terms.

Inserting the analytical solution for the density profile ρ0(z)
into the expression for the surface energy, one obtains after
some further analytical manipulations a compact expression
for the surface energy coefficient (for details, see Ref. [57]),
denoted aMTF

surf from here on,

aMTF
surf = 8πr2

0

∫ ρ0

0
dρ

{
hs[ρ]

[
E
A

(ρ) − E
A

(ρsat)

]} 1
2

. (22)

Because the MTF method differs from ETF approach only
by the values of the coefficients, this expression has exactly
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the same form as the Wilets formula [58,59] derived much
earlier. Hereafter, we call Eq. (22) the MTF pocket formula to
underline the simplicity of its use to calculate asurf compared
to the HF and ETF methods described above.

In its original MTF form without the contribution from
the tensor terms, this expression has been occasionally used
to analyze the surface properties of Skyrme parametrizations
[57,60,61].

III. SURFACE ENERGY FROM SEMICLASSICAL
CALCULATIONS OF LARGE NUCLEI

In Ref. [33], Reinhard et al. proposed a protocol to extract
the nuclear liquid-drop coefficients that correspond to an
EDF parametrization from a leptodermous expansion based
on mean-field calculations of very large fictitious spherical
nuclei calculated without Coulomb interaction and pairing
correlations. For the determination of the (isoscalar) surface
energy coefficient, the calculations can be limited to symmetric
nuclei with N = Z = A/2. In this case, the calculated binding
energy of the finite nuclei E(A) can then be developed into

E(A) ≈ avol A + asurf A2/3 + acurv A1/3 + a0 A0, (23)

i.e., a volume, surface, and curvature term plus another one
that is proportional to A0 = 1. The latter was not considered
in Ref. [33]. Despite its unrealistic limit for A → 0, such a term
emerges naturally in the leptodermous expansion of the nuclear
binding energy as a second-order correction to the curvature
energy [62,63] or when replacing the geometric surface energy
of the standard liquid-drop model by a double-folding integral
[64,65] as it is done in the finite-range liquid-drop and droplet
models (FRLDMs) [66].

For consistency with semi-infinite matter calculations, the
finite nuclei are calculated without center-of-mass correc-
tion, irrespective of the scheme used during the fit of the
parametrization used.

To extract the surface energy coefficient asurf of Eq. (23),
one first defines an effective surface energy coefficient aeff

surf(A)
of a given nucleus of mass A by reshuffling the expansion (23)

aeff
surf(A) ≡

[
E(A)

A
− avol

]
A1/3

= asurf + acurv A−1/3 + a0 A−2/3. (24)

The volume energy coefficient avol is provided by the energy
per particle E/A of symmetric infinite nuclear matter at
saturation density. By fitting a second-order polynomial in
A−1/3 to the calculated values for aeff

surf(A), one obtains the
coefficients asurf , acurv, and a0.

To disentangle the surface energy unambiguously from
the higher-order terms in the liquid-drop formula (23), we
calculate 20 nuclei with very large mass numbers in the range
1200 � A � 200 000, similar to what was done in Ref. [33].
There, however, nuclei were calculated self-consistently,
which required to remove shell effects by subtracting the shell
correction as obtained from the self-consistent single-particle
spectrum from the total binding energy. Here we use the
semiclassical ETF approach to calculate binding energies
instead, such that there is no need to eliminate shell effects.

The expansion in terms of powers of A−1/3 (or inverse nuclear
radius) is thus more stable and the LDM parameters thus
more precisely extracted when extrapolating to (semi-)infinite
nuclear matter in the limit A−1/3 → 0. The so-determined
values for asurf , however, should be compared to the ETF
results obtained for semi-infinite-matter and not the HF results
as the ones extracted in Ref. [33].

IV. DETERMINATION OF asurf

In this section we present a systematic comparison of
results for the surface energy coefficient obtained with the
four aforementioned methods. One of our main goals is
to check whether the computationally friendly MTF pocket
formula provides a reliable estimate for the surface energy
coefficient as extracted from the theoretically more advanced,
but numerically more involved, HF or ETF methods. For that
purpose, we use a large set of Skyrme parametrizations.

A. Parametrizations considered

There is a large number of Skyrme parametrizations that
can be found in the literature. Only few of them, however,
are frequently used in production runs. The simplicity and
popularity of the Skyrme EDF has led to quite large a number
of “experimental” fits of parametrizations that were carried
out for one or the other very specific study. In particular,
there are many “families” of fits that explore the influence
of variations of details of the parametrizations on their
predictive power. We profit here from this large number of
parametrizations as it allows us to cover large intervals of
values for infinite nuclear-matter properties, which in turn can
reveal possible correlations of differences between the four
methods to determine asurf and other global features of the
parametrizations.

Here we give a brief overview over the main features and
particularities of the parametrizations considered here (which
are all of the standard density-dependent bilinear form unless
specified otherwise).

(i) SIII [23]. The coupling constants C
ρ
t of this early,

but still sometimes used, parametrization are linear
functions of the density ρ0.

(ii) Ska [67], SGI, SGII [68], SkM [24], SkM* [18].
These are examples of early standard parametriza-
tions with a density dependence with α < 1, taking
values of either 1/3 or 1/6 as almost all parametriza-
tions listed below, unless otherwise specified.

(iii) The SLy family of fits. More recent and widely
used examples of standard parametrizations are
the Saclay-Lyon fits SLy4–SLy7 [69] that differ
in options for center-of-mass correction and tensor
terms, SLy5* [70], a recent refit that suppresses
the finite-size spin instability of the original SLy5
parametrization, and SLy4d [71], a refit of SLy4
without any center-of-mass correction built for the
purpose of time-dependent Hartree-Fock (TDHF)
calculations.

(iv) The TIJ family of fits [11]. For these parametriza-
tions, also fitted within the Saclay-Lyon protocol,
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the coupling constants of the tensor terms were
systematically varied over large intervals.

