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Ordering of the 0d5/2 and 1s1/2 proton levels in light nuclei
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A survey of the available single-proton data in A � 17 nuclei was completed. These data, along with
calculations using a Woods-Saxon potential, show that the ordering of the 0d5/2 and 1s1/2 proton orbitals are
determined primarily by the proximity of the s-state proton energy to the Coulomb barrier. This is analogous to
the dependence of the corresponding neutron orbitals in proximity to the neutron threshold, which was previously
discussed.
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I. INTRODUCTION

It was recently pointed out [1] that the spacing between the
neutron 0d5/2 and 1s1/2 single-particle states is in large part due
to the lingering of the � = 0 neutron orbital as it approaches
the one-neutron threshold. Such behavior is a consequence
of the extended s-state wave function and is directly relatable
to the neutron halo. Here we show that a similar effect occurs
for unbound � = 0 proton orbitals, a fact that we did not fully
appreciate at the time Ref. [1] was published.

The repulsive Coulomb interaction displaces proton states
to higher energies relative to their neutron analogs and gives
rise to a barrier above the particle threshold. The barrier acts
to retard the decay of a proton when it becomes unbound, and
as a consequence, proton energies do not show any anomalous
behaviors near the proton threshold. However, as s-state proton
energies in the continuum near the potential barrier, they
do show a pattern in energy similar to that of their neutral
counterparts [1]. Therefore, the energy of the proton 1s1/2

orbital near the potential barrier must effect the ordering of
the single-particle levels in much the same way as the neutron
orbitals do near the particle threshold.

In this work, we investigate the behavior of single-proton,
1/2+-5/2+ energies, belonging to the the 1s1/2 and 0d5/2

orbitals, through a study of the available proton data for
light nuclei. The 5/2+ energies were chosen to reference
the 1/2+ energies because the 0d5/2 is unoccupied, a large
amount of data exists, and a straight forward comparison to
the available single-neutron data can be made. Woods-Saxon
calculations have also been carried out, and they do a good job
of reproducing the behavior of s-state energies near thresholds.

Weakly bound and unbound single-proton excitations in
the sd shell have been discussed on numerous occasions.
For instance, they have been investigated in terms of proton
halo states [2–4], Coulomb displacement energies [5], and
the Thomas-Ehrman shift [6,7]. A subset of the literature
has focused specifically on s-state protons or on the relative
energies of 1/2+ and 5/2+ states in sd-shell nuclei, including
Refs. [8–15] and other papers referred to therein.
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II. WOODS-SAXON CALCULATIONS

Calculations were carried out for � = 0 and 2, 1s1/2 and
0d5/2 orbitals to elucidate similarities and differences between
the trends in the energies of these states or resonances for
protons and neutrons. In this work, the interaction of an indi-
vidual nucleon with all other nucleons was approximated by an
effective potential consisting of a Woods-Saxon potential, and
Coulomb plus centrifugal terms as appropriate. For a specific
nucleus, the Coulomb barrier energy BV was defined as the
barrier height of the � = 0 proton potential.

The potential geometry was fixed by the standard parame-
ters. First, the nuclear part of the proton and neutron Woods-
Saxon potentials were identical. For the central potential,
r0 = 1.25 fm and a0 = 0.63 fm were used, where the radius
R = r0A

1/3 fm. For the spin-orbit potential Vso = 4.03 MeV,
rso0 = 1.1 fm and aso0 = 0.5 fm were used, where the radius
Rso = rso0A

1/3 fm. The strength of the spin-orbit potential was
fixed to reproduce the experimental 17O neutron 1/2+-5/2+
energy difference. The Coulomb potential, affecting only the
protons, was calculated for a uniform charge distribution with
a radius of RC = 1.25A1/3 fm.

The calculated A = 17 energies are shown as functions of
the potential depth V in Fig. 1(a). The barrier regions of the
effective potentials are displayed in Fig. 1(b) for this potential.
At a fixed depth of V = −51.86 MeV, the neutron binding
energies in 17O are reproduced and the calculated energy
difference between the proton 1/2+ and 5/2+ levels in 17F
is 0.42 MeV. This is in fair agreement with the experimental
value of 0.495 MeV [16].

