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Background: The fission processes of thermal excited nuclei are conventionally studied by statistical models
which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic
descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various
fission processes.
Purpose: We propose to study the fission rates, at both low and high temperatures, with microscopically calculated
temperature-dependent fission barriers and collective mass parameters.
Methods: The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The
mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates
can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally
temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process.
While the fission at high temperatures has to incorporate the reflection above barriers.
Results: Our results of spontaneous fission rates reasonably agree with other studies and experiments. The
temperature dependencies of fission barrier heights and curvatures have been discussed. The temperature
dependent behaviors of mass parameters have also been discussed. The thermal fission rates from low to high
temperatures with a smooth connection have been given by different approaches.
Conclusions: Since the temperature dependencies of fission barrier heights and curvatures, and the mass
parameters can vary rapidly for different nuclei, the microscopic descriptions of thermal fission rates are very
valuable. Our studies without free parameters provide a consistent picture to study various fissions such as that
in fast-neutron reactors, astrophysical environments, and fusion reactions for superheavy nuclei.
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I. INTRODUCTION

The microscopic description of the fission process as a
large amplitude collective motion is one of the well-known
challenges in nuclear many-body theory, and still large
uncertainties exist towards a predictive theory of fission
[1,2]. Basically, the spontaneous fission can be described as
quantum tunneling based on potential barriers and collective
mass parameters, which can be microscopically calculated
by nuclear energy density functional theory. In this respect,
there are a number of approaches to describe the collective
mass such as the cranking approximation [3], the generate-
coordinate method (GCM) [4], the adiabatic-time-dependent
Hartree-Fock-Bogoliubov approach (ATDHFB) [3], and the
local QRPA method [5]. For fission barriers, there are also
many efforts either to improve descriptions of potential energy
surfaces at large deformations [6] or to seek multidimensional
constrained calculations [7–9].

In addition to issues involved in spontaneous fission, the
description of thermal fission in excited nuclei is a more
demanding task. From low to high temperatures, the fission
process is gradually evolved from the quantum tunneling to
the statistical escape mechanism. For applications, the thermal
fission has a wide range of interests such as the neutron induced
fission in reactors and in astrophysical environments, and
fusion reactions for superheavy nuclei. Conventionally, the
thermal fission is described by the Bohr-Wheeler transition-
state theory and later the dynamical Kramers theory [10]. The
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imaginary free energy approach (ImF) is a general thermody-
namic method to calculate thermal quantum decay rates at all
temperatures [11,12], which has been widely applied to decays
of metastable states such as nuclear fissions [13] and chemical
reactions [14]. These methods rely on inputs of barriers or level
densities, which are dependent on temperatures, deformations,
and shell structures. As a consequence, many corrections
and associated parameters have been introduced to interpret
experimental results. Therefore, a consistent description of
thermal fission with microscopic inputs that are free of
parameters, from low to high temperatures, is very desirable.

In a microscopic view, the thermal excited nuclei can be
described by the finite-temperature Hartree-Fock-Bogoliubov
(FT-HFB) theory (or FT-HF+BCS) [15]. In FT-HFB, the
thermal excitations of compound nuclei are described as
quasiparticle excitations due to a finite temperature in a
heat bath. The quantum effects: the superfluidity and shell
effects, would self-consistently fade away with increasing
temperatures [16]. The fission barriers can be either isothermal
or isentropic in terms of free energies [17]. In previous works
[17–19], we have studied the neutron emission rates and fission
barriers in compound superheavy nuclei microscopically. We
feel an obligation to study further the thermal fission rates with
the temperature dependent fission barriers.

In the Kramers and ImF methods, the fission barriers
are in terms of free energies which are naturally tem-
perature dependent [10,12]. It has been realized that the
temperature dependent fission barrier should be considered
in fission calculations [20]. It is turned out that the Bohr-
Wheeler fission calculations also have to introduce damp-
ing factors to describe the decreasing fission barriers with
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increasing excitation energies to interpret survival probabilities
of compound nuclei [21,22]. We have demonstrated that the
temperature dependence of fission barriers can vary rapidly for
specific nuclei [17,23], indicating non-negligible shell effects
in hot-fusion reactions. This has attracted much attention from
experimentalists [24,25]. Further, the temperature dependent
fission barriers in two-dimensional deformation spaces have
been studied [26], showing the fission modes become sym-
metric at high temperatures. In addition to the fission barrier
heights, the curvatures around the equilibrium point and the
saddle point can also be dependent on temperatures, which are
essential inputs for Kramers and ImF methods. This can also
be microscopically described but has rarely been discussed.