(v) SLy5 + T [72], SLy4T, SLy4Tmin [73], SLy4Tself,
TZA [74]. These are further fits based on the Saclay-
Lyon family of fits with either added or modified
tensor terms.

(vi) f0 and f± [75]. These constitute another series
of variants of Saclay-Lyon parametrizations that
explore different values for the splitting of the ef-
fective mass of protons and neutrons in asymmetric
matter. Unlike the other standard parametrizations
considered here, their coupling constants C

ρ
t have

two density dependencies with powers α1 = 1/3
and α2 = 2/3, respectively. This allows for the de-
coupling of nuclear-matter properties that cannot be
chosen independently for standard parametrizations
with just one density dependence [76].

(vii) The SLyIII.x family of fits [77]. These are yet an-
other series of variants of Saclay-Lyon parametriza-
tions that were built specifically for the purpose
of regularized beyond-mean-field calculations. All
have the same linear density dependence of the C

ρ
t

coupling constant as SIII. Their isoscalar effective
mass m∗

0/m = x has been constrained to the values
0.7, 0.8, 0.9, and 1.0 in units of the nucleon mass.

(viii) SaMi [78]. This recent parametrization has been
adjusted within a SLy-inspired protocol with the
aim of improved spin-isospin properties.

(ix) SkI3, SkI4 [79], SkO, SkO′ [80]. These fits are
examples of standard parametrizations with a gen-
eralized isospin dependence of the spin-orbit part
of the EDF.

(x) The SV family of fits [81]. This series of
parametrizations was constructed for the purpose
of studying the correlation of nuclear-matter prop-
erties with other observables. Starting from the ref-
erence parametrization called SV-bas, nine others
were constructed by varying the incompressibility
K∞, isoscalar effective mass m∗

0/m, symmetry
energy J , and the sum-rule enhancement factor κv

one by one while keeping the others constant. A
best fit, called SV-min, is also considered.

(xi) The UNEDF family of fits. These parametrizations
differ by the selection of data considered in the fit
protocol. Compared to UNEDF0 [6], for example,
UNEDF1 [7] and UNEDF2 [9] are also adjusted to
reproduce the excitation energy of the fission isomer
of 240Pu. We also consider the parametrization
UNEDF1SO [82] that corresponds to a readjustment
of the spin-orbit coupling constants of UNEDF1,
thereby improving the spectroscopy of very heavy
nuclei at the expense of a much lower value for asurf .

(xii) The BSk family of fits. We also consider sev-
eral representative parametrizations from the series
of large-scale Bruxelles-Montreal Skyrme-Hartree-
Fock-Bogoliubov mass fits that stay within the
standard form of the Skyrme EDF with only the
coupling constants C

ρ
t being density dependent

[21,49,83–88], among which BSk14 [21] has also
been fitted to fission barriers.

(xiii) LNS [89], NRAPR [90], NRAPRii [91]. In one
way or another, these parametrizations of the
standard Skyrme EDF were adjusted to reproduce
nuclear-matter properties as predicted by ab initio
methods. While LNS was adjusted to reproduce
a large variety of nuclear-matter results from a
Brueckner-HF calculation, NRAPR has been fit-
ted to the density dependence of the energy per
particle as obtained from ab initio calculations of
nuclear and neutron matter. We also consider the
parametrization NRAPRii with doubled strength of
the spin-orbit interaction compared to NRAPR, as
suggested by the authors of Ref. [91].

(xiv) KDE0v1 [61]. This standard parametrization has
been adjusted to reproduce a large number of
empirical nuclear-matter data.

(xv) SQMC700 [92]. This parametrization of the stan-
dard Skyrme EDF has been derived as the nonrela-
tivistic mean-field limit of a quark-meson-coupling
model [92].

(xvi) S1Sd, S1Se [93]. The parameters of these two
standard density-dependent Skyrme parametriza-
tions have been adjusted to reproduce total binding
energies of doubly magic nuclei as predicted by the
Gogny force D1S. For S1Sd the tensor terms were
included, whereas for S1Se they were neglected.

(xvii) S3Ly family of fits [35]. We also include a few
representative examples from the series of fits of
extended Skyrme EDFs that add central three-
body terms with gradients to a standard density-
dependent two-body Skyrme EDF and which were
carried out within a modified Saclay-Lyon fit proto-
col. These fits do systematically cover a wide range
of values for the isoscalar effective mass m∗

0/m and
incompressibility K∞. For example, S3Ly71260 is
a parametrization with m∗/m0 = 0.71 and K∞ =
260 MeV.

(xviii) SLyMR0 [16], SLyMR1 [94]. We also include
two recent parametrizations built for the pur-
pose of spuriousity-free beyond-mean-field calcula-
tions: SLyMR0, which combines the non-density-
dependent part of the standard two-body central
and spin-orbit Skyrme interaction with gradientless
three- and four-body terms, and SLyMR1, where the
four-body terms are replaced with the three-body
terms with gradients as introduced in Ref. [17].

The main interest of the four rarely used parametrizations
KDE0v1, LNS, NRAPRii, and SQMC700 is that they were re-
cently shown to be consistent with a large set of pseudodata for
infinite symmetric nuclear matter [95]. Their predictive power
for finite nuclei, however, is rather limited [91]. Most, if not
all, other parametrizations of the standard density-dependent
Skyrme EDF listed above provide a much better description of
finite nuclei than these, but in turn are incompatible with some
of the presently accepted values for the empirical properties of

024335-6



CONSTRAINING THE SURFACE PROPERTIES OF . . . PHYSICAL REVIEW C 94, 024335 (2016)

nuclear matter [95]. It should be stressed, however, that none of
the nuclear-matter properties is a real observable, as in one way
or the other they all have to be extracted in a model-dependent
way from data.

B. Surface-energy coefficients

Figure 1 shows the surface energy coefficients asurf ob-
tained from the HF, ETF, and MTF methods for the list of
parametrizations given above. Two sets of ETF values, one
obtained from the calculation of semi-infinite nuclear matter
(open blue squares) and the other extracted from calculations
of large finite nuclei (blue dots), are shown.