In the continuum, there is little ambiguity in determining
resonance energies when they are narrow, but with broader
resonances, the procedure needs to be specified. Experimen-
tally, it is often assumed that the resonance energy is at the
maximum of the cross section. In more detailed analyses, with
the R-matrix formalism [17], there are a number of choices
to be made. The situation is perhaps least well defined for
� = 0 resonances where the phase shift does not pass through
π/2, i.e., δmax < π/2. In this work, we converted the calculated
Wood-Saxon phase shifts into resonance cross sections, taking
the peak value to be the resonance energy. Various prescrip-
tions have been suggested for choosing resonant energies in the
literature [8,18]. The range of ambiguity based on a specific
choice may be visualized by the grey shaded area in Fig. 1,
which shows limits on the s-state proton resonance energy
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FIG. 1. (a) Calculated neutron (dotted) and proton (solid) ener-
gies with a Woods-Saxon potential (16O plus a nucleon) as a function
of its depth for 0d5/2 (blue) and 1s1/2 (red) states. The experimental
values are shown in 17O (squares) and 17F (circles) by the black points
at the potential depth required to reproduce the neutron energies.
(b) The barrier heights of the effective potentials (Coulomb, plus
centrifugal if present) for the same orbitals as in (a).

based on the calculated resonance width. Overall, conclusions
about the mechanism responsible for the sequencing of the
1s1/2-0d5/2 orbitals was not affected by the method used
to determine the resonance energies. However, the different
prescriptions do lead to variations in the individual energies
calculated in Sec. IV on the order of the resonance widths.

Crossing of the ν1s1/2 and ν0d5/2 orbitals occurs at around
−1.25 MeV in Fig. 1(a) and is the result of an absence of
a barrier for the � = 0 orbital. The radius of the weakly
bound s-state wave function is extended much farther than for
cases where there is a barrier: for neutron states with angular
momentum or for proton states. Therefore, it is impacted
less by changes in the potential, leading to smaller energy
changes relative to other orbitals near the particle threshold.
The behavior occurs for s-state protons in the vicinity of
the peak of the potential barrier (∼1.5 MeV for 16O +p),
leading to a crossing of the π1s1/2 and π0d5/2 orbitals in
the continuum at around 0.45 MeV, or ∼1.0 MeV below the
barrier—comparable to that for neutrons.

There are clear similarities in the behaviors of s-wave
neutrons and protons, with both showing slope changes relative
to the � = 2 orbital. The commonalities reflect that with
the long-range Coulomb repulsion, the same behavior that
happens just below the particle threshold for neutrons also
occurs just below the top of the potential barrier for protons.
The previously realized impact of the potential geometry on
the sequence of the single-neutron orbitals [1] must also have
an equally important impact on the single-proton orbitals.

III. SINGLE-PROTON ENERGY DATA

The expected evolution of the proton 1s1/2 and 0d5/2 levels
based on the Woods-Saxon calculations in Fig. 1 and the
influence of the proximity to the barrier peak on the level
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FIG. 2. Data points identify known A � 17, 5/2+ (a) and 1/2+

(b) single-proton energies Ep in N � Z nuclei as functions of the
neutron number (N ). Panels (c) and (d) show the adjusted single-
proton energies, Ep − BV , in which the potential barrier heights have
been removed from the energies in (a) and (b). Lines in (c) and (d)
are shown to highlight the different data trends. The open symbol for
9B signifies a lack of convergence as to the 1/2+ resonance energy
and width (see text).

sequence were explored in the available experimental data.
In total, ten sets of data for 1/2+ and 5/2+ single-proton
excitations, in nuclei with Z � N , for Z = 5–9 and N = 4–8
were compiled. Results are shown as a function of neutron
number in Figs. 2(a) and 2(b) and the numeric values are
given in Table I of the Appendix. The 9B data are identified
throughout the figures in this work by open symbols due to
their dubious nature, in particular, the lack of consensus in the
literature as to the energy and width of the 1/2+ resonance;
see, for example, Ref. [19] and references therein.