Another essential ingredient for describing thermal fission
is the temperature dependent mass parameter. This has been
studied by several phenomenological mean-field methods with
the finite-temperature cranking approximation [27,28]. It is
difficult to consider the temperature dependence in GCM
and ATDHFB calculations of mass parameters. There has
also been microscopic studies with Gogny forces for the
temperature dependent cranking mass parameters [29]. In fact,
the temperature dependent mass parameters have not yet been
incorporated into serious calculations of thermal fission rates.

In this work, we intend to study the thermal fission rates
with microscopically calculated temperature dependent fission
barriers and mass parameters. The calculations are based on the
finite-temperature Skyrme Hartree-Fock+BCS framework in
deformed coordinate spaces including octupole deformations.
The coordinate-space calculations can naturally describe very
elongated nuclear shapes. The mass parameters are calculated
with the cranking approximation with temperatures. The
thermal fission rates in principle can be described consistently
by the ImF method from low to high temperatures. At low
temperatures, the quantum tunneling process is dominated
and the WKB method is adopted. At high temperatures, the
semiclassical reflection process above barriers is considered
[30]. With microscopic inputs of potential barriers and mass
parameters, we will see that the thermal fission from low to
high temperatures can be described in a consistent picture.

Presently our studies are restricted to one-dimensional
fission although both quadrupole and octupole deformations
are included. Indeed, the multidimensional fission descriptions
are more realistic and computationally more costly. In the
semiclassical approximation, a multidimensional tunneling
problem can be transformed into an effective one-dimensional
problem [14]. Thus the one-dimensional thermal fission has
already involved essential issues in the multidimensional
fission. Besides, we have not considered the viscosity and
dissipations which are important at high temperatures. Thus
our studies are limited to a moderate temperature of T =
1.5 MeV that has already included the hot-fusion reactions
for superheavy nuclei. For realistic nonadiabatic descriptions,
it is known that the real-time-dependent density functional
theory for fission dynamics is only applicable after saddle
points [31–34], which are useful for studying fission fragment
distributions. In this case the semiclassical descriptions of the
thermal fission process with microscopic inputs are promising
for multidimensional problems [35]. The present paper can be
seen as a basic theoretical attempt towards fully microscopic

descriptions of the thermal fission, instead of the conventional
statistical models.

II. THEORETICAL FRAMEWORK

In this section we will discuss the theoretical methods
to calculate the spontaneous fission rates, the temperature
dependent fission barriers and mass parameters, and the
thermal fission rates. The thermal fission rates from low to
high temperatures are given by the ImF method.

A. Spontaneous fission rates

The spontaneous fission rates can be evaluated by the WKB
method as a quantum tunneling process along fission pathways
[36,37]. The fission path is obtained by the constrained
Skyrme-Hartree-Fock+BCS calculations in the axially sym-
metric coordinate-space, including the reflection asymmetry.
The Skyrme-Hartree-Fock+BCS equation is solved by the
SKYAX solver [38]. In our calculations, the Skyrme inter-
action SkM∗ [39] and the mixed pairing interaction [40] have
been adopted. The SkM∗ parameter set has been optimized by
including fission barrier heights and has been widely used for
microscopic fission studies. The pairing strengthes are taken
as Vp = 522 and Vn = 435 MeV fm−3 by fitting the pairing
gaps of 252Fm.

The fission width � along the fission pathway s can be
calculated by � = P/F as [36]

P =
[

1 + exp

(
2
∫ c

b

√
2M(s)(V (s) − E0)ds

)]−1

, (1a)

F =
∫ b

a

ds

(√
(E0 − V (s)

2M(s)

)−1

, (1b)

where the tunneling energy E0, tunneling points a, b, and c
are illustrated in Fig. 1. The potential energy surface V (s) is
given by Skyrme-Hartree-Fock+BCS calculations of binding

FIG. 1. The fission barrier of 260Fm is shown to illustrate
calculations of fission processes with a decay energy E0. The potential
frequencies (or curvatures) around the equilibrium point s0 and the
saddle point sb are labeled as ω0 and ωb, respectively.
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energies. The collective mass parameter M(s) is given by the
cranking approximation. The fission lifetime is calculated by
�/�. In Eq. (1), P is the penetration probability and F is
an approximate normalization factor before tunneling, which
is similar to the α-decay formula [41]. The normalization
factor is actually related to the assaulting rate, which has been
approximately taken as 1020.38 per second in Refs. [27,37].

