
PHYSICAL REVIEW C 94, 024328 (2016)

Discrete wave-packet representation in nuclear matter calculations
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The Lippmann-Schwinger equation for the nucleon-nucleon t matrix as well as the corresponding Bethe-
Goldstone equation to determine the Brueckner reaction matrix in nuclear matter are reformulated in terms of
the resolvents for the total two-nucleon Hamiltonians defined in free space and in medium correspondingly.
This allows one to find solutions at many energies simultaneously by using the respective Hamiltonian matrix
diagonalization in the stationary wave-packet basis. Among other important advantages, this approach simplifies
greatly the whole computation procedures both for the coupled-channel t matrix and the Brueckner reaction
matrix. Therefore this principally novel scheme is expected to be especially useful for self-consistent nuclear
matter calculations because it allows one to accelerate in a high degree single-particle potential iterations.
Furthermore the method provides direct access to the properties of possible two-nucleon bound states in the
nuclear medium. The comparison between reaction matrices found via the numerical solution of the Bethe-
Goldstone integral equation and the straightforward Hamiltonian diagonalization shows a high accuracy of the
method suggested. The proposed fully discrete approach opens a new way to an accurate treatment of two-
and three-particle correlations in nuclear matter on the basis of the three-particle Bethe-Faddeev equation by an
effective Hamiltonian diagonalization procedure.
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I. INTRODUCTION

The conventional treatment of quantum problems with
continuous spectrum (e.g., few-body scattering problems)
uses either the differential Schroedinger-type equation with
the appropriate boundary conditions or employs an integral
equation of the Lippmann-Schwinger or Faddeev type [1].
A somewhat similar formalism is used in the nuclear matter
calculations within the Brueckner-Bethe-Goldstone approach
[2–7] for finding the Brueckner reaction matrix to treat strong
two- or few-particle correlations in the many-nucleon system.

However, there are alternative approaches in quantum
scattering which allow one to evaluate scattering observables
as well as the fully off-shell transition operator by using
some spectral properties of the Hamiltonian. In this alternative
way, one employs a finite-dimensional approximation for the
spectral expansion of the total resolvent within the continuum
discretization technique [8] or uses another L2-type approach
[9–12]. By using this approximation, the initial Lippmann-
Schwinger equation for the scattering t matrix is rewritten
in a form which includes the total resolvent expressed as a
finite sum over the total Hamiltonian bound and pseudostates.
Thus, a single Hamiltonian matrix diagonalization makes it
possible to determine scattering observables for all necessary
energies in a very broad interval. This discrete way for
solving a single-channel scattering problem becomes even
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more efficient in a coupled-channel case because it results
in getting the multichannel off-shell t matrix at many energies
simultaneously.

Keeping in mind that the Bethe-Goldstone equation (BGE)
for the reaction matrix in nuclear matter differs from the
Lippmann-Schwinger equation (LSE) by the presence of the
Pauli-projection operator in its kernel, one can try to replace the
solution of the BGE also with a straightforward diagonaliza-
tion procedure of the respective Hamiltonian matrix calculated
on the appropriate basis.

The specific feature of the nuclear matter calculations is
that one has to solve the respective integral BGE many times
to obtain the reaction matrix for the various values of relative
and center-of-mass momenta and energies needed to evaluate,
e.g., the single-particle potential in a derivation of the equation
of state (EOS) [2,3]. We keep in mind that one employs usually
an iterative procedure to calculate the single-particle potential
in a self-consistent way. Thus, to find the EOS one has to
carry out quite a few iteration steps to attain a self-consistent
solution for solving the Bethe-Goldstone integral equation at
many energies [3]. These self-consistent iterations are time-
consuming but still feasible on modern computer systems. The
numerical efforts, however, increase considerably if one tries to
account for an accurate treatment of three-body correlations in
nuclear matter using two- and three-body forces on the basis
of the Bethe-Faddeev equations [7]. Therefore it is highly
desirable to develop efficient tools for the solution of these
equations.

Thus, in the present paper we employ the wave-packet
continuum discretization technique [8] to carry out single-
and coupled-channel scattering calculations with realistic
NN interaction in vacuum as well as in medium by using

2469-9985/2016/94(2)/024328(14) 024328-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.94.024328
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finite-dimensional approximation for the total resolvent. This
technique leads to an efficient way of solving the two-nucleon
(NN) problem with continuous single-particle spectra. In
addition, this method will also give explicit access to the
properties of the bound and quasibound states of two nucleons
in vacuum as well as in infinite matter (see, e.g., the discussion
of possible di-neutron states in neutron matter [13] and
references cited there).

The structure of the paper is the following: In Sec. II,
we explain in detail our approach to finding the fully off-
shell t matrix at many energies simultaneously via a direct
diagonalization of the total Hamiltonian matrix by using the
basis of stationary wave packets. Further, in Sec. III, this
approach is generalized to the solution for the Bethe-Goldstone
equation in nuclear matter. This alternative way turned out
to be simpler and faster as compared to the conventional
approach as is demonstrated in Sec. IV which contains some
illustrative examples. This section also includes a discussion
of bound two-nucleon states in the medium of nuclear matter.
The summary is given in Sec. V. For the reader’s convenience
we have added the Appendix with some details of the discrete
coupled-channel formalism.

II. SINGLE- AND COUPLED-CHANNEL SCATTERING
PROBLEM IN A DISCRETE REPRESENTATION

A. t matrix for a two-body scattering problem

Let us start with remembering some well-known formu-
las from the quantum scattering theory [1]. The integral
Lippmann-Schwinger equation for the transition operator
in momentum representation (t matrix) corresponding to a
scattering of two particles with momenta k1 and k2 has the
following form:

t(k,k′; E) = V (k,k′) +
∫

d3k′′V (k,k′′)t(k′′,k′; E)

E + i0 − (k′′)2

2μ

, (1)

where k = k2 − k1 (and also k′, k′′) is the relative momentum
of the particles, V is an interaction potential, μ is the reduced
mass, and the center of mass momentum dependence is
assumed to be separated out.