Single-proton energies relative to the proton-particle thresh-
old are Ep(Jπ ) = Ex(Jπ ) − Sp, where Sp is the one-proton
separation energy so that positive values of Ep(Jπ ) are particle
unbound. Ex(Jπ ) is the excitation energy of the state (or the
centroid of states) belonging to a specific orbital, Jπ = 1/2+
or 5/2+.

The trends of the 1/2+ and 5/2+ excitations (Fig. 2) qual-
itatively resemble those from the Woods-Saxon calculations
of Fig. 1(a). The 1/2+ energies change by ∼2 MeV from
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TABLE I. Numerical quantities related to the 1/2+ and 5/2+ proton single-particle energies. All quantities are in MeV and only those
uncertainties that are greater than 10 keV are shown.

AZ Sp Ex(1/2+) Ex(5/2+) Ep(1/2+) Ep(5/2+) �Eexpt �EWS BV

9B − 0.186 1.80(60) 2.79(3) 1.99(60) 2.98(3) − 0.99(60) − 2.71(22) 0.77
11N − 1.49(6) 0.00 2.20(7) 1.49(6) 3.69(7) − 2.20(9) − 2.37(44) 1.18
12N 0.601 1.43(10) 4.45(20) 0.83(10) 3.85(20) − 3.02(22) − 1.99(31) 1.17
13N 1.943 2.37(5) 3.55 0.43(5) 1.61 − 1.18(5) − 1.07(1) 1.15
14N 7.551 6.87(10) 7.35(10) − 0.68(10) − 0.20(10) − 0.48(14) − 0.15(12) 1.13
14O 4.630 5.30(5) 6.46(5) 0.67(5) 1.83(5) − 1.07(7) − 1.11(8) 1.35
15O 7.297 7.06(5) 7.05(5) − 0.24(5) − 0.25(5) 0.01(7) − 0.18(21) 1.33
15F − 1.31(10) 0.00 1.47 1.31(10) 2.78 − 1.47(10) − 1.16(50) 1.56
16F − 0.536 0.146 0.598 0.682 1.134 − 0.452 − 0.40 1.54
17F 0.600 0.495 0.000 − 0.105 − 0.600 0.495 0.42 1.52

N = 4–8 and trend toward the region of the potential barrier
heights < 2 MeV for Z < 9. The 5/2+ energies change by
∼5 MeV over the same range of neutron numbers. The scatter
of multiple data points at a single N value is caused, in part,
by the differing Z values. This is further evidenced by the
systematic shifts, although each having similar slopes, of the
different Z cores, e.g., the Z = 9 points are generally higher
in energy than all other data.

Because we are specifically concerned with the proton s-
state behavior relative to the potential barrier height BV , we
subtract it from both sets of proton energies and plot them as a
function of neutron number [Figs. 2(c) and 2(d)]. As mentioned
previously, the barrier height energies are estimated from the
effective Woods-Saxon potentials (Fig. 1) for each individual
case. Removal of the barrier energy allows a direct comparison
of the proton data to the neutron data of our previous work
[1]. After the barrier subtraction, the 1/2+ and 5/2+ energies
still show distinct trends, as emphasized by the guidelines in
Figs. 2(c) and 2(d), respectively. Also, the lingering behavior
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FIG. 3. Experimental (a) and calculated (b) 1/2+-5/2+ energy
differences in proton single-particle excitations, plotted as functions
of the 5/2+ proton binding energy.

in the proton s-state data now occurs around 0 MeV, similar to
the neutron data.

Changes in the relative energies between the π1s1/2 and
π0d5/2 orbitals are shown in Fig. 3(a) by the energy difference
�Ep(1/2+ − 5/2+) = Ep(1/2+) − Ep(5/2+) as a function of
the proton 5/2+ binding energy, Ep(5/2+). Crossing of the
1/2+ and 5/2+ data occurs around Ep ≈ 0 MeV, as expected
from the A = 17 calculations but at slightly lower energy
[Fig. 1(a)].