The first observation that can be made is that the values
of the surface energy coefficient spread over a relatively
large interval, from about 15.5 to about 19.5 MeV for the
results given by the HF calculations. As many parametrizations
were obtained within dissimilar protocols, it is difficult to
correlate the value for asurf with other properties of the
respective parametrizations. A few correlations that can be
unambiguously identified are that asurf depends on the presence
and size of tensor terms (compare SLy4, SLy5, SLy5T, and the
TIJ), the size of the spin-orbit term (compare NRAPR and
NRAPRii), and the scheme for center-of-mass correction used
(as already pointed out in [20]; compare SLy4, SLy6, and
SLy4d). One can expect that there are further correlations
between a parametrization’s value for asurf and its other
properties. The analysis of their origin and nature, i.e., if they
are a physical necessity or rather an accidental consequence
of either a specific fit protocol or an overconstrained form of
the EDF, however, is beyond the scope of the present study.

A second observation is that the differences between the
values for aHF

surf and aETF
surf , on the one hand, and the differences

between aHF
surf and aMTF

surf , on the other hand, are fairly constant
and almost independent on the nature of the EDF considered
(density-dependent bilinear, trilinear, or even quartic) and the
properties it provides for infinite nuclear matter.

A third observation is that for all parametrizations the
discrepancy between the two different ETF values is so small
that it can be hardly resolved on the figure, which confirms
that the leptodermous protocol of Ref. [33] offers a reliable
alternative to calculations of semi-infinite nuclear matter, with
the remaining differences being on the order of 10 keV.

The size and parametrization dependence of the little
remaining scatter between the three methods to determine
asurf from semi-infinite nuclear matter calculations can be
better resolved on Fig. 2, where the differences �aHF-ETF

surf ≡
aHF

surf − aETF
surf and �aHF-MTF

surf ≡ aHF
surf − aMTF

surf are directly plotted
for the same sample of parametrizations as in Fig. 1. For
most parametrizations, �aHF-ETF

surf is close to +0.5 MeV and
�aHF-MTF

surf is close to −0.5 MeV. Nonetheless, in some cases
the differences can deviate from this global trend; especially
for �aHF-MTF

surf one can find values in the range between
−1 MeV and about zero. In any event, Fig. 2 indicates that,
for the purpose of calculating asurf , MTF is almost as good an
approximation to HF as ETF. However, the two semiclassical
methods differ among each other on a much larger scale as one
systematically overestimates the HF value, whereas the other
systematically underestimates it.

A closer examination of the parametrizations for which the
scatter is largest indicates that �aHF-MTF

surf may strongly depend
on the isoscalar effective mass; see, for example, the SLyIII.x
and BSk series for which m∗

0/m ranges between 0.7 to 1.05.
In some cases one also finds small differences between

parametrizations with similar effective mass that are correlated
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FIG. 1. Surface-energy coefficients obtained within HF, MTF, and ETF approaches for a large set of Skyrme parametrizations (see text).
ETF values are determined from semi-infinite matter calculations and extracted from calculations of finite nuclei, as explained in Sec. III.
Note that all three panels share the same energy scale despite covering different intervals. Results for the SLyMR0 parametrization (inverted
markers) have been artificially increased by three MeV to remain within the range of the figure.
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FIG. 2. Differences between the surface energy coefficients obtained with the HF, ETF, and MTF models for the same parametrizations as
in Fig. 1.

to the strength of the tensor terms. This is exemplified by the
comparison of SLy4, SLy5, SLy5 + T, and the TIJ series,
which were adjusted within almost the same protocol, have
practically the same effective mass, but differ in the size and
sign of the tensor coupling constants CJ

t . For these cases the
difference between ETF and MTF seems not to be much
affected, but that the differences between HF and ETF and
also between HF and MTF are not the same. In general, Fig. 2
suggests that without tensor terms, ETF and MTF have the
same offset from HF, but in opposite directions. In the presence
of tensor terms, the ETF values for asurf come closer to the
ones from HF, whereas MTF moves further away. This finding
points to limitations of modeling the spin-current density in
semiclassical methods.

Comparing SLy5 and SLyIII.0.7, which have similar effec-
tive mass and tensor terms, indicates that �aHF-MTF

surf might in
addition also depend on the power of the density dependence
of C

ρ
0 [ρ0]. For α = 1 (SLyIII.0.7), MTF values for asurf are

much closer to the ones from HF than for α = 1/6 (SLy5). We
come back to this below.

One can expect that there might be further weak correlations
between a parametrization’s value for �aHF-MTF

surf and its other
properties, but these cannot easily be identified even within
this large set of parametrizations.

To analyze further the correlation between �aHF-MTF
surf and

nuclear-matter properties, parametrizations with systemati-
cally varied nuclear-matter properties are needed. Such fits
are provided by the series of SV parametrizations by Klüpfel
et al. [81]. During their adjustment, the incompressibility K∞,
isoscalar effective mass m∗

0/m, symmetry energy coefficient
J , and the Thomas-Reiche-Kuhn enhancement factor κv have
been separately varied while keeping the other properties
constant.

The left panel of Fig. 3 shows the corresponding values for
asurf obtained with the four schemes to calculate the surface en-

ergy coefficient introduced above. Two correlations for the size
of asym itself, independent of the method of its determination,
become immediately obvious: asurf increases with increasing
incompressibility K∞ and also with increasing symmetry
energy coefficient J . Both, however, might be particular to
the specific fit protocol of this series of parametrizations.
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FIG. 3. (Left) Surface energy coefficients obtained within the HF,
MTF, and ETF approach for the family of SV parametrizations of
Ref. [81]. Each of the four series systematically varies one bulk
property (from top to bottom: K∞, m∗

0/m, J , κv) around the value of
SV-bas while keeping the others constant. (Right) Same as Fig. 2, but
for the series of SV fits.