In operator form, Eq. (1) is written,

t̂(E) = V̂ + V̂ ĝ0(E)t̂(E), (2)

where ĝ0(E) = [E + i0 − ĥ0]−1 is the resolvent of the free
Hamiltonian ĥ0 (the kinetic energy operator) or the Greens
function for the noninteracting particles.

Alternatively one can introduce the resolvent ĝ(E) = [E +
i0 − ĥ]−1 of the total Hamiltonian ĥ = ĥ0 + V̂ including the
interaction. This total resolvent is related to the free resolvent
ĝ0(E) by the well-known identity:

ĝ(E) = ĝ0(E) + ĝ0(E)V̂ ĝ(E). (3)

If one knows the total resolvent ĝ(E), the transition operator
(2) can be evaluated straightforwardly from the relation:

t̂(E) = V̂ + V̂ ĝ(E)V̂ . (4)

At first glance the evaluation of the total resolvent from
the integral Eq. (3) seems to be a more complicated task

than the calculation of the half-shell t matrix through the
integral equation (2) at a single fixed energy. However, there
are some L2 techniques [8–12] which allow one to find a
finite-dimensional approximation for ĝ(E) and calculate the
t-matrix elements directly using the relation (4).

These finite-dimensional approximations are usually based
on a spectral expansion of the total resolvent using a complete
set of states for the total Hamiltonian ĥ, i.e., using its bound
{|ψα

n 〉} and continuum states {|ψα(E)〉}:

ĝ(E) =
∑

α

∑
n

∣∣ψα
n

〉〈
ψα

n

∣∣
E − En

+
∑

α

∫ ∞

0
dE′ |ψα(E′)〉〈ψα(E′)|

E + i0 − E′ , (5)

where α are appropriate quantum numbers referring to opera-
tors which commute with the Hamiltonian. Approximating the
spectral expansion (5) by a finite sum over the Hamiltonian ĥ
pseudostates {|zα

k 〉} found in some appropriate L2 basis [8,9],
one gets the following finite-dimensional form for the total
resolvent g(E):

ĝ(E) ≈
∑

α

∑
n

∣∣ψα
n

〉〈
ψα

n

∣∣
E − En

+
∑
α,k

∣∣zα
k

〉
gα

k (E)
〈
zα
k

∣∣. (6)

Here gα
k (E) are complex functions which depend on energy

E and pseudostate energies {Eα
k } only. So this expansion

allows one to find the resolvent ĝ(E) and, furthermore, the
off-shell t matrix at any energy E by using only a single
diagonalization of the total Hamiltonian matrix for each
channel α [only functions gα

k (E) should be recalculated which
is straightforward].

It should be mentioned that this “spectral” scheme is very
convenient because it allows one to use any complete system
of eigenstates of the total Hamiltonian, such as standing
wave scattering functions [1] which are real valued. In other
words, the spectral expansion does not require an accurate
treatment of boundary conditions for states in the numerator
of (5) (that is why the pseudostates can successfully be
used here). Below, we use for this purpose the method of
the wave-packet continuum discretization (WPCD) developed
by the present authors in previous years [8]. This general
approach was demonstrated [8,14] to be fully applicable
for a coupled-channel interaction case as well (see also the
Appendix to the present paper).

One of the main purposes of this paper is a careful
testing of the diagonalization procedure for construction of
the coupled-channel t matrix for some realistic cases and
also the generalization of such a diagonalization approach
to the solution of the Bethe-Goldstone–type equation widely
used in nuclear matter calculations. So below we discuss the
case of NN scattering with the realistic interaction including
strong tensor components which results in coupled-channel
equations. However, the scheme discussed is applicable also
for other types of coupled-channel problems, e.g., arising in
a coupled-channel reduction for some few-body scattering
problems [15].
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B. Solution of a coupled-channel Lippmann-Schwinger
equation in a wave-packet representation

In this development, we apply a partial-wave expansion for
antisymmetrized wave functions and operators over the plane
wave states |k〉 with definite orbital momentum l, spin s, and
total angular momentum j for the interacting nucleons (the
isospin value τ is determined by the l and s values, so we omit
it here to simplify notations).

Then, after the partial-wave projection, the integral LSE (1)
takes the following form for given values of j and s (those are
conserved for the NN Hamiltonian):

t
js
ll′ (k,k′,E) = V

js
ll′ (k,k′)

+
j+s∑

l′′=|j−s|

∫ ∞

0

dk′′V js
ll′′ (k,k′′)t js

l′′l′(k
′′,k′,E)

E − (k′′)2

2μ
+ i0

. (7)

Apart from the total angular momentum and spin, the parity is
also conserved for the NN potential. Thus, Eq. (7) is either a
set of two coupled integral equations for the spin-triplet case
s = 1 (for l,l′ = |j − 1|,j + 1) or an uncoupled equation for
the spin-singlet (s = 0) and the spin-triplet (s = 1) channels
with l = j .

To find the single- and coupled-channel t matrices, we
introduce at first a partition of the continuum for the free
Hamiltonian ĥ0 onto nonoverlapping energy intervals (bins)
{Di ≡ [Ei−1,Ei]}Ni=1 (or the corresponding momentum bins
[ki−1,ki])1 and then construct the stationary wave-packet (WP)
basis functions |xl

i ; α〉 as integrals of free plane waves |k〉 over
these bins with inclusion of the necessary spin-angular parts
|α〉 ≡ |l,s : j 〉 [8]:

∣∣xl
i ,α

〉 = 1√
di

∫ ki

ki−1

dk|k,α〉, di = ki − ki−1. (8)

It is easy to show that the WP states (8) form an orthonormal
basis: 〈

xl
i ,α

∣∣xl′
i ′ ,α

′〉 = δii ′δαα′ . (9)

In such a basis, a simple finite-dimensional representation for
the free resolvent ĝ0(E) takes the form [8]:

ĝ0(E) ≈
∑

α

N∑
i=1

∣∣xl
i ,α

〉
gi(E)

〈
xl

i ,α
∣∣, (10)

where the complex functions gi(E) can be found from the
formula (A5) of the Appendix and depend on the discretization
parameters Ei and total energy E only2 [8]. By using the
representation (10), it is easy to reduce the integral Eq. (7)

1We denote energy and momentum intervals with the same
notation Di .