To explain the normalization factor, we assume the potential
valley can be described as a one-dimensional harmonic
oscillator potential 1

2Mω2
0s

2, then we have

F =
∫ b

a

ds

⎛
⎝

√
E − 1

2Mω2
0s

2

2M

⎞
⎠

−1

= 2π

ω0
(2)

which demonstrated that 1/F is related to the assaulting fre-
quency ω0/2π on the fission barriers, irrespective of the decay
energies. With the assumption of a harmonic potential, the
decay energy E0 and 1

2 �ω0 (the collective ground state energy)
should be equivalent. The assaulting rate of 1020.38 per second
is related to E0 = 0.5 MeV and �ω0 = 1 MeV. Note that the
calculated fission lifetimes are sensitive to E0 and it is still an
issue to determine E0 in the literature. An assumption of E0 as
0.7Ezpe (the zero-point energy) was successful to reproduce the
experimental results [37]. For realistic potentials, we can also
estimate E0 by the quantization condition [42]. For simplicity,
our calculations are restricted to one-dimensional barriers, i.e.,
the fission path (including octupole deformations) is a function
of quadrupole deformation β20. It should be more realistic
to estimate the collective ground state energy E0 with other
degrees of freedom in multidimensional cases for complex
fission pathways.

We calculate the collective mass parameters microscopi-
cally for the WKB calculations of spontaneous fission rates.
Based on Skyrme-Hartree-Fock+BCS calculations, the mass
parameter M20(s) is calculated by the perturbative cranking
approximation as [3]

M20 = �
2[M(1)]−1[M(3)][M(1)]−1, (3a)

M(K)
ij = 1

2

∑ 〈0|Qi |μν〉〈μν|Qj |0〉
(Eμ + Eν)K

(uμvν + uνvμ)2,

(3b)

where v2
μ is the BCS occupation number; Eμ is the BCS

quasiparticle energy. The perturbative cranking approximation
of mass parameters can substantially overestimate the fission
rates [7], compared to the nonperturbative cranking approxi-
mation, although the perturbative cranking approximation has
been widely used [37].

B. Temperature dependent fission barriers

Our main objective in this work is to study the thermal
fission rates with temperature dependent fission barriers.
We have previously studied the thermal fission barriers
of compound superheavy nuclei with the finite-temperature
Hartree-Fock-Bogoliubov method [17,23]. In this work, based
on the Skyrme-Hartree-Fock+BCS solver, we implement the
finite-temperature BCS calculations according to Ref. [15].

With a given temperature T , the normal density ρ and the
pairing density ρ̃ have to be modified as

ρT (r) =
∑

i

[
v2

i (1 − fi) + u2
i fi

]|φi(r)|2

ρ̃T (r) =
∑

i

uivi(1 − 2fi)|φi(r)|2, (4)

where fi = 1/(1 + eEi/kT ) is the temperature dependent dis-
tribution factor, Ei is the BCS quasiparticle energy, k is the
Boltzmann constant. Other density functionals can also be
modified similar to the normal density. The particle number
conservation equation is modified as

N = 2
∑
i>0

[
v2

i + (
u2

i − v2
i

)
fi

]
. (5)

The entropy is obtained by

S = −k
∑

i

[fi ln fi + (1 − fi) ln(1 − fi)]. (6)

Finally the temperature dependent fission barriers are calcu-
lated in terms of the free energy F = E(T ) − T S, where E(T )
is the intrinsic binding energy. The temperature dependence
of fission barriers can be related to the melting down of shell
effects and has been found to be important to explain the
experimental survival probabilities [21]. In addition to barrier
heights, the temperature dependencies of curvatures of the
potential valley and the barrier are also essential inputs for
fission calculations, which are natural results of microscopic
calculations. In this work, the beyond mean-field corrections to
potential barriers have not been included, which are important
at the zero temperature [43]. The SkM∗ force [39] that includes
fission barriers in the fitting procedure could partially consider
such effects.

C. Temperature dependent mass parameters

The temperature dependent collective mass parameters can
be obtained by the cranking approximation with temperatures.
Compared to expressions at the zero temperature, the pairing
occupation numbers have to be explicitly modified as [28,44]

M(K)
ij,T = 1

2

∑
μ �=ν

〈0|Qi |μν〉〈μν|Qj |0〉
{

(uμuν − vμvν)2

(Eμ − Eν)K

[
tanh

(
Eμ

2kT

)
− tanh

(
Eν

2kT

)]}

+ 1

2

∑
〈0|Qi |μν〉〈μν|Qj |0〉

{
(uμvν + uνvμ)2

(Eμ + Eν)K

[
tanh

(
Eμ

2kT

)
+ tanh

(
Eν

2kT

)]}
.