Additional information on the Ex(Jπ ) values used in
various nuclei, such as the specific choices of energies and
the sources of uncertainties, is provided in the Appendix. In
nuclei with odd-Z, odd-A, and even-even cores (9B, 11,13N, and
15,17F), the Ex(Jπ ) are the energies of the lowest-lying single
states with Jπ = 1/2+ or 5/2+. These states have been, to a
large degree, identified to be single particle in nature by having
large cross sections in transfer reactions and spectroscopic
overlaps consistent with single-particle states, or by having
resonance widths approaching single-particle estimates. In
odd-Z, odd-N , Z > N nuclei (12N and 16F), Ex(Jπ ) energy
centroids are determined from the (2J + 1)C2S-weighted
averages of the multiplet of states created with the odd nucleon.
For the two cases of Z = 8 (14O and 15O), the Ex(Jπ )
energy centroids are also determined from the (2J + 1)C2S-
weighted averages of the multiplet of states. In these cases, all
observed � = 0 or 2 strength below an excitation energy of
Ex ∼ 8.5 MeV was assumed to be part of the 1/2+ or
5/2+ centroids. In 14N, Ex(Jπ ) = 1/2(ET =0 + ET =1), where
ET =0,1 are the (2J + 1)C2S-weighted energy centroids for
isospins 0 and 1, respectively.

IV. CALCULATED PROTON ENERGIES

1s1/2 and 0d5/2 proton energies were calculated with a
Woods-Saxon potential for each of the ten nuclei for which
there were proton excitation data. The parameters detailed in
Sec. II were used. For each nucleus, the potential depth of the
Woods-Saxon was fixed so as to reproduce the experimental
neutron 5/2+ energy centroid of its corresponding mirror
nucleus (Table II of Ref. [1]). For example, the potential depth
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FIG. 4. Difference between the experimental [Fig. 3(a)] and
calculated [Fig. 3(b)] �Ep(1/2+-5/2+) energy differences.

in 17O was fixed to V = −51.86 MeV, and this was used in
the calculation of both states in 17F.

The calculated π1s1/2-π0d5/2 energy differences are shown
alongside the experimental data in Fig. 3(b) and given in
Table I. There are systematic uncertainties in the calculations
from the choice of the Woods-Saxon parameters and uncer-
tainties in the experimental neutron 5/2+ energies used to
constrain them. There is an additional systematic uncertainty
caused by ambiguities in determining a proton 1s1/2 resonance
energy for broad states (discussed in Sec. II).

The fact that the Coulomb energy differences cannot be
reproduced exactly by such a simple one-body calculation is
well known, and the Nolen-Schiffer anomaly [5], a 10% effect
caused by charge-symmetry violation in the NN interaction,
is well established. However, here we adhere to discussions
of the relative energies between the two orbitals where this

effect would tend to cancel. In addition, through the use of an
effective potential to reproduce the change in orbital energies,
we do not attempt to explicitly explore the role of correlations.

The change in the relative energies of the π1s1/2-π0d5/2

orbitals, as a function of binding energy, is reproduced by
the Woods-Saxon calculations when the proper potential
geometry is used. The residuals between the experimental
1/2+-5/2+ energy differences and the calculated 1s1/2-0d5/2

energy differences are shown in Fig. 4 as a function of neutron
number. The calculations accounted for the ∼4 MeV relative
energy change that occurred between the two orbitals.

Some variation of �Eexpt-�EWS away from zero is ex-
pected due to the monopole component of the tensor force.
This was observed in the neutron residuals (Fig. 5 of Ref. [1])
and the effect should be the same for these mirror states. While
not acting on the s-state proton orbital, the tensor force will
influence the 5/2+ excitations as the neutron number (p-shell
occupancy) changes. As protons are removed from the ν0p1/2

orbital, the action of the tensor force would cause a decrease
in the residuals with a minimum at N = 6 (assuming a sharp
separation between 0p1/2 or 0p3/2 orbits filling, above or below
N = 6). The present data are consistent with the expected
effect of the tensor interaction; however, the error bars are
far too large, and the data too scattered, to ascertain anything
quantitative, especially below N = 6.