2Although these explicit relations for gi(E) contain logarithmic
singularities at the endpoints of the energy intervals, this finite-
dimensional representation for the free resolvent allows one to
reproduce a correct analytical structure of the initial operator. In
particular, it has a proper discontinuity across the real positive
energy semiaxis. With some additional averaging procedure [8], the
representation (10) is valid at any energy E.

to the matrix one (see also Ref. [16], where a similar approach
was used in nuclear matter calculations).

Projecting out Eq. (7) onto the WP basis, one gets the
matrix equation for the coupled-channel t matrix (and the
corresponding equations for uncoupled cases):

t
js
il,i ′l′ (E) = V

js
il,i ′l′ +

j+s∑
l′′=|j−s|

∑
i ′′

V
js
il,i ′′l′′gi ′′(E)t js

i ′′l′′,i ′l′ (E),

(11)

where V
js
il,i ′l′ ≡ 〈xl

i ,α|V̂ |xl′
i ′ ,α

′〉 and t
js
il,i ′l′(E) ≡ 〈xl

i ,α|t̂(E)
|xl′

i ′ ,α
′〉 are matrix elements of the interaction and transition

operator, respectively.
The off-shell t matrix can be found from the solution of the

matrix Eq. (11):

t
js
ll′ (k,k′; E) ≈ t

js
il,i ′l′ (E)√
DiDi ′

,

k ∈ Di ,
k′ ∈ Di ′ , (12)

where Di = Ei − Ei−1 are widths of the corresponding energy
intervals.

The respective S matrix is derived from the diagonal
element of the WP t matrix:

S
js
ll′ (E) ≈ δll′ − 2π i

t
js
il,il′ (E)

Di

, E ∈ Di . (13)

However, such a procedure requires a separate matrix
inversion at every energy E considered. So, if one needs
to evaluate the coupled-channel t matrix at many energies
(e.g., for any Faddeev or Faddeev-Yakubovsky calculation),
the above direct way turns out somewhat time-consuming. This
problem is also important in case of nuclear matter calculations
where one has to calculate the reaction matrix for various
center-of-mass momenta and also to carry out the numerous
iterations to reach the self-consistency.

Thus, below we will show how to evaluate the off-shell
t matrix without solving the scattering equations for each
energy by using the Hamiltonian matrix diagonalization in
an appropriate model space.

C. The resolvent of the total Hamiltonian

For fixed values of j and s, the total Hamiltonian can be
written as a coupled-channel operator:

ĥ
js
ll′ = ĥ

js
0l δll′ + V̂

js
ll′ , (14)

with a dimension d equal to 1 or 2 for uncoupled and coupled
cases correspondingly.

The general idea of the wave-packet approach to find the
total resolvent of some Hamiltonian ĥ is a discretization of
its continuum similarly to the free Hamiltonian case and a
construction of the scattering wave packets by Eq. (A1) from
the exact scattering wave functions. In this new WP repre-
sentation, the resolvent of the Hamiltonian ĥ has a diagonal
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form with known eigenvalues (see Ref. [8] and the Appendix
to the present paper). At the next step, the scattering WPs are
approximated by pseudostates of the total Hamiltonian found
in a free WP basis. Thus, by using the same free WP basis
and employing the total Hamiltonian matrix diagonalization
procedure, one can find finite-dimensional approximations
both for the free and total Hamiltonian resolvents ĝ0 and ĝ,
respectively.

Being fully straightforward for a single-channel total
Hamiltonian, this diagonalization approach requires some
special consideration in a coupled-channel case because
the continuous spectra of the free and total Hamiltonians
are degenerated. So one has two different scattering wave
functions at each energy E corresponding to different initial
states. The ordinary pseudostate technique does not allow one
to distinguish these different channel states. However, we have
shown previously that special eigenchannel representation
formalism can be employed here [8].

Indeed, one can introduce two different types of scattering
states for the Hamiltonian (14) at given energy E: the
scattering states |ψl(E)〉 (which include also spin-angular
parts) corresponding to the incoming waves with a definite
orbital momentum l and the scattering states |ψ�(E)〉 defined
in the so-called eigenchannel representation (ER) (which
corresponds to a diagonal form of the total S matrix [14,17]),
where � is an eigenchannel index. For example, in case of
the coupled-channel triplet NN interaction, the scattering
states |ψ�(E)〉 are linear combinations of the states |ψl(E)〉,
e.g., eigenchannel states for the coupled channels 3S1 -3D1,
3P2 -3F2, etc.3

Further, by making use of the above eigenchannel represen-
tation in a coupled-channel case, one gets the following spec-
tral expansion for the resolvent of the total Hamiltonian ĝ(E):

ĝjs(E) = |zb〉〈zb|
E − εb

+
d∑

�=1

∫ ∞

0

|ψ�(E)〉〈ψ�(E)|
E + i0 − E′ dE′, (15)

which is diagonal with respect to the eigenchannel index �. In
Eq. (15), εb is an energy of the bound state |zb〉 (the deuteron).
In the NN system, the bound-state term takes place for the
triplet with j = 1 channel, only.