(7)

We add a smooth factor of 1.0 in the denominator to
avoid numerical divergence when two quasiparticle energies
are close. The behaviors of temperature dependent mass
parameters have been studied in several earlier publications
[28,29,44].
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D. Thermal fission rates at low temperatures

The microscopic descriptions of fission process at low
temperatures are very interesting to study the induced fission.
The fission at low temperatures can basically be considered
as a quantum tunneling process, based on the temperature
dependent fission barriers and mass parameters. In contrast to
the spontaneous fission, the thermal fission involves excited
states which are distributed statistically in terms of excitation
energies. The excited states with energies of En within the
potential valley are quasistationary and can be approximately
described by the Bohr-Sommerfeld quantization condition
[42], ∫ b

a

ds
√

2MT (s)[En − VT (s)] = (n + 1/2)π, (8)

where VT and MT are temperature dependent potential barriers
and mass parameters. For the spontaneous fission, we only
consider the tunneling energy E0. For the thermal fission, we
need to consider all the eigenstates with En lower than barriers.

Based on the spontaneous fission formula, the average
thermal fission width at a temperature T (β = 1/kT ) is
obtained straightforwardly with the Boltzmann distribution,
and is written as

�(T ) =
∑

n exp(−βEn)P (En)/F (En)∑
n exp(−βEn)

, (9a)

P (En) =
[

1 + exp

(
2
∫ c

b

√
2MT (s)(VT (s) − En)ds

)]−1

,

(9b)

F (En) =
∫ b

a

ds

(√
(En − VT (s)

2MT (s)

)−1

. (9c)

In Eq. (9), the energies En of collective quasiboundary
states within the potential valley are obtained from Eq. (8).
Obviously, this formula is only suitable at very low temper-
atures since En are lower than barriers. In addition, Eq. (9)
would be problematic if ω0 is very large and the number of
states within the potential valley is not sufficient.

For comparison, we like to introduce the imaginary free
energy method [11,12,45] which is more strict. In this method
the quantity of interest is the free energy of the metastable
system. To obtain the imaginary part of the free energy, it is
key to calculate the partition function as a functional integral
over the contour [11]. The decay probability is related to the
imaginary free energy. The ImF formula at low temperatures
is given as [12]

� = 1

Z0

1

2π�

∫ Vb

0
P (E) exp(−βE)dE,

Z0 =
[

2 sinh

(
1

2
β�ω0

)]−1

, (10)

where ω0 is the frequency around the equilibrium point of the
potential valley; Vb is the barrier height; Z0 is the partition
function.

We see the expression Eq. (9) is similar to the ImF
formula Eq. (10) but with an additional normalization factor

F , or the assaulting frequency. We refer Eq. (9) as the
low-temperature Boltzmann fission formula. The difference
of the resulted lifetimes between Eqs. (9) and (10) is generally
within a factor of 5. The Boltzmann fission formula can
self-consistently consider the temperature dependence of the
assaulting frequency. It has been discussed that a slowly
changed temperature-dependent assaulting frequency should
be more reasonable than the constant (2π�)−1 in the ImF
theory [46].

Without dissipation, the estimated transition temperature
from quantum tunnelings to thermal decays is related to ωb by
[12]

Tc = �ωb

2πk
. (11)

For instance, Tc is 0.24 MeV with ωb = 1.5 MeV, which is a
very low temperature. For realistic potentials, we see that the
low temperature ImF formula can be applied to temperatures
that are slightly higher than Tc when the above-barrier decay
ratio is still small.

E. Thermal fission rates at high temperatures

The thermal fission rates of compound nuclei at high tem-
peratures are of great interests for productions of superheavy
nuclei. In particular, the 48Ca-induced hot fusion experiments
have been very successful [24]. In contrast to the fission at
low temperatures that is mainly a quantum tunneling process,
the thermal fission at high temperatures needs to consider the
reflection above barriers.

For energies above barriers, the refection can be considered
as a tunneling process in the momentum space [30], which
is difficult to be evaluated for complex-shaped barriers. In
a special case, the reflection above a parabolic potential
can be analytically obtained. Therefore, we can approximate
the temperature-dependent barrier by an inverted harmonic
oscillator potential,

Vbarrier(s) = Vb − 1
2Mω2

b(s − sb)2, (12)

where Vb is the barrier height, M is the mass parameter at the
saddle point sb, and ωb is the barrier curvature (or frequency).