V. PROTON AND NEUTRON DATA

The trends of the � = 0 proton and neutron data are
intertwined by common approaches to their respective barriers,
the Coulomb for protons and the particle threshold for
neutrons. Subtracting the potential barrier height from the
proton data facilitates a comparison with the neutron data;
however, the comparison cannot be perfect since the Coulomb
potential, albeit long range, does change with radius. The
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FIG. 5. (a) The 1/2+ barrier height adjusted proton excitations plotted against the adjusted 5/2+ excitations. (b) The same plot as in (a)
but for the neutron excitations in the mirror nuclei. The solid line in each figure is identical and meant to guide the eye.
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FIG. 6. The 1/2+-5/2+ energy difference between the proton
states plotted against the same energy difference for the mirror
neutron states. The data points are labeled in the same way as in
Fig. 5. The diagonal line has a slope equal to one representing a
1:1 correlation between the complementary data sets. The grey band
identifies the region covered by Woods-Saxon calculations of the
energy differences for the various nuclei.

1/2+ and 5/2+ proton excitation data with barrier corrections
are plotted against one another in Fig. 5(a) and the neutron
excitation data for corresponding mirror nuclei are plotted
against one another in Fig. 5(b). A line, common to both
figures, highlights similarities in the data and guides the eye.
Agreement between the data in the two plots gives credence
to the common, near-threshold behavior of all s states.

Small shifts in the energies of the proton and neutron
data, above and below the common line, respectively, are
noticed in Fig. 5(a). While there are uncertainties in the
data, the Thomas-Ehrman shift [6,7] must be considered
when comparing loosely bound (or unbound) proton and
neutron states. The shift depends on the difference in radial
distributions and the rms radii of s states will be larger than
those of d states. This is included in Woods-Saxon calculations
and so it does not affect a comparison between data and
calculations. However, it is not included when neutron data
are compared to proton data.

The proton �Ep(1/2+-5/2+) energy is plotted against the
neutron �En(1/2+-5/2+) energy in Fig. 6 for mirror nuclei
(identified by the key in Fig. 5). The diagonal line in Fig. 6
represents the proton and neutron energy differences being
the same. Note how the only data point north-west of the line
is from the pesky A = 9 mirrors (including the controversial
9B 1/2+ energy), although the error bar is large.

To the extent that the data points in Fig. 6 are on a line
parallel to the diagonal, it implies that the Thomas-Ehrman
shift has an approximately fixed value in the nuclei studied
in this work. We note that in general, the more loosely
bound states are also of lower Z, and both Z and the
binding energy will have an influence on the Thomas-Ehrman
shift. In addition, the Woods-Saxon calculations of Sec. IV
qualitatively support this, because they lie on the proper side

of the diagonal and vary little, as shown by the grey band
in Fig. 6. The width of the band accounts for variations in
potential parameters and in the extraction of the resonance
energies. This is expected due to the good agreement with the
data as shown in Fig. 4 for protons and Fig. 5 of Ref. [1] for
neutrons.

VI. CONCLUSIONS

In this work, we point out that the behavior observed for
s-state neutrons near the particle threshold extends to s-state
protons in the continuum as well when the proton energies
are near the peak of the effective potential barrier. Therefore,
changes in the relative proton energies of the 1s1/2 and 0d5/2

orbitals are primarily due to the proximity of the s-state proton
to the Coulomb barrier, making the impact on the nuclear
level ordering due to s-state behavior near threshold a general
feature of nuclei.

Conclusions were drawn from completing a systematic
survey of ten sets of 1/2+ and 5/2+ proton centroid data in
A � 17 nuclei, by comparing these data to Woods-Saxon cal-
culations, and by comparing the proton data to available mirror
neutron excitation data. One-body potential calculations with
a Woods-Saxon potential, using fixed parameters based on
known neutron data, reproduced the relative proton 1/2+-5/2+
energy difference trend and isolated the importance of the
potential geometry. In addition, after adjusting the proton data
by their potential barrier heights, the binding energy relation
between 1/2+-5/2+ excitations was found to be the same as
that for the neutron data. Such consistency over the nuclei that
were surveyed identifies a commonality within the two data
sets of the s-state behavior near a barrier while also eluding to
a near-constant Thomas-Ehrman shift in this region.
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APPENDIX