To use further the WP technique with the pseudostate
approximation, one has to prepare the discretization partitions
of spectra in different coupled spin-angular channels in such
a way that a coupled-channel free Hamiltonian matrix would
have a degenerate discrete spectrum [8,14]. After switching on
the interaction, these multiple discrete energy levels are split
and form a set of paired levels (for two coupled channels [14]).
So one can group the resulted coupled-channel pseudostates
into two branches in the eigenchannel representation. We
have shown [14] that such pseudostates obtained in the
free WP basis can easily be related to scattering wave
functions |ψ�(E)〉. More definitely, these pseudostates can be
considered as approximations for the multichannel scattering

3In nuclear physics, a conventional notation for these pair eigen-
states is adopted as the so-called α state and β state. Here we use the
general index �.

wave packets constructed from exact scattering wave functions
(defined in the ER) of the coupled-channel total Hamiltonian
ĥll′ [see Eq. (A8) in the Appendix].

Thus, the diagonalization of the total Hamiltonian (14)
matrix in the two-channel free WP basis {|xl

i ; l,s : j 〉}j+s
l=|j−s|

results in a set of pseudostates |z�
k ,α̃〉 with eigenenergies E�

k ,
which are expanded in free WP states:∣∣z�

k ,α̃
〉 =

∑
i,l

C�l
ki

∣∣xl
i ,α

〉
. (16)

Here � is an eigenchannel index and the total spin-angular part
has the form α̃ = {�,s,j}.

With such a treatment of the multichannel pseudostates, a
finite-dimensional representation for the total resolvent takes
a diagonal form [8] both for single- and a coupled-channel
cases:

gjs(E) ≈ |zb〉〈zb|
E − εb

+
d∑

�=1

N�∑
k=1

∣∣z�
k

〉
g�

k (E)
〈
z�
k

∣∣, (17)

where functions g�
k (E) are defined by Eq. (A10). It should

be emphasized that the expansion (17) is not a polelike
pseudostate approximation for the total resolvent but it corre-
sponds to a disicretization of the coupled-channel continuous
spectrum of the total Hamiltonian within the scattering wave-
packet formalism (see the details in the Appendix). The latter
formalism is similar to the above free WP approach for the
free Hamiltonian spectrum discretization which results in the
finite-dimensional representation (10) for the free resolvent.
Moreover, the explicit formulas (A5) and (A10) for functions
g�

k (E) are the same for cases of single- and coupled-channel
scattering [8].

Finally, the representation of the total resolvent as a finite
spectral sum, as in Eq. (17), allows a direct evaluation of the
multienergy off-shell t matrix.

After carrying out the diagonalization procedure for the
total Hamiltonian matrix at a fixed coupled-channel partial
wave (j,s), the off-shell t matrix is found from the explicit
relation [instead of solving Eq. (11)]:

t
js
il,i ′l′ (E) ≈ V

js
il,i ′l′ +

V 11
il,bV

11
i ′l′,b

E − εb
δj1δs1

+
d∑

�=1

N�∑
k=1

V
js
il,k�g�

k (E)V js
i ′l′,k�, (18)

where d = 2 or 1 for coupled or uncoupled channel,
respectively. Here specific matrix elements of the interaction
operator have been introduced: V

js
il,b ≡ 〈xl

i ,α|V̂ |zb〉 and

V
js
il,k� ≡ 〈xl

i ,α|V̂ |z�
k ,α̃〉. They are calculated from the matrix

elements of the interaction in the initial free WP basis by
using Eq. (16), e.g.,

V
js
il,k� =

∑
l′,i ′

C�l′
ki ′ V

js
il,i ′l′ . (19)

As an example for the application of the diagonalization
procedure to find the NN scattering amplitudes we present in
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FIG. 1. The partial phase shift δ for uncoupled spin-singlet (left
panel) and spin-triplet (right panel) channels derived from a total
Hamiltonian diagonalization in the WP basis (solid curves) and
from the direct numerical solution of the one-channel Lippmann-
Schwinger equation (dashed curves) for the CD Bonn NN potential.
The dash-dotted curves correspond to partial phase shifts evaluated
for the Nijmegen NN potential.

Fig. 1 the partial phase shifts for the uncoupled spin-singlet and
spin-triplet channels using the NN CD-Bonn potential [18]. To
check the accuracy of the approach, we compare in this figure
the results of the direct solution for the integral Lippmann-
Schwinger equation in a matrix form (11) (which has to be
solved at the various energies independently) with results of a
single diagonalization for the respective NN coupled-channel
Hamiltonian in the very broad energy interval of laboratory
energy Elab from zero up to 800 MeV. In these calculations,
the free WP bases of the dimension N = 100 in every partial
wave have been used. As the discretization mesh, we employed
here the Tchebyshev grid (see for the details Ref. [8]).

It can be seen that the results for the direct and diagonal-
ization solutions are almost indistinguishable from each other
in the whole energy region studied. We have also added to
Fig. 1 the partial phase shifts evaluated for the Nijmegen II
NN potential [19]. The phase shifts derived from the different
potentials agree mainly in the energy region, in which they both
were fitted to the experimental data. The different behavior of
the phase shifts for energies above 350 MeV is well known.

In Fig. 2 the coupled-channel phase shifts and mixing angle
ε (in the Stapp parametrization) for the spin triplet channels
of NN scattering with CD-Bonn potential are displayed and
compared to solutions of the Lippmann-Schwinger equation

(a)

(b)

(c)

(a)

(b)

(c)

FIG. 2. The partial phase shifts δ1 (a), δ2 (b), and the mixing
parameter ε (c) for the coupled spin-triplet channels 3S1-3D1 (left
panel) and 3F2-3P2 (right panel) of the NN scattering found for the
CD-Bonn and Nijmegen NN potentials. The notations of curves are
the same as in Fig. 1.

in a matrix form Eq. (11). The very good accuracy which the
diagonalization technique can reach in scattering calculations
is obvious also for the coupled-channel cases.