It is crucial to estimate the fission potential valley frequency
ω0 and the barrier frequency ωb. Usually the frequencies are
given by the second-order derivative of the potential as

ω0 =
√

V
′′(s0)

M(s0)
, ωb =

√
−V

′′ (sb)

M(sb)
. (13)

However, the microscopic mass parameters are very much
dependent on the deformation coordinates, as shown in Sec. III.
For realistic potential barriers and mass parameters, we can
extract ω0 and ωb approximately by

ω0 = πE

/ ∫ b

a

√
2MT (s)(E − VT (s))ds,

ωb = π (Vb − E)

/ ∫ c

b

√
2MT (s)(VT (s) − E)ds (14)

which is exact with a harmonic oscillator potential. In
principle, results of Eqs. (13) and (14) should be close. It
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is turned out that Eq. (14) is roughly independent of E and
is more reliable by avoiding the uncertainties in searching of
minimum and saddle points.

The decay rate with an energy E above the inverted
harmonic oscillator potential is written as

1

2π�
{1 + exp(−2π (E − Vb)/�ωb)}−1. (15)

According to the ImF method for temperatures higher than Tc,
the averaged fission rate after integral over E is written as [12]

� = ωb

2π

sinh
(

1
2β�ω0

)
sin

(
1
2β�ωb

) exp(−βVb), (16)

which can be related to the Kramers formula at high tempera-
tures [12]:

�Kramers = ω0

2π
exp(−βVb). (17)

The Bohr-Wheeler formula should be basically consistent
with the Kramers formula without dissipation [47]. While the
influences of barrier widths or ωb has not been considered
in the Bohr-Wheeler formula and the static Kramers formula,
which are the special cases of the ImF method. Based on
the ImF formula Eq. (16), we see that the fission lifetimes
would be increased by decreasing frequencies ω0 or ωb at high
temperatures.

In principle, the ImF method works for thermal quantum
decays at all temperatures consistently. The thermal fission at
high temperatures involving dissipations and dynamical effects
is complicated and the ImF method has been extended to
dissipative decays [13,45,46]. The formula of thermal fission
rates also becomes complicated considering the deformation
dependent mass parameters [48]. Nevertheless, the micro-
scopic temperature-dependent ω0, ωb, and Vb can provide an
opportunity to look for other absent influences.

III. RESULTS AND DISCUSSIONS

In this section we study the spontaneous fission rates and
thermal fission rates of some interested nuclei: 240Pu, 260Fm,
278Cn, and 292Fl. 240Pu has a very long fission lifetime and
usually has been chosen for fission benchmark studies [2].
260Fm is also an ideal testing case having a single barrier
and a primary symmetric fission mode [8]. 278Cn and 292Fl
are typical cold-fusion and hot-fusion compound superheavy
nuclei in experiments [24], respectively.

A. Spontaneous fission rates

Firstly we studied the spontaneous fission rates of selected
nuclei: 240Pu, 260Fm, 278Cn, 292Fl, as shown in Table I. The
calculations are based on the SkM∗ Skyrme force and the
mixed pairing. It has been pointed out that the cranking mass
should be increased to simulate the ATDHFB mass [42]. In
this work, we adopt the cranking mass that is scaled by a

TABLE I. The calculated spontaneous fission lifetimes (in sec-
onds) of selected nuclei, in which E0 is obtained by the quantization
condition. The experimental data are also given for comparison.

Nuclei Expt (s) [55] TSF (s) E0 (MeV)

240Pu 3.6 × 1018 2.73 × 1022 0.92
260Fm 5.8 × 10−3 4.25 × 10−3 0.65
278Cn 6.39 × 10−5 0.90
292Fl 8.56 × 104 0.46

factor of 1.3, as suggested in Ref. [42]. Then E0 is obtained
by using the quantization condition. For 240Pu, we include
the asymmetric fission path of 240Pu which is important for
reducing the second barrier height. The calculated lifetime is
still much larger than the experimental result mainly due to
the absence of nonaxial symmetry, which can reduce the first
barrier height [49]. For 260Fm, the calculated fission lifetime
agree with that of similar calculations with SkM∗ in Ref. [37].
292Fl has a very long calculated fission lifetime with a small
E0, as discussed in the following subsection. Note that the first
barrier and the fission lifetime of 292Fl could also be reduced by
the inclusion of triaxial deformations. Generally, our results
agree with other studies that also adopted the SkM∗ force.
Indeed, the theoretical lifetimes are expected to be reduced
with multidimensional fission pathways [50].

Note that the fission lifetimes are sensitive to the different
approaches to estimate the decay energies E0. In this work,
E0 is related to the potential frequency at the ground state by
the Bohr-Sommerfeld quantization condition and is not a free
parameter, as given in Table I. Since the potential valley is not a
perfect harmonic potential, we keep in mind that the estimation
of E0 can have considerable uncertainties. For example, E0 has
to be 1.41 MeV to reproduce the fission lifetime of 240Pu, which
can reduce the lifetime by 4 orders of magnitude compared to
E0 = 0.92 MeV. For 292Fl, the ground state is slightly oblate
and has a very soft potential energy surface (shown in Fig. 3)
and the resulted E0 is very small, which can substantially
increase the fission lifetime.