024335-8



CONSTRAINING THE SURFACE PROPERTIES OF . . . PHYSICAL REVIEW C 94, 024335 (2016)

0.0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

d
en

si
ty

(f
m

-3
)

-6 -4 -2 0 2 4

z (fm)

HF
MTF
ETF

0.0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

ki
n

et
ic

d
en

si
ty

(f
m

-5
)

-6 -4 -2 0 2 4

z (fm)

HF
MTF
ETF

0.0

0.005

0.01

0.015

0.02

0.025

sp
in

-c
u

rr
en

t
d

en
si

ty
(f

m
-4

)

-6 -5 -4 -3 -2 -1 0 1 2 3 4

z (fm)

HF
MTF
ETF

FIG. 4. Radial profile of the mass density ρ(z), kinetic density τ (z), and the z component of the spin-current density Jz(z) as obtained from
HF, ETF, and MTF calculations of semi-infinite nuclear matter with the SLy5 parametrization. The inserts give an enlarged view of the Friedel
oscillations of the HF densities inside the matter in an interval of 30 fm below the surface.

More importantly, for the series with varied effective mass
m∗

0/m, the different methods to determine asurf give a different
trend, as already indicated by the analysis of the large set of
parametrizations in Fig. 2. While the HF and ETF values are
fairly independent on m∗

0/m, the MTF values rapidly increase
with decreasing effective mass. The method dependence of the
asurf values becomes more obvious in Fig. 3, where are plotted
the differences between the methods in the same way as in
Fig. 2.

The right panel of Fig. 3 also reveals that there is
a slight dependence of both �aHF-ETF

surf and �aHF-MTF
surf on

the incompressibility K∞, which to a large extent explains
the difference of �aHF-MTF

surf between SLy5 and SLyIII.0.7
found in Fig. 2 and attributed to the power of the density-
dependent term above. The values for K∞ of these two
parametrizations are quite different, K∞ = 230 MeV for SLy5
and K∞ = 361.3 MeV for SLyIII.0.7, which is a consequence
of the correlation between m∗

0/m, K∞, and the power of the
density dependence of the C

ρ
0 coupling constant analyzed,

for example, in Ref. [76]. The K∞ value of SLyIII.0.7 is
far outside the range covered by the SV parametrizations
of Fig. 3 (and therefore also far from the empirical value,
which is unavoidable for standard parametrizations with
linear density dependence [76]). Going from SV-K218 to
SV-K241, one finds that �aHF-MTF

surf /�K∞ ≈ 0.002. Assuming
the same slope when going from SLy5 to SLyIII.0.7, their
�aHF-MTF

surf should differ by about 260 keV, which is indeed the
case.

Altogether, we find a reasonably parametrization-
independent behavior of the three models with a quantitative
difference that is almost constant as long as K∞ and m∗

0/m
are constrained to a small interval, which is usually the case
within a given fit protocol. From this, one can conclude that
the Wilets pocket formula from Eq. (22) can be safely used
in a fit protocol to determine the coupling constants of future
Skyrme EDFs.

C. Density profiles in semi-infinite nuclear matter

To examine the origin of the systematic differences found
above between the three models used to calculate semi-infinite

nuclear matter, Fig. 4 displays the radial profiles of the mass
density ρ(z), kinetic density τ (z), and the z component of the
spin-current density Jz(z), as obtained from each method.

For each model, the profiles are positioned such that the
lower boundary −L′ of a piece of the surface with some
sufficiently large, but otherwise arbitrarily chosen, particle
number A calculated as

A = 4πr2
0

∫ ∞

−L′
dzρ(z) (25)

coincides for all of the three models.2 The parameter r0 is
the same as in Eq. (8). With this, the density profiles can
be compared exactly as those of finite nuclei with same
particle number. The origin z = 0, however, has been chosen
to correspond to the position of the sharp surface of a
piece of saturated nuclear matter with constant density inside
that is placed in precisely the same manner as the three
density profiles shown in Fig. 4, i.e., −L′ = A/(4πr2

0 ρsat) =
A/[31/3(4πρsat)2/3].

As for finite nuclei, the density and kinetic density are bulk
properties that approach a saturation value inside the matter
and fall off at the surface. By contrast, the spin-current density
is peaked on the surface and approaches zero inside and outside
the matter. Indeed, Jz is exactly zero in infinite homogeneous
nuclear matter when calculated in mean-field approximation.

The amplitude of the Friedel oscillations exhibited by all
three HF densities is comparatively small and barely visible
when plotting the entire density profile. However, as indicated
by the inserts, the oscillations with a wavelength of about
2.4 fm are only slowly damped and reach far inside.

2None of our three codes for HF, ETF, or MTF calculations of
semi-infinite nuclear matter constrains the particle number in the
integration interval. Still, within each model, the value of −L′ can
be easily determined from the interpolation of A(L) obtained from
semi-infinite-matter calculations with systematically varied intervals
[−L, + L] in Eq. (7), etc. Indeed, for sufficiently large intervals, A

becomes a linear function of L. The value A = 40 has been chosen
to prepare Fig. 4.
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Each of the three approaches to calculate semi-infinite
matter provides a slightly different profile of the mass density
distribution ρ(z) at the surface. They differ in the steepness,
diffuseness, and also in the position of the inflection point. This
is not very surprising, as in one way or the other the ETF and
MTF methods are constructed to provide an approximation to
the total energy of an HF calculation and not to reproduce its
densities. While in the ETF method only the parameters of a
Fermi function parametrizing the profile of the local matter
density ρ(z) are variationally optimized, the entire density
profile is implicitly varied in the MTF approach.

The ETF density ρ(z) follows quite closely the mean of the
oscillations of the HF density, such that the two are difficult
to distinguish in Fig. 4. By contrast, the profile of the MTF
density is visibly different from the other two by being much
more asymmetric around the surface. Inside the matter, the
MTF density approaches the saturation value slower than the
ETF density or the mean of the oscillating HF density, whereas
outside the matter it falls much more quickly to zero than
the other two. The same behavior has already been found for
finite nuclei in the seminal papers on the MTF method [56,57].
This asymmetry has some consequences for the corresponding
kinetic and spin-current densities. On the one hand, it generates
a visible bump in the tail of τ (z) and also leads to a very
asymmetric shape of Jz(z).