The clear advantage of the diagonalization technique as
compared to the conventional solution of the LSE equation
is evident, in particular, if one has to solve the LSE at
many energies as it is in the case, e.g., for the calculation of
integral kernels of Faddeev-Yakubovsky three- and many-body
integral equations. As an example we refer to the three-body
discrete Faddeev calculations [8], where we have used the
finite-dimensional approximation for the total resolvent (17)
derived from the Hamiltonian diagonalization procedure.

III. SOLVING THE BETHE-GOLDSTONE EQUATION
BY A MATRIX DIAGONALIZATION

Let us consider a case of infinite symmetrical nuclear matter
at zero temperature, where we study the respective Bethe-
Goldstone integral equation for the Brueckner reaction matrix
[2,3]:

T (k,k′; K,W0) = V (k,k′) +
∫

d3k′′V (k,k′′)

×Q(k′′,K)T (k′′,k′; K,W ′′)
W0 + i0 − H0(k′′,K)

, (20)
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where K = 1
2 (k1 + k2) and k = 1

2 (k2 − k1) are the center-
of-mass (c.m.) and relative momenta, respectively, W0 is
the starting energy, H0(k′′,K) defines the energy of the
intermediate state with relative momentum k′′, and Q(k′′,K)
corresponds to the Pauli-projection operator:

Q(k,K) = θ (|k + K| − kF )θ (|k − K| − kF ), (21)

which excludes particle states forbidden by the Pauli principle,
so that kF is the Fermi momentum. Because of the appearance
of the Pauli projection operator in the kernel of Eq. (20),
the c.m. momentum K is not separated out here (as it
was for the LSE) but it is still conserved. Equation (20)
is traditionally solved in the momentum space formed by
the relative momentum k while the absolute value of the
c.m. momentum K in Eq. (20) plays the role of an external
parameter, in addition to the starting energy W0.

In most of the calculations, the so-called angle-average
approximation for the Pauli operator Q is assumed [2]:

Q(k,K) =
{

0, k � k0,

min
{
1,

k2+K2−k2
F

2kK

}
, k > k0,

(22)

where k0 =
√

k2
F − K2 . If furthermore one considers a spec-

trum of particle states defined by H0(k,K), which is also
independent on the angle between the corresponding relative
k and c.m. momentum K the Bethe-Goldstone equation is
symmetric under rotation and can easily be solved in a partial
wave expansion (see below) with matrix elements of the
resulting reaction matrix diagonal in this partial wave basis
with respect to j and s. In the present study, we will also
take advantage of this angle-average approximation. Note,
however, that an extension of the formalism to an exact
treatment of Q and an angle-dependent energy term H0 is
straightforward.

It should be stressed that the operator Q̂ in this angle-
average approximation is not a projection operator because it
does not satisfy the relation Q̂2 = Q̂, but it can be considered in
the relative momentum space as an operator Q̂(K) depending
on the c.m. momentum value.

The energies in the denominator of Eq. (20) W0 and
H0(k,K) are usually defined through the Brueckner-Hartree-
Fock (BHF) single-particle (sp) energy,

ε(k1) = k2
1

2m
+ Re(U (k1,ω = ε(k1))), (23)

where the self-energy U is defined in terms of the reaction
matrix itself:

U (k1,ω) =
∫

k2�kF

d3k2T (k,k; K,W0 = ω + ε(k2)). (24)

In the last equation, the integral over k2 should be restricted
to the hole states, i.e., single-particle states inside the Fermi
sphere [3].

While the on-shell definition of the energy variable ω in
Eq. (23) is well established for the single-particle energies
of the hole states by the Bethe-Brandow-Petschek theorem
[20], the corresponding choice for the spectrum of the particle
states with momenta larger than kF , which are needed to define

H0, was a matter of lengthy discussion in the literature. Two
different choices have been discussed:

(i) The conventional choice representing the single-
particle energies for the particle states by the kinetic
energy only,

ε(k1) = k2
1

2m
.

With this choice one obtains a gap at k1 = kF as
the attractive single-particle potential U (k1) defined in
Eq. (24) is taken into account for the hole states (k1 <
kF ) but is ignored for the particle states. Therefore this
choice was also denoted as the “gap” spectrum.

(ii) The “continuous” or gapless choice, in which the
definition of the single-particle energy according to
Eq. (24) is also applied to the particle states with
k1 > kF .

The discussion of the optimal choice for the single-particle
potential was essentially settled with the observation of Baldo
et al. [21] demonstrating that the effect of three-nucleon
correlations is reduced considering the continuous choice.
Therefore this continuous choice has become the standard
choice in BHF calculations.

In any case one obtains a monotonic rise of the single-
particle energy ε(k1) as a function of the momentum k1 and
the matrix elements of T are complex only for energies ω
and corresponding starting energies W0, which are needed
for the evaluation of the particle states. This implies that the
BHF single-particle potential (24) is real for the hole states
with momenta k1 < kF . For energies ω larger than the Fermi
energy εF = ε(kF ) the single-particle potential U (k1) yields an
imaginary component and this complex self-energy U (k1,ω)
was used to evaluate the optical model potential for nucleon-
nucleus scattering [22].

Note that the solution of the Bethe-Goldstone Eq. (20) and
the evaluation of the single-particle potential Eq. (24) must be
done in a self-consistent way because the BGE requires the
knowledge of the single-particle spectrum and the evaluation
of the single-particle energies requires the knowledge of the
reaction matrix T , that is the solution of the Bethe-Goldstone
equation. The self-consistent solution can be obtained in an
iterative way recalculating in each iteration step the single-
particle spectrum until the resulting spectrum will agree with
the spectrum which is used in the Bethe-Goldstone equation.