Figure 2 displays the calculated fission barriers and mass
parameters of 260Fm by three different Skyrme forces: SkM∗

[39], SLy6 [51], and UNEDF1 [6], respectively. The SkM∗

and UNEDF1 forces have been optimized by including fission
barrier heights. SLy6 is suitable for large deformations and
surface properties by considering self-consistent center-of-
mass corrections [52]. One can see that fission barriers of
SkM∗ and SLy6 calculations are close. On the other hand, the
cranking mass parameters of SkM∗ and UNEDF1 calculations
are close. We note that the small differences in barriers or
mass parameters can remarkably affect the fission rates. Such
dependencies can be reduced with minimum action fission
pathways in multidimensional calculations [53]. The SkM∗

force has been widely used for spontaneous fission calculations
and is adopted for studies of thermal fission rates in this
work. In addition to the dependence of Skyrme forces, the
spontaneous fission lifetimes can also be reduced significantly
with enhanced pairing strengthes, as discussed in Refs. [7,54].
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FIG. 2. (a) The calculated spontaneous fission barriers of 260Fm
with different Skyrme forces: SkM∗, SLy6, and UNEDF1, respec-
tively. (b) The calculated collective mass parameters of 260Fm with
the three Skyrme forces.

B. Temperature dependent fission barriers
and mass parameters

We studied the temperature dependence of fission barriers
of selected nuclei, 240Pu, 260Fm, 278Cn, and 292Fl. Our results
obtained with FT-HF+BCS are very close to the earlier FT-
HFB results. For example, thermal fission barriers of 240Pu has
been given in Ref. [54]; 278Cn and 292Fl have been shown in
Ref. [19]. Figure 3 shows the temperature dependent fission
barriers of 260Fm and 292Fl. Previously, the asymmetric fission
mode of 292Fl has not been included [19]. In this work, we
do see the asymmetric fission mode is important for 292Fl and
the second barrier is almost gone. We see the fission barriers
are almost unchanged at low temperatures and even slightly
increased at T = 0.5 MeV when the pairing is significantly
reduced. This has also been discussed in several earlier works
[19,54]. After T = 0.5, the fission barrier heights decrease
with increasing temperatures, which can be described by a
damping factor to describe the melting of shell effects [17]. It
is known that microscopic damping factors change rapidly in
various nuclei [17,23], which are beyond phenomenological
descriptions.

In addition to fission barrier heights, the temperature
dependent curvatures (or frequencies) around the equilibrium
point and the saddle point are also important. In Fig. 4, the
obtained potential frequencies of 260Fm and 292Fl are shown,
which are estimated by Eq. (14). At temperatures below
T = 0.5 MeV, the frequencies change very slowly. For 260Fm,
it can be seen that the frequency ω0 at the equilibrium point

FIG. 3. The calculated temperature dependent fission barriers as
a function of quadrupole deformation β2, (a) for 260Fm and (b) for
292114. In 292114, the reflection asymmetric deformation has been
taken into account.

increases rapidly close to T = 0.6 MeV that is around the
pairing phase transition temperature. 292Fl is very special with
a very small ω0 that is associated with a very soft equilibrium
deformation. Generally the frequencies ω0 would be decreased
as temperatures increased and compound nuclei would finally
become spherical. The related collective energies En would
be reduced with increasing temperatures. For both 260Fm and
292Fl, the frequencies ωb at the saddle points also decrease
as temperatures increase. Therefore the fission lifetimes can
be enhanced due to the decreasing frequencies ω0 and ωb

according to the ImF formula at high temperatures. We see
the temperature dependencies of frequencies are different
in various nuclei. This again demonstrated that microscopic
calculations of temperature dependent fission barriers are
valuable.

Figure 5 shows the temperature dependent behaviors of
mass parameters of 260Fm and 292Fl. We studied the tempera-
ture dependence of mass parameters of selected nuclei with the
temperature dependent cranking approximation. Compared to
fission barriers, the mass parameters at high temperatures are
rather nonsmooth. At zero temperature, the mass parameters
is smooth due to the existence of pairing correlations. At
the temperature of T = 0.75 MeV, it is around the critical
temperature for the pairing phase transition and the mass
parameters are increased and become very much irregular. It is
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FIG. 4. The calculated potential curvatures (or frequencies)
around the equilibrium point (ω0) and the barrier saddle point (ωb) as
a function of temperature, (a) for 260Fm and (b) for 292Fl.