The data used in the present work are given in Table I.
Additional information on the extraction of the single-proton
energies for the states of interest is included below. As pointed
out in the text, resonance energies from the Woods-Saxon
calculations were determined at the energy in which the
cross section σ reached its maximum value. Single-particle
widths �sp were determined by the calculated Woods-Saxon
resonance width at 1/2 its maximum after the potential depth
had been adjusted so that σmax was at the empirical resonance
energy. This procedure can be plagued by similar effects as
the resonance energy determinations when the widths become
large. No data were reanalyzed, but the calculated widths
were used to check for the single-particle characteristics of
a particular state or states.
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9B: Sp was taken from the 2012 Atomic Mass Evaluations
(AME) [20]. The energy of the 1/2+ resonance has been
infamously elusive for many years as pointed out in the text.
Here we adopted a value of 1.80(60) MeV based on the most
recent work [21] and those therein. In addition, the reported
width of this state [� = 0.65(13) MeV] [21] is well below
the expected single-particle width [�sp � 4 MeV]. A large
uncertainty of 0.6 MeV has been arbitrarily assumed to cover
the large possible range of excitation energy values and the
uncertainty in the single-proton nature of the state. The 5/2+
excitation energy was taken from Table 9.13 of the latest
compilation [22]. The width of this state [� = 0.55(4) MeV]
[22] is consistent with a single-proton state [�sp ≈ 0.6 MeV]
so there is no additional uncertainty.

11N: Sp was taken from Table 11.45 of Ref. [23]. The
excitation energy of the 1/2+ state was taken from Table 11.45
of Ref. [23]. The width of this state [� = 0.83(3) MeV] [23] is
well below the expected single-particle width [�sp � 4 MeV].
An arbitrary uncertainty of 100 keV on the excitation energy
is assumed due to uncertainty in the single-proton nature of
the state. The 5/2+ excitation energy was taken from Table
11.45 of Ref. [23]. The width of this state [� = 0.54(4) MeV]
[23] is consistent with a single-proton state [�sp ≈ 0.8 MeV]
so there is no additional uncertainty.

12N: Sp was taken from the 2012 AME [20]. The odd
neutron splits the proton 1s1/2 orbital into a 2− and 1− multiplet
of states. The excitation energies of these states, 1.20 and
1.80 MeV, respectively, were taken from Refs. [24,25]. The
1/2+ centroid excitation energy was extracted from these two
states by a (2J + 1)C2S weighted averaging. C2S = 1 was
assumed for both states. The width of the 2− state [� = 0.12(1)
MeV] [25] is consistent with a single-proton state [�sp ≈ 0.14
MeV] but the 1− states width [� = 0.75(25) MeV] [25] is
below the expected single-particle width [�sp ≈ 2.0 MeV]. An
arbitrary uncertainty of 100 keV on the 1/2+ centroid energy
is assumed due to the uncertainty in the single-proton nature
of the 1− state and the C2S = 1 assumption.

The odd neutron splits the proton 0d5/2 orbital into a 1−,
2−, 4−, and 3− multiplet of states. The excitation energies
of these states, 3.43, 3.98, 4.34, and 5.35 MeV, respectively,
were taken from Refs. [24,25]. There are uncertainties in these
assignments, in particular with the Jπ = 3− level. The 5/2+
centroid excitation energy was extracted from these four states
by a (2J + 1)C2S weighted averaging. C2S = 1 was assumed
for all states. The widths of these states were not investigated
since questions regarding their single-proton nature already
existed. An uncertainty of 200 keV on the 5/2+ centroid energy
is assumed due to the dubious spin assignments of some of the
states and the C2S = 1 assumption.

13N: Sp was taken from the 2012 AME [20]. The 1/2+
excitation energy was taken from Table 13.14 of Ref. [26].
The width of this state [� = 0.032(1) MeV] [26] is consistent
with a single-proton state [�sp ≈ 0.06 MeV]; however, small
spectroscopic factors were found in Ref. [27]. Hence, an
uncertainty of 50 keV on the excitation energy is assumed.
The 5/2+ excitation energy was taken from Table 13.14 of
Ref. [26] also. The width of this state [� = 0.047(7) MeV]
[26] is consistent with a single-proton state [�sp ≈ 0.06 MeV]
so there is no additional uncertainty.