In this iteration procedure the single-particle spectrum to
be used in Eq. (20) was often parametrized in terms of an
effective mass m∗:

εapp(k1) = k2
1

2m∗ + U0. (25)

This parametrization simplifies the iteration procedure and
ensures that the energy denominators used in the Bethe-
Goldstone Eq. (20) do not depend on the angle between relative
and c.m. momentum of the interacting pair of nucleons. This is
a very useful feature together with the angle-average definition
of the Pauli operator (22). It was observed [3], however, that
effective-mass parametrization is not very accurate (see also
discussion below).
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When the iteration scheme discussed above is converged,
the binding energy per nucleon (the equation of state) can be
found with the resulting sp spectrum using the relation:

E

A
= 3

k3
F

∫ kF

0
k2 dk

1

2

[
k2

2m
+ ε(k)

]
. (26)

A. The resolvent operator

For a standard BHF calculation, it is sufficient to solve
the BGE by means of standard techniques for solving integral
equations as, e.g., it was introduced by Haftel and Tabakin [2].
Calculations beyond the standard BHF calculations, like the
evaluation of the self-energy beyond lowest order hole-line
expansion, or the solution of the three-body Bethe-Faddeev
equation or the evaluation of the fully off-shell behavior of the
self-energy, all require the determination of the reaction matrix
at various starting energies. Thus, the discrete wave-packet
representation should be useful for such multifold calculations;
also it allows one to obtain a different view on the solution of
the Bethe-Goldstone equation. For this aim, we will take a brief
look at the propagator for the Bethe-Goldstone equation or the
resolvent operator for the corresponding total Hamiltonian.

Let us introduce the free Hamiltonian for two noninteract-
ing nucleons in nuclear matter for a fixed value of the c.m.
momentum K:

Ĥ0(K) =
∫

d3k|k〉H0(k,K)〈k|, (27)

where |k〉 are plane wave state for the relative momentum
k and energy terms H0(k,K) = ε(|k − K|) + ε(|k + K|) are
defined by means of a given sp potential.

Then, Eq. (20) can be rewritten in the operator form,

T̂ (K,W ) = V̂ + V̂ Q̂(K)Ĝ0(K,W )T̂ (K,W ), (28)

where the free resolvent Ĝ0(K,W ) is defined as usually as
Ĝ0(K,W ) = [W + i0 − Ĥ0(K)]−1 for the free Hamiltonian
(27). Below we will omit the explicit dependence of operators
on K where is possible to simplify notations.

It can easily be proven that if one introduces some operator
Ĝ(W ) which satisfies the operator equation:

Ĝ(W ) = Q̂Ĝ0(W ) + Q̂Ĝ0(W )V̂ Ĝ(W ), (29)

then the solution of Eq. (28) (the reaction matrix) can be found
from the formal relation,

T̂ (W ) = V̂ + V̂ Ĝ(W )V̂ , (30)

similarly to the ordinary t-matrix case.
Thus, if one would find some convenient way for the

evaluation of the operator Ĝ(W ) then the reaction matrix could
be calculated straightforwardly from Eq. (30).

For this purpose, let us introduce two orthogonal subspaces
H and HQ of the total momentum space H with respect to
an action of the operator Q̂(K). Here H is the null space
of Q̂(K) (it includes the states |k〉 for which Q̂(K)|k〉 = 0),
while HQ is its orthogonal complement (i.e., it includes the
Pauli-allowed states). Below we will denote projections of the
operators onto these subspaces with additional subindex  or
Q, respectively.

Because Q̂ commutes with Ĝ0(W ), it becomes clear from
Eq. (29) that Ĝ(W ) commutes with Q̂ too. Thus, Eq. (29)
should be considered in the subspace HQ only. Because of the
definition, the inverse operator Q̂−1 and also the operators Q̂

1
2

and Q̂− 1
2 exist in this subspace.

Then Eq. (29) can be rewritten in a symmetric form:

Q̂− 1
2 ĜQ̂− 1

2 = Ĝ0Q + Ĝ0Q Q̂
1
2 V̂ Q̂

1
2 Q̂− 1

2 ĜQ̂− 1
2 ,

which is similar to the resolvent identity (3). So it is
straightforward to derive the following explicit form for the
Ĝ(K,W ) operator:

Ĝ(K,W ) = Q̂
1
2 [W + i0 − Ĥ0Q(K) − Q̂

1
2 V̂ Q̂

1
2 ]−1

Q Q̂
1
2 ,

(31)

where the inverse operator is defined in HQ. Further, one can
introduce the spectral expansion for the operator Ĝ(K,W ) in
terms of eigenstates of the following effective Hamiltonian
HQ(K):

ĤQ(K) = Ĥ0Q(K) + Q̂
1
2 (K)V̂ Q̂

1
2 (K), (32)

which is defined in the HQ [as well as Ĥ0Q is a part of the free
Hamiltonian (27) in HQ].

The operator (31) is nothing else as an analog of the total
resolvent operator g(E) used in an ordinary scattering problem.
Finally, the reaction matrix can be found in this formalism
using the explicit formula:

T̂ (K,W ) = V̂ + V̂ Q̂
1
2 [W +i0− ĤQ(K)]−1

Q Q̂
1
2 V̂ , (33)

which is very convenient because the energy and K dependen-
cies are separated in it.

Thus, one can recognize in the final Eq. (33) an analog of
Eq. (4) for the transition operator in free space which relates the
t matrix and the total resolvent ĝ. So, in quite a similar manner,
one can replace the multiple solutions of the BGE (20) at many
values of relative momentum k with a single diagonalization
of the Hamiltonian matrix ĤQ(K) in HQ subspace, no matter
which particular form of the Pauli-exclusion operator Q̂ is
used (i.e., the angle-averaged or the exact form).