FIG. 5. (a) The calculated temperature-dependent mass parame-
ters as a function of deformations, (a) for 260Fm and (b) for 292114.

TABLE II. The calculated fission lifetimes of 260Fm and 240Pu at
low temperatures, based on the low-temperature ImF approach [see
Eq. (10)]. The corresponding excitation energies are also given in
MeV.

T 260Fm 240Pu
(MeV)

E∗ Tf (s) E∗ Tf (s)

0.1 0.001 1.50 × 10−3 0.002 2.55 × 1010

0.2 0.11 1.59 × 10−6 0.13 2.80 × 10−3

0.3 0.83 3.67 × 10−10 0.81 4.50 × 10−8

0.4 2.67 1.94 × 10−12 2.43 3.48 × 10−10

0.5 5.67 7.87 × 10−14 4.85 9.08 × 10−11

0.6 8.63 3.48 × 10−15 7.02 8.17 × 10−12

0.75 10.91 2.07 × 10−16 11.19 9.61 × 10−13

known that the collective inertia mass is inversely proportional
to the square of the pairing gap [56]. As the temperature
increases from T = 0 to T = 0.75 MeV the pairing gap
decreases and therefore the mass parameters must increase.
At the high temperature of T = 1.5 MeV, the mass parameters
are much reduced and large peaks fade away due to statistical
effects. This behavior has also been shown in Ref. [29]. In
both 260Fm and 292Fl, the mass parameters at spherical shapes
increase significantly compared to other deformations.

C. Thermal fission rates from low to high temperatures

In Table II, we studied the temperature dependence of
fission rates of 240Pu and 260Fm according to the low-
temperature ImF formula Eq. (10), from T = 0.1 to 0.75 MeV.
We can see that the calculated fission lifetimes decrease very
rapidly with increasing temperatures. For example, the lifetime
has been decreased by 3 orders in 260Fm at an excitation
energy of 100 keV (around the astrophysical temperature T9).
At an excitation energy around 5 MeV, its lifetime has been
decreased by 10 orders, compared to the spontaneous fission
lifetime. The calculated fission lifetimes of 240Pu decrease even
faster than that of 260Fm. For 240Pu, it has a very large ω0 of 1.87
MeV and a very small ωb of 0.54 MeV. Therefore it has a very
low transition temperature, Tc = ωb/2π = 0.08 MeV, from
quantum tunnelings to thermal decays. While the transition
temperature in 260Fm is Tc = 0.21 MeV that is much higher
than that of 240Pu. The low-temperature ImF formula maybe
not suitable for 240Pu due to a very low Tc. Besides, the fission
rates should be modified considering the double-humped
barrier in 240Pu. There are a few measurements of thermal
fission rates directly [57]. Actually it can be related to the
fast neutron induced fission cross sections with abundant
experimental data.

In Table III, we studied the temperature dependence of
the fission rates of selected nuclei according to the high-
temperature ImF formula, which is applicable for T > Tc.
Generally, the calculated fission lifetimes at high temperatures
decrease less rapidly compared to the low-temperature rates.
The fission rates of 240Pu and 260Fm at low temperatures are
also given. In 260Fm, we indeed see a smooth connection
(or crossover) between low and high temperature formulas
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TABLE III. The fission lifetimes of selected nuclei are calculated
according to the ImF formula at high temperatures [see Eq. (16)].
The excitation energy and lifetime are given in MeV and seconds,
respectively.

T 260Fm 240Pu
(MeV)

E∗ Tf (s) E∗ Tf (s)
0.1 0.002 4.06 × 1016

0.2 0.13 4.39 × 10−2

0.3 0.83 1.90 × 10−9 0.81 3.25 × 10−8

0.4 2.67 4.90 × 10−12 2.43 2.92 × 10−11

0.5 5.67 9.03 × 10−14 4.85 4.51 × 10−13

0.6 8.63 1.85 × 10−15 7.02 5.51 × 10−15

0.75 10.91 1.11 × 10−17 11.19 8.13 × 10−17

1.0 23.92 4.72 × 10−19 21.22 1.12 × 10−18

1.25 38.38 6.01 × 10−20 35.42 9.14 × 10−20

1.5 58.80 2.29 × 10−20 54.40 3.27 × 10−20

T 278Cn 292Fl

(MeV) E∗ Tf (s) E∗ Tf (s)
0.5 4.70 3.54 × 10−17 5.82 1.01 × 10−13

0.75 11.25 3.56 × 10−19 14.1 1.25 × 10−16

1.0 23.17 2.32 × 10−20 24.27 1.66 × 10−18

1.25 40.17 40.22 2.09 × 10−19

1.5 62.34 69.01 7.33 × 10−20

at temperatures slightly higher than Tc. For 240Pu with Tc =
0.08 MeV, the high temperature ImF formula should be more
reasonable from T = 0.1 MeV, compared to Table II. The low
temperature ImF formula underestimates the fission lifetimes
of 240Pu at low temperatures and overestimate fission lifetimes
at high temperatures, compared to the high temperature ImF
formula.