14N: Sp was taken from the 2012 AME [20]. The 1/2+
energy comes from E = 1/2(ET =0 + ET =1) where ET =0,1

corresponds to the 2J + 1 weighted centroids (C2S = 1) of
the two strongest T = 0,1 0− and 1− states (4.92, 5.69, 8.06,
and 8.78 MeV) in 14N identified in the 13C(3He ,d) reaction
and listed in Table 14.18 of Ref. [26]. The same procedure
was used for the 5/2+ centroid using the four 2− and 3−
states (5.11, 5.83, 8.91, and 9.51 MeV). A correction factor of
one-half of the energy difference between the states in 13C -13N
was applied for the neutron states but no such correction was
applied here for the proton states. An uncertainty of 100 keV
is assumed due to possible fragmentation.

14O: Sp was taken from the 2012 AME [20]. The
proton 1s1/2 orbital is split into a 1− and 0− multi-
plet due to the remaining odd 0p1/2 proton. The exci-
tation energies of these states, 5.16 and 5.71 MeV, re-
spectively, were taken from Table 1 of Ref. [28]. The
1/2+ centroid excitation energy was extracted from these
two states by a (2J + 1)C2S weighted averaging. C2S = 1
was assumed for both states. The width of both the 1−
state [� = 0.042(4) MeV] and the 0− state [� = 0.40(10)
MeV] [28] are consistent with single-proton states [�sp ≈
0.05 and �sp ≈ 0.55 MeV, respectively]. An uncertainty of
50 keV is assumed on the 1/2+ centroid energy due to the
C2S = 1 assumption.

The proton 0d5/2 orbital is split into a 3− and 2− multiplet
due to the remaining odd 0p1/2 proton. The excitation energies
of these states, 6.23 and 6.77 MeV, respectively, were taken
from Table 1 of Ref. [28]. The 5/2+ centroid excitation
energy was extracted from these two states by a (2J + 1)C2S
weighted averaging. C2S = 1 was assumed for both states. The
width of both the 3− state [� = 0.042(2) MeV] and the 2− state
[� = 0.090(5) MeV] [28] are consistent with single-proton
states [�sp ≈ 0.05 and �sp ≈ 0.13 MeV, respectively]. An
uncertainty of 50 keV is assumed on the 5/2+ centroid energy
due to the C2S = 1 assumption.

15O: Sp was taken from the 2012 AME [20]. The pro-
ton 1s1/2 orbital is split into various states having Jπ =
1/2+ − 3/2+ due to the odd 0p1/2 neutron and extra un-
paired 0p1/2 proton. The excitation energy of these states
were taken from Table 15.16 of Ref. [26]. The 1/2+
centroid included states at 5.183 [1/2+], 6.793 [3/2+],
and 7.557 MeV [1/2+]. The 1/2+ centroid excitation en-
ergy was extracted from these states by a (2J + 1)C2S
weighted averaging of all � = 0 strength. The C2S values
was taken from the 14N(3He ,d) data given in the “Present
results” column of Table 2 in Ref. [29]. An uncertainty of
50 keV is assumed on the 1/2+ energy centroid due to the
large fragmentation of the � = 0 strength.

The proton 0d5/2 orbital is split into various states having
Jπ = 3/2+ − 7/2+ due to the odd 0p1/2 neutron and extra
unpaired 0p1/2 proton. The excitation energies of these states
were taken from Table 15.16 of Ref. [26] and for the 5/2+
centroid included states at 5.241 [5/2+], 6.859 [5/2+], 7.276
[7/2+], and 8.284 MeV [3/2+]. The 5/2+ centroid excitation
energy was extracted from these states by a (2J + 1)C2S
weighted averaging of all � = 2 strength. The C2S values
was taken from the 14N(3He ,d) data given in the “Present
results” column of Table 2 in Ref. [29]. An uncertainty of
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50 keV is assumed on the 5/2+ energy centroid due to the
large fragmentation of the � = 2 strength and the assumption
that all � = 2 strengths belong to the 0d5/2 orbital (as opposed
to the higher-lying 0d3/2 orbital).