B. Evaluation of the reaction matrix in the discrete
WP representation

Here we apply the discrete formalism, developed in
Sec. II, to derive the reaction matrix using a partial wave
decomposition in Eq. (33). For our illustrative purpose, the
angle averaged approximation for the Q̂(K) operator [2] is
used. In that case, its momentum eigenvalues do not depend
on spin-angular quantum numbers and have the form displayed
in Eq. (22).

Thus, the HQ subspace includes plane wave states with
relative momentum k > k0 [see Eq. (22)] and it is convenient
to introduce the discretization bins in such a way that the
momentum k0 should coincide to the endpoint of some bin.
Thus, we have {|xi〉}N1

i=1 and {|xi〉}Ni=N1+1 sets as the bases for

subspaces H and HQ, respectively, and kN1 =
√

k2
F − K2 .
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In case of the angle-averaged projector, the matrix elements
of the operator Q̂(K) can be found as follows:

Q̂(K) =
∑

α

N∑
i=N1+1

|xi,α〉Qi(K)〈xi,α|,

Qi = 1

di

∫ ki

ki−1

dkQ(k,K), di = ki − ki−1. (34)

If furthermore we assume that also the eigenvalues of the free
Hamiltonian Ĥ0 are independent of the angle between relative
and c.m. momenta, the matrix elements of the effective
Hamiltonian (32) take the form for a coupled-channel NN
interaction:

[H ]js
il,i ′l′ = [H0]iδii ′δll′ +

√
QiV

js
il,i ′l′

√
Qi ′ , (35)

where i,i ′ = N1 + 1, . . . ,N, l,l′ = |j − s|,j + s (or
l = l′ = j for uncoupled channels), and [H0]i is the matrix
element of the free Hamiltonian Ĥ0.

The continuous spectrum of the effective Hamiltonian (32)
starts at the minimal value of H0(k,K) for the Pauli-allowed
space. This threshold value is equal to 2εF . The diagonalization
of this Hamiltonian matrix in HQ subspace results either in a
set of one-channel pseudostates |zl

k〉 with energies El
k or in

a set of coupled-channel pseudostates |z�
k 〉 with eigenvalues

E�
k both expanded over the free WP basis (similarly to the

case of the ordinary NN scattering in a free space discussed
in Sec. II). Also the effective Hamiltonian may have bound
states, i.e., the states |zb

n〉 with energies En which are located
below the threshold (see below).

Thus, in the above discrete WP representation, the total
resolvent Ĝ(K,W ) from Eq. (31) can be approximated by the
following superposition:

Ĝjs(K,W ) ≈
Nb∑
n=1

∣∣zb
n

〉〈
zb
n

∣∣
W − En

+
d∑

�=1

Neff∑
k=1

∣∣z�
k

〉
g�

k (W )
〈
z�
k

∣∣, (36)

where the multiplicity of the continuum d is equal to 2 or 1.
Neff is a number of pseudostates of the effective Hamiltonian
in each channel.

Finally, by using Eq. (33), one gets a simple relation for the
Brueckner reaction matrix which is conveniently represented
as sum of three terms,

T̂ = V̂ + T̂ b + T̂ c, (37)

where T̂ b and T̂ c correspond to bound-state and continuum
contributions, respectively. In the wave-packet partial wave
representation they have the following forms:

T
b,js
il,i ′l′(K,W ) =

Nb∑
n=1

Ṽ
js
il,nṼ

js
i ′l′,n

W − En

, (37a)

T
c,js
il,i ′l′(K,W ) =

∑
�,k

Ṽ
js
il,k,�g�

k (W )Ṽ js
i ′l′,k�, (37b)

where the matrix elements of the interaction are calculated by
using the following relations,

Ṽ
js
il,k� ≡ 〈

xl
i

∣∣V̂ Q̂
1
2
∣∣z�

k

〉 =
∑
l′,i

V
js
il,i ′l′

√
Qi ′C

l′�
i ′k , (38)

and the similar formulas are for the bound-state part.
Let us mention that it is not necessary to employ the WP

basis states in the H subspace. The reaction matrix is deter-
mined from Eq. (37) in the momentum representation in which
the finite-dimensional approximation (36) via pseudostates for
Ĝ(K,W ) is employed.

As is noted above (in particular for the so-called continuous
choice of the energy spectrum of particle and hole states) the
spectrum of the effective Hamiltonian (35) may exhibit eigen-
values En, which are below the threshold of the continuum:

En − 2εF < 0. (39)

Such bound states can lead to numerical instabilities in
conventional methods for solving the BHF equations, while
they just receive special attention in the calculational scheme
presented here according to the T̂ b term. These bound states
embedded in the medium of nuclear matter are also of interest
from a physical point of view. They have been recently studied
in the literature (see, e.g., [23]). For the calculational scheme
presented here, these bound states are a kind of spin-off product
and we will discuss them below.

IV. SOME ILLUSTRATIVE EXAMPLES FOR SYMMETRIC
NUCLEAR MATTER

The examples which we are presenting in this section have
been evaluated for isospin symmetric nuclear matter at various
densities, which are described in terms of the corresponding
Fermi momentum kF . The angle-average Pauli operator (22) is
employed and we consider for this explorative presentation of
the method the NN propagators with simple averages of the
corresponding two-nucleon energies, which are independent
on the angle between relative and c.m. momenta, so that the
solution of the Bethe-Goldstone equation can be done in the
partial wave basis. All results have been obtained for the CD
Bonn potential [18] considering just the proton-neutron inter-
action in all channels. In practical calculations, the free WP
basis of the dimension N = 100 for the relative momentum
variable k was used (for every partial wave) which occurred to
be sufficient to reproduce accurately continuous energy depen-
dencies as well as to approximate correctly the bound states.