We see the fission lifetime of 278Cn is smaller than that
of 292Fl at high excitation energies by 2 orders. While such
a difference is about 9 orders at zero temperature in Table I.
The differences in fission lifetimes of different nuclei decrease
with increasing temperatures as quantum effects fad away.
At T = 1.25 MeV, the fission barrier of 278Cn is almost
gone in contrast to 292Fl. The frequency ω0 in 292Fl is small
that can enhance thermal fission lifetimes. At T = 1.0 and
1.5 MeV, its microscopic neutron emission lifetimes [18]
are 1.8 × 10−19 and 1.7 × 10−20 s, which are much smaller
than its corresponding fission lifetimes of 1.67 × 10−18 and
7.3 × 10−20 s. This leads to considerable survival probabilities
of 292Fl at high excitations by microscopic calculations,
which are 90% at T = 1.0 MeV and 81% at T = 1.5 MeV,
respectively.

Figure 6 displays the thermal fission lifetimes of 260Fm from
low to high temperatures obtained by different approaches with
the same microscopic inputs. Generally the fission lifetimes
decease very rapidly at low temperatures and decrease slowly
at high temperatures. We see the fission lifetimes by ImF
and Kramers formulas are close at high temperatures. At low
temperatures, the Kramers formula overestimates the fission
lifetimes. The Boltzmann fission lifetimes are close to the ImF
results at low temperatures. The fission lifetimes are mainly
determined by the barrier heights in the exponential function

FIG. 6. The calculated thermal fission lifetimes of 260Fm as
a function of excitation energies by different formulas, in which
‘ImF-L’ denotes the low-temperature ImF formula Eq. (10), ‘ImF-H’
denotes the high-temperature ImF formula Eq. (16), ‘Boltzmann-
L’ denotes the low-temperature Boltzmann thermal fission for-
mula Eq. (9), ‘Kramers’ denotes the Kramers fission formula
Eq. (17).

at high temperatures. Basically the low and high temperature
ImF formulas are consistent although they have different
temperature regimes of applicability regarding the transition
temperature Tc. The two calculations have comparable results
between T = 0.3 to 0.6 MeV, indicating a smooth transition
from quantum tunneling to thermal decays. After T = 0.6
MeV, the above-barrier fission is important and the low-
temperature formula overestimates the fission lifetimes. Based
on results of 260Fm, we see the low-temperature formula
can be applied to temperatures that are slightly higher than
Tc. In realistic calculations, the crossover of low and high
temperature ImF formulas depends on not only Tc (or ωb)
but also the temperature dependent ω0 and barrier heights.
At temperatures higher than T = 1.5 MeV, the barriers and
quantum effects are almost disappeared and the microscopic
calculations would be questionable.

IV. SUMMARY

In summary, we studied the thermal fission rates with
microscopic calculated temperature dependent fission barriers
and mass parameters. The fission lifetime calculations are
based on the imaginary free energy method from low to high
temperatures in a consistent picture.

In Kramers and ImF methods, the fission barriers are given
in terms of free energies which are naturally temperature
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dependent. Our calculations involve only the effective Skyrme
forces and pairing interactions without free parameters. We
discussed the temperature dependent behaviors of fission
barriers and mass parameters, which change rapidly in various
nuclei and are beyond phenomenological descriptions. There-
fore calculations of thermal fission rates with microscopic
inputs are very necessary. With the previous microscopic
neutron emission rates, we obtained considerable survival
probabilities of 292Fl at high excitations. We also emphasized
the role of potential curvatures ω0 and ωb in the ImF formula.
The curvatures are slowly decreasing from microscopic calcu-
lations at high temperatures and can enhance fission lifetimes.
As a complementary, the spontaneous fission rates have also
been studied. Our studies can be very useful for microscopic
understandings of induced fission in reactors and the astro-

physical r-process, and survival probabilities of compound
superheavy nuclei. We noticed that large uncertainties still
exist towards fully microscopic descriptions of thermal fission
rates. In the future, it is worth to study both thermal fission
rates and fragment distributions by semiclassical methods with
microscopic inputs in multidimensional spaces.
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