A similar, but much less pronounced, bump is also found
in the tail of the ETF kinetic density τ (z). In this case, it
is generated by the terms of order �

4 in the semiclassical
expansion, which are also at the origin of the bump that the ETF
spin-current density Jz(z) exhibits at the same position. The
appearance and size of the latter is parametrization dependent,
and can be correlated to the relative sign and size of spin-orbit
and tensor terms.

While these differences in the density profiles easily
explain why the three methods deliver slightly different results
for the surface energy coefficient, it is more difficult to
correlate the dissimilarities of the density profiles with the
systematic differences found for the asurf values. In any event,
it has to be recalled that the ETF and MTF approaches are
approximations to the HF calculation of the total energy of the
nuclear system. The surface energy coefficient defined through
Eq. (8), however, is the difference between two energies that
are typically two orders of magnitude larger, such that the
differences found between the various schemes to calculate
them are beyond the third significant digit, which should not
be unexpected.

V. RELATION BETWEEN asurf AND DEFORMATION
ENERGY SURFACES

It is well understood that the characteristic features of the
deformation energy surfaces of heavy nuclei, i.e., the excitation
energies of secondary minima and the height of barriers
separating the minima and stabilizing the nucleus against
fission, are strongly correlated with the surface properties of
the effective interaction [18,22]. An emblematic example is
the “double-humped” fission barrier of 240Pu [96] that we use
here as an illustrative example. As a rule of thumb, the larger

the surface energy coefficient asurf , the higher the excitation
energies and barriers.

In the liquid-drop model, the surface energy of a nucleus is
simply provided by the product of asurf , the size of the nucleus’
surface and a universal factor. Assuming that the deformation
of the fission isomer and the top of the barriers turn out to be
at the same deformation for all parametrizations (such that the
nuclear surface is of comparable size), one would then naively
expect that their energy is linearly correlated with the surface
energy coefficient. In addition, the larger the deformation, the
steeper should be the slope.

It has to be recalled, however, that the characteristic
features of the energy surfaces, in particular the ground-state
deformation and the presence of secondary minima, are caused
by shell effects [96,97]. As a consequence, the variation of shell
effects with deformation is as important for the observable
excitation energies as is the smooth variation of the of the
liquid-drop surface energy with deformation, which on its own
would just give all actinide nuclei a spherical ground state and
one structureless broad fission barrier. Indeed, the fact that the
amplitude of the variation of shell effects with deformation
that leads to the characteristic double-humped fission barrier
of most actinides is correlated with the effective mass and
spin-orbit strength has been pointed out already very early by
Tondeur [98].

For a subset of the parametrizations employed above, we
have carried out calculations of the complete static fission
barrier of 240Pu, which is an often-used benchmark for such
studies [1,18–20,28,99–102]. To avoid a readjustment of the
pairing strength and the ambiguities related to it, we have
limited the analysis to parametrizations of similar effective
mass. Most were adjusted with a variant of the Saclay-Lyon
protocol. In the figures we only distinguish between series
of fits, which are the SLyx family, (SLy4-7, SLy5*, SLy4d),
the fx family (f0, f±), the TIJ family (T22, T24, T26, T42,
T44, T46, T62, T64), and the SLyxT family (SLy5+T, SLy4T,
SLy4Tmin, SLy4Tself, TZA). In addition, we have used the
classic SkM and SkM* parametrizations. As it turns out, this
subset is sufficient for a conclusive analysis.

In all cases, we use “surface pairing” with strength
−1250 MeV fm−3 for protons and neutrons, and a soft cutoff
at ±5 MeV above and below the Fermi energy as defined in
Ref. [103].

Calculations are carried out with the most recent versions
of the EV8 [34] and EV4 [104] codes. Both use the same
three-dimensional coordinate-space representation, where the
single-particle wave functions are discretized on an equidistant
mesh in a box. The two codes differ by the symmetries
they impose on the nuclear shapes. EV8 assumes three plane
reflection symmetries, which reduces the calculation to 1/8 of
the full box, but is still sufficient to describe triaxial shapes. By
contrast, EV4 assumes only two plane reflection symmetries,
which then also permits to describe (not necessarily axial)
octupole deformed shapes. The EV8 box has nx × ny × nz =
20 × 20 × 30 points of distance 0.8 fm. The Poisson equation
for the Coulomb field is solved in a 50 × 50 × 50 box for
improved precision of the Coulomb energy at large elongation.
The EV4 box doubles the z dimension. With these choices,
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FIG. 5. Correlation between the excitation energy of the fission
isomer (middle panels), the height of the inner (top panels) and outer
(bottom panels) barrier of 240Pu, and the surface energy coefficient
asurf calculated in HF (left column), ETF (middle column), and MTF
(right column) for a selection of Skyrme parametrizations (see text).
The horizontal gray bars indicate the range of experimental data found
in the literature (see text). Note that all panels share the same energy
scale.

the deformation energy reaches a precision of about 100 keV
independent on the nuclear shape [105].

Up to the fission isomer, the shapes along the static
fission path are reflection symmetric, whereas beyond the
fission isomer the shapes quickly become mass asymmetric
with increasing quadrupole deformation. The inner barrier is
triaxial; everywhere else the shapes along the path are axial.

Figure 5 shows the excitation energy of the superdeformed
fission isomer and the height of the inner and outer barriers as
a function of the surface energy coefficient calculated in three
different ways.