15F: Sp was taken from the energy of the lowest-lying
resonance in Ref. [30]. The energy of this resonance varies
in the literature [30–35] so an uncertainty of 100 keV on the
proton separation energy is assumed. The excitation energy of
the 1/2+ state was adopted from the work of Ref. [30]. The
width of this state [� = 0.85(15) MeV] is consistent with a
single-proton state [�sp ≈ 0.9 MeV] so there are no additional
uncertainties. The excitation energy of the 5/2+ state was
adopted from the work of Ref. [30]. The width of this state
[� = 0.31(1) MeV] is consistent with a single-proton state
[�sp ≈ 0.3 MeV] so there are no additional uncertainties.

16F: Sp was taken from the 2012 AME [20]. The proton
1s1/2 orbital is split into a 0− and 1− multiplet due to
the odd 0p1/2 neutron. The excitation energies of these
states, 0.0 and 0.194 MeV, respectively, were taken from
the “New recommended” column of Table 1 in Ref. [30].
The 1/2+ centroid excitation energy was extracted from these
two states by a (2J + 1)C2S weighted averaging. C2S = 1

was assumed for both states. The widths of both states are
consistent with single-proton states, Table 1 of Ref. [30], so
there are no additional uncertainties. The proton 0d5/2 orbital
is split into a 2− and 3− multiplet due to the odd 0p1/2

neutron. The excitation energies of these states, 0.425 and
0.721 MeV, respectively, were taken from the “New recom-
mended” column of Table 1 in Ref. [30]. The 5/2+ centroid
excitation energy was extracted from these two states by a
(2J + 1)C2S weighted averaging. C2S = 1 was assumed for
both states. The widths of both states are consistent with
single-proton states, Table 1 of Ref. [30], so there are no
additional uncertainties.

17F: Sp was taken from the 2012 AME [20]. The excitation
energy of the 1/2+ state was taken from Table 17.23 of
Ref. [16]. This state was found to have large cross sections
and spectroscopic factors in proton transfer measurements,
e.g., see Refs. [36–38], which is indicative of a single-proton
state. The excitation energy of the 5/2+ state was taken from
Table 17.23 of Ref. [16]. This state was also found to have
large cross sections and spectroscopic factors in proton transfer
measurements, e.g., see Refs. [36–38], which is indicative of
a single-proton state.
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[24] K. Peräjärvi, C. Fu, G. V. Rogachev, G. Chubarian, V. Z.
Goldberg, F. Q. Guo, D. Lee, D. M. Moltz, J. Powell, B. B.
Skorodumov, G. Tabacaru, X. D. Tang, R. E. Tribble, B. A.
Brown, A. Volya, and Joseph Cerny, Phys. Rev. C 74, 024306
(2006).

[25] K. A. Chipps, S. D. Pain, U. Greife, R. L. Kozub, D. W.
Bardayan, J. C. Blackmon, A. Kontos, L. E. Linhardt, M. Matos,
S. T. Pittman, A. Sachs, H. Schatz, K. T. Schmitt, M. S. Smith,
and P. Thompson (JENSA Collaboration), Phys. Rev. C 92,
034325 (2015).

[26] F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1991).
[27] R. J. Peterson and J. J. Hamill, Phys. Rev. C 22, 2282

(1980).
[28] T. Teranishi, S. Kubono, H. Yamaguchi, J. J. He, A. Saito, H.

Fujikawa, G. Amadio, M. Niikura, S. Shimoura, Y. Wak-
abayashi, S. Nishimura, M. Nishimura, J. Y. Moon, C. S. Lee,
A. Odahara, D. Sohler, L. H. Khiem, Z. H. Li, G. Lian, and W.
P. Liu, Phys. Lett. B 650, 129 (2007).

[29] W. Alford and K. Purser, Nucl. Phys. A 132, 86 (1969).
[30] I. Stefan, F. de Oliveira Santos, O. Sorlin, T. Davinson, M.

Lewitowicz, G. Dumitru, J. C. Angélique, M. Angélique, E.
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