A. Bound two-particle states

At first, we want to make a few remarks on the appearance
of two-nucleon bound state configurations in the medium of
nuclear matter. As already noted above these states emerge
as a kind of byproduct in our calculations. From experiment
one knows that in the vacuum there is only one bound
state, the deuteron. It is of course a common feature of all
realistic NN interactions that they reproduce this bound state
at −2.224 MeV in the 3S1 -3D1 channel and do not generate
bound states in any other partial wave.
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FIG. 3. The energy of the two-nucleon bound states in nuclear
matter in the deuteron channel as a function of c.m. momentum K

and Fermi momentum kF .

Naively, one may expect that the Pauli principle reduces
the available phase space and therefore will make it more
difficult to generate bound states. However, in addition to the
NN interaction, a very important ingredient for the formation
of bound states is the density of states close to the threshold.
This density increases in nuclear matter with increasing Fermi
momentum. Therefore the energy of the bound state, E�

k -2εF

becomes more attractive at low densities and exhibits a
minimum of around −4.5 MeV at kF = 0.6 fm−1 as can be
seen from the results displayed in Fig. 3. Because of the Pauli
principle effect discussed above, the binding energy gets less
attractive for larger values of kF . The quasideuteron states,
however, remain up to kF = 1.3 fm−1, which is just below the
empirical value of the saturation density.

The binding energy of the quasideuterons in the medium is
very sensitive to the c.m. momentum under consideration and
decreases very rapidly with increasing c.m. momentum K .

Examples for the density profile for quasideuteron states
are displayed in Fig. 4 as functions of the distance between
the nucleons and compared to the corresponding density
distribution for the “free” deuteron. The most pronounced
difference between the density profiles for the deuteron and the
bound-state structures in the nuclear medium are the ripples
in the latter. The scale of these ripples is determined by the
relative momenta slightly above the Fermi momentum, which
dominates the momentum distribution in the wave functions
of these states. The decrease of the density with increasing r ,
on the other hand, reflects the binding energy of the states and
it is weaker for the states with the larger c.m. momentum.

All these bound-state structures in the medium discussed
so far have been evaluated assuming a pure kinetic energy
for the noninteracting nucleons also in the nuclear medium.
Inclusion of the single-particle self-energy tends to reduce
the binding energies of the bound-state structures, as the
self-energy lowers the density of states around the Fermi
energy. The momentum dependence of the self-energy is often
expressed in terms of an effective mass m∗ [see Eq. (25) and
discussion below]. A detailed evaluation of the single-particle

0 5 10 15r  (fm)

0.1

0.2

0.3

0.4

r2
ρ(

r)
  (

fm
-1
)

FIG. 4. The density of the quasideuteron as a function of relative
distance r for various Fermi momenta kF . The results for kF =
0.5 fm−1 (blue dashed line) and 0.8 fm−1 (red dashed dotted line) have
been determined for a c.m. momentum K = 0 and are compared to
the corresponding density profile of the deuteron in free space (black
solid line). For kF = 0.5 fm−1, a profile for c.m. momentum K =
0.3 fm−1 (green line) is presented also. Note that the density ρ(r) is
multiplied by r2 to enhance the density at large r .

potential yields an enhancement of this effective mass close
to the Fermi energy (m∗ → m), which originates mainly from
the energy dependence of the self-energy (E mass) [6] (see
also discussion below). Therefore the calculations ignoring
the effects of the single-particle potential may be not too bad,
because the effects of the single-particle potential drop out
when they are in the difference EB = En − 2εF . In fact, while
the calculation of the quasideuteron in the nuclear medium at
kF = 1.0 fm−1 (K = 0) yields an energy of −2.9 MeV when
calculated without self-energies included, the corresponding
calculation considering the complete momentum and energy
dependence of the self-energy yields −1.8 MeV.

While there is only one bound state in the vacuum, the
deuteron, in the nuclear medium one may also obtain a bound
state in other partial waves. In our calculations, we observe
bound states also in the 1S0 channel with isospin τ = 1. From
the results displayed in Fig. 5 one can see that the CD Bonn
interaction yields bound-state configurations in this channel
for Fermi momenta kF up to 1 fm−1 with a maximal binding
energy of 0.6 MeV, which is considerably weaker than in the
case of the quasideuteron.

The occurrence of these quasibound states formed as a
superposition of particle-particle states can be interpreted
as an indicator for the onset of the superfluid phase and
the formation of pairing correlations in the corresponding
channels. It should be noted, however, that a consistent
description of short-range and pairing correlations requires
the extension of the normal single-particle Greens function,
to include the anomalous part [5,24–26]. Such a description,
taking into account the depletion of the Fermi sea from
short-range and pairing correlations, can be achieved within
a self-consistent evaluation of Greens function [27,28] and
requires an extension of the Bethe-Goldstone equation to
include particle-particle and hole-hole ladders. It is a challenge
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FIG. 5. The energy of the bound two-neutron states in the 1S0

channel as a function of c.m. momentum and the Fermi momentum.

to extend the technique which was used in this work to include
hole-hole ladders as well.

B. Discussion of the single-particle self-energy

One of the major advantages of the present scheme for
solving the Bethe–Goldstone equation (20) is its efficiency
whenever the reaction matrix is needed for various values
of the energy parameter W . Therefore it is very easy with
this approach to evaluate the whole energy and momentum
dependence of the real and imaginary part of the single-particle
potential or nucleon self-energy U (k1,ω) as defined in (24).

The explicit formula for the self-energy (24) in the case of
the angle-averaged Pauli projector can be rewritten in a form:

U (k1,ω) = 2

k1

∑
jsl

(2j + 1)(2τ + 1)
∫

�(k1)
dkdKkK,

× T
js
ll (k,k; K,W = [ω + H0(k,K) − e(k1)]),

(40)

where the integration domain �(k1) over k and K depends on
the sp momentum k1 value [2]. By using a discrete wave-packet
representation for the reaction matrix and also some integration
mesh {Kn} with weights {�Kn} for the c.m. momentum, the
explicit relation