For the experimental energies, which are indicated by gray
horizontal bars in Fig. 5, slightly conflicting values have been
reported in the literature. For the excitation energy of the
isomer one finds 2.4 ± 0.3 MeV [96], ≈ 2.8 MeV [106], and
2.25 ± 0.20 MeV [107]. For the height of the barriers, the
compilation of Ref. [96] lists 5.95 MeV for the inner one and

≈ 5.4 MeV for the outer one. According to the compilation
cited by Mamdouh et al. [108], the first barrier has 5.8 MeV
and the second barrier 5.3 MeV. A more recent paper from
the same group [49] cites 6.1 MeV for the inner barrier and
5.2 MeV for the outer barrier. In their paper on the fit of
UNEDF1, Kortelainen et al. [7] cite the values 6.05 MeV
for the inner barrier and 5.15 MeV for the outer one, as
recommended by the RIPL-3 database [109,110]. The scatter
of the experimental data, however, is much smaller than the
scatter in the theoretical results of Fig. 5. In any event, most
parametrizations largely overestimate the experimental values,
which is the principal motivation for the current efforts to
improve the EDFs in that respect.

Note that none of the parametrizations does simultaneously
describe all of the three properties. The three parametrizations
that give a reasonable description of Eiso of about 2.7 MeV
(and which are SkM*, SLy6, and SLy7) still overestimate the
inner and outer barrier heights by more than 1 MeV.

All deformation energies increase with the value of the
surface energy coefficient asurf as expected. However, the
correlations are not strictly linear. Instead, there is a large
scatter around the global trends, in particular for the height of
the inner barrier. This is an immediate consequence of the shell
effects not being the same for all parametrizations. Indeed, it
has been demonstrated in Ref. [22] that the contribution of the
shell correction as deduced from self-consistent mean-field
calculations of the excitation energy of the fission isomer of
nuclei in the actinide region, including 240Pu, can vary by more
than 1 MeV when going from one parametrization to another.
The parametrization dependence of shell effects becomes
obvious when one directly compares the entire barriers, as
can be seen from Fig. 6. Even the overall shape of the barrier
is not the same for all parametrizations. The deformation
of the fission isomer varies, as does the deformation of the
configuration corresponding to the top of the barriers. Even
more intriguingly, for some parametrizations there appears a
third minimum at large asymmetric shapes, or the topography
around the spherical point is quite different. For the purpose
of the present paper, it is not important to disentangle the
origin of these variations, which are, for example, related to
the strength of spin-orbit and tensor terms as will be discussed
in a forthcoming article. What is relevant is that there obviously
is a large variation of the deformation dependence of the shell
effects among the parametrizations studied here. This, in turn,
indicates that the adjustment of the excitation energy of the
fission isomer or the fission barrier heights cannot be easily
replaced by an adjustment of a universal empirical value of the
surface energy coefficient.

This is complicated further by the apparent impossibility of
determining a precise value for asurf in a model-independent
way. As indicated by the analyses of Refs. [10,33], a reliable
extraction of asurf and other liquid-drop parameters from
microscopically calculated binding energies of finite nuclei
requires to go to systems with A ≈ 105 nucleons. The same
can be expected to hold for its reliable extraction from the
binding energies of real nuclei, but the systems needed do not
exist in nature. Second, the preferred value for asurf will also
depend on choices made for quantum corrections to the binding
energy in a given fit. For example, the size of the rotational
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FIG. 6. Deformation energy curve of 240Pu as a function of
the dimensionless mass quadrupole moment β2 = 4π

3R2
0A

〈Q̂20〉, where

R0 = 1.2 A1/3 fm and A is the mass number, for the same set of
parametrizations as in Fig. 5 and using the same color code for the
families of parametrizations. All deformation energies are normalized
to the respective ground-state energy. At large deformation, the curves
end where the calculations jump from a solution with large elongation
to a solution with two separate fragments.

correction increases rapidly with deformation [1,21,99], such
that parametrizations that are supposed to be used with it
require a larger value for asurf than parametrizations supposed
to be used without it. Also, for parametrizations that are
supposed to be used in beyond-mean-field models, it is the
energy difference between collective states that should be
compared with data [99], not the difference of minima of the
energy surface.

VI. A FIT PROTOCOL INCLUDING asurf

In one way or another, information about fission barriers has
already been sometimes used to constrain parametrizations of
effective interactions of Skyrme [7,18,19,21] type.

Using the fission barriers themselves for the parameter
adjustment, however, is quite costly. Assuming that shell
effects are principally fixed by the other ingredients of the
fit protocol, our results suggest a way to fit the information
contained in fission barriers in a more economical iterative
process: A parametrization is first adjusted to reproduce an
initial guess for the value of asurf or a series of values of asurf

that cover a reasonable range. After convergence of the fit, one
calculates then a couple of well-selected fission barriers with
the preliminary parametrizations, checks the deviation from
data, estimates how asurf should be changed, and runs a new
fit (or series of fits) with the improved estimate for asurf . The
process can be repeated until the desired quality for fission
barriers is reached.

Figure 5 suggests that the correlation between the surface
energy coefficient and the characteristic features of the energy
surface is basically the same within each method to calculate
asurf , in spite of the HF, ETF, and MTF calculations providing
different values for a given parametrization. This means that
any of these methods can then be used during the fit as long as
the value used for asurf is tuned accordingly to the formalism
used.

Because of its computational simplicity, we use the MTF
value for asurf to construct a series of fits with a surface energy
coefficient systematically varied in the range between 18.0 and
19.4 MeV in steps of 0.2 MeV, while everything else in the
fit protocol is kept unchanged. As a starting point, we chose
the protocol used to adjust SLy5* [70], which differs from the
fit protocol of the original SLy5 parametrization [69] mainly
by an additional constraint that avoids the appearance of
unphysical finite-size instabilities in the spin channels [70]. To
have a series of parametrizations with similar bulk properties,
we have added an additional constraint on the value of the L

TABLE I. Nuclear-matter properties of the SLy5sX Skyrme EDFs adjusted for this work. The properties of the original SLy5 [69] and
SLy5* [70] parametrizations are also given for comparison. The first block (columns 2–8) shows the standard bulk properties for infinite
symmetric matter, i.e., saturation density ρsat in fm−3, energy per particle E/A in MeV, incompressibility K∞ in MeV, isoscalar effective mass
m∗

0/m, symmetry energy coefficient J and its slope L in MeV, and enhancement factor of the TRK sum rule κv . The second block (semibulk;
columns 9–11) shows surface energy coefficients asurf in MeV as obtained from semi-infinite nuclear matter calculations within the MTF, HF,
and ETF schemes (see text). The third block (column 12) shows asurf as deduced from ETF calculations of large finite nuclei.

Bulk properties Semibulk From finite nuclei

Model ρ0 E/A K∞ m∗/m J L κv a
(MTF)
surf a

(HF)
surf a

(ETF)
surf a

(ETF)
surf

SLy5 0.1603 −15.98 229.9 0.6969 32.03 48.3 0.2498 18.94 18.44 18.06 18.07
SLy5* 0.1605 −16.02 229.9 0.7006 32.01 45.9 0.4181 19.15 18.61 18.27 18.28
SLy5s1 0.1598 −15.77 222.1 0.7392 31.43 48.1 0.3047 18.00 17.55 17.15 17.16
SLy5s2 0.1603 −15.82 223.2 0.7350 31.60 48.3 0.3063 18.20 17.74 17.34 17.35
SLy5s3 0.1607 −15.86 224.3 0.7309 31.77 48.4 0.3082 18.40 17.93 17.53 17.55
SLy5s4 0.1612 −15.91 225.4 0.7273 31.94 48.5 0.3105 18.60 18.12 17.73 17.74
SLy5s5 0.1618 −15.96 226.4 0.7243 32.11 48.6 0.3131 18.80 18.31 17.92 17.93
SLy5s6 0.1623 −16.01 227.3 0.7217 32.29 48.8 0.3160 19.00 18.50 18.11 18.13
SLy5s7 0.1629 −16.05 228.3 0.7196 32.46 48.9 0.3191 19.20 18.70 18.31 18.32
SLy5s8 0.1634 −16.10 229.1 0.7178 32.64 49.0 0.3225 19.40 18.89 18.50 18.52
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16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0
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nuclei, ETF

FIG. 7. Surface-energy coefficients asurf of the SLy5sX
parametrizations as obtained from HF, ETF, and MTF calculations
of semi-infinite nuclear matter as well as ETF calculations of finite
nuclei as described in Sec. III.

coefficient of nuclear matter, which otherwise is only scarcely
constrained by finite nuclei, such that it remains in the interval
of (50 ± 2) MeV.

The resulting parametrizations are called SLy5sX, X =
1, . . . ,8. Their nuclear-matter properties are summarized in
Table I. When comparing any two parametrizations, the
difference between the values of the surface energy coefficients
obtained with different methods is almost constant; see
Fig. 7.

Figure 8 displays the deformation energy along the static
fission path of 240Pu obtained with these parametrizations. As

FIG. 8. Same as Fig. 6, but for the family of SLy5sX fits. The
insets show contour plots of the mass density distribution in the x-z
plane at selected deformations.

FIG. 9. Correlation between the excitation energy of the fission
isomer (a), the height of the inner (b) and outer (c) barriers of
240Pu, and the surface energy coefficient asurf calculated in HF,
ETF, and MTF for the SLy5sx series of interactions. The horizontal
gray bars indicate the range of experimental data found in the
literature (see text). The energy scales and intervals are the same as in
Fig. 5.

they are all fitted within the same protocol but for the value
that asurf is fixed at, the evolution of the curves with asurf is
now much more regular. However, there are still indications
that also shell effects are slowly varying in response to the
change of asurf in the fit protocol: At β2 values around 1.7,
a shallow third minimum develops with increasing value
of asurf .

Still, for the excitation energies of the fission isomer and
the inner and outer saddles, the correlation with asurf is now
almost perfectly linear, as demonstrated by Fig. 9. Still, none
of the parametrizations does simultaneously describe all of the
three properties.

In the present study, we have focused on the isoscalar
surface energy coefficient asurf . All candidates for heavy nuclei
whose deformation energy can be used to constrain parameter
fits, however, have a neutron excess. For example, the nucleus
240Pu used as a benchmark above has an asymmetry of
I ≡ (N − Z)/(N + Z) = 0.22. The leptodermous expansion
of the nuclear binding energy suggests that there is a cor-
rection to the surface energy that depends explicitly on the
nucleus’ asymmetry I and that in the liquid-drop model is
parametrized through the surface symmetry energy coefficient
assym [22,33,62,63].

If a single nucleus is used to constrain the surface energy,
there is the danger that assym accidentally takes a wrong
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value and thereby introduces an erroneous isospin dependence
of fission barriers. However, as demonstrated in a detailed
analysis of this quantity’s role for the systematics of the
excitation energy of superdeformed states of heavy nuclei
[22], the value of the assym of existing parametrizations of the
Skyrme EDF is strongly correlated with the volume energy
coefficient and therefore fixed by masses along the valley of
stability, such that it cannot vary freely over a wide interval.
This gives us confidence that assym takes a reasonable and
consistent value for all SLy5sX fits. Indeed, for all of the
SLy5sX parametrizations we find values of assym that are close
to −49 MeV. Also, calculations of the fission barriers of other
heavy nuclei that will be reported elsewhere indicate that the
overall trend of the predicted fission barriers does not change
with asymmetry. For example, when calculated with SLy5s1,
the fission barrier height of the much less asymmetric nucleus
180Hg with I = 0.11 is described as satisfactorily as the barrier
of 240Pu.

VII. DISCUSSION AND CONCLUSIONS

We summarize here our main findings concerning the
various methods to calculate asurf .

(i) HF, ETF, and MTF calculations for semi-infinite nu-
clear matter provide very consistent, but not identical,
values for asurf . The MTF method gives always slightly
larger values than the HF approach, whereas the ETF
method always gives slightly smaller values than
HF. Differences between the values extracted from
semiclassical MTF and ETF calculations on the one
hand and the quantal HF approach on the other hand
are typically on the order of 500 keV out of about
18 MeV, but in exceptional cases might be as large as
1 MeV.

(ii) The values of asurf as extracted from ETF calculations
of semi-infinite nuclear matter and from the systemat-
ics of the ETF binding energies of very large artificial
spherical nuclei are very close and differ rarely by
more than 10 keV. To reach this level of agreement,
an A0 term has to be included in the leptodermous
expansion of the binding energy of finite nuclei
and the contribution of the center-of-mass correction
omitted.

(iii) For the purpose of calculating asurf , the MTF and ETF
approximations are fairly robust. The deviation from
HF values is reasonably parametrization independent,
although there are differences in detail that are
correlated to the presence and strength of the tensor
terms, the incompressibility K∞, and the isoscalar
effective mass m∗

0/m. During a fit, the values for
K∞, m∗

0/m, and the coupling constants of the tensor
terms will rarely vary over a large interval, such
that the analytical MTF value for asurf as obtained
from Eq. (22) can be safely used in a fit protocol to
determine the coupling constants of Skyrme EDFs.
In any event, we do not aim to reproduce a universal
empirical value for asurf , which will be difficult to
extract in a model-independent way from data anyway,

but instead provide a simple and efficient control over
the surface properties within a given framework.

Concerning the correlation between characteristic energies of
the fission barrier of 240Pu and the values for asurf we find the
following.

(i) The simultaneous description of the fission barrier
heights and the excitation energy of the fission isomer
is not trivial because they are also strongly sensitive
to shell effects which are at the very origin of the
complicated topography of the deformation energy
surface.

(ii) While the characteristic energies of fission barriers are
clearly and unambiguously correlated to the surface
energy coefficient in the expected manner, for existing
Skyrme parametrizations there is a large scatter when
plotting them as a function of the surface energy coef-
ficient. This is a consequence of the shell effects being
unsystematically different when parametrizations are
constructed with different fit protocols.

To eliminate the protocol-dependence of the analysis of asurf

and its correlation with fission barriers, and as a proof of
principle for a parameter fit that includes the MTF value
for asurf in its protocol, we have constructed a series of
parametrizations of the standard Skyrme functional called
SLy5s1, SLy5s2, . . . , SLy5s8, with systematically varied
surface energy coefficients.

(i) The resulting parametrizations exhibit almost linear
correlations between the surface energy coefficient
on the one hand and each of the characteristic
energies of the energy surface of 240Pu on the other
hand, providing the proof-of-principle for replacing
the adjustment of fission barriers with a suitably
chosen value of asurf as obtained from semi-infinite
nuclear-matter calculations with any of the schemes
considered here.

(ii) None of the SLy5sX parametrizations, however, re-
produces simultaneously the empirical data for the
excitation energy of the fission isomer as well as the
heights of the inner and outer barriers. This points to
imperfections of the deformation dependence of shell
effects provided by these parametrizations.

(iii) The best reproduction of the energy surface of 240Pu
is provided by SLy5s1, the parametrization with
the lowest value of asurf considered in the series
of fits.

Adjusting parameters to reproduce a value for asurf is com-
putationally much easier than reproducing fission barriers of
heavy nuclei, not only with respect to CPU time, but, even
more importantly, also in terms of stability and controllability
of the calculations during the early stages of a fit when the
parameters are still far from their physical values such that
the topography of the energy surfaces might be very different
from the physical one. In practice, however, the appropriate
value of asurf that provides the best description of the targeted
deformation energies will have to be determined iteratively,
alternating between complete parameter fits for some guess(es)
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for asurf on the one hand, and the calculation of deformation
energy surfaces with the so-determined parametrizations on
the other hand. The latter then provide a refined guess for asurf ,
if necessary. In the present paper, we limited ourselves to the
first of such cycles.

As many of the widely used Skyrme parametrizations
provide an unsatisfactory description of the systematics of
fission barriers and excitation energies of very deformed states
[1,22,101,111], it is highly desirable to better constrain the
nuclear surface energy in future fits. Besides the obvious
importance for the study and understanding of the fission
process itself, fission barrier heights are also a determining
factor for the stability of superheavy nuclei [101,111] and the
dynamics of the astrophysical r process of nucleosynthesis
[21,49,111].

In conclusion, the use of the MTF pocket formula for
asurf provides a rapid and robust expression to control the
surface properties of nuclear energy density functionals during
the adjustment of their parameter. In this paper, we have
focused on the (isoscalar) surface energy coefficient. Within
the MTF approach, the integral that appears in the calculation
of the (isovector) surface symmetry energy coefficient from
semi-infinite matter cannot be solved analytically. However,

making further approximations whose consequences remain
to be analyzed, one can arrive at an analytical expression for
this quantity as well [112], which might offer a route to its
efficient fine tuning.

The generalization of the MTF pocket formula to Skyrme-
type functionals with derivative terms of order 4 or 6 [13–15] is
feasible, but will require an arduous extension of the formalism
to higher-order terms.
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[67] H. S. Köhler, Nuclear masses, shell-model and superheavy
nuclei (I), Nucl. Phys. A 162, 385 (1971).

[68] N. V. Giai and H. Sagawa, Spin-isospin and pairing properties
of modified Skyrme interactions, Phys. Lett. B 106, 379
(1981).

[69] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer,
A Skyrme parametrization from subnuclear to neutron star
densities. Part II. Nuclei far from stabilities, Nucl. Phys. A
635, 231 (1998); Erratum: A Skyrme parametrization from
subnuclear to neutron star densities. (II): Nuclei far from
stabilities [Nucl. Phys. A 635 (1998) 231-256], 643, 441(E)
(1998).

[70] A. Pastore, D. Davesne, K. Bennaceur, J. Meyer, and V.
Hellemans, Fitting Skyrme functionals using linear response
theory, Phys. Scr. T154, 014014 (2013).

[71] K.-H. Kim, T. Otsuka, and P. Bonche, Three-dimensional
TDHF calculations for reactions of unstable nuclei, J. Phys.
G 23, 1267 (1997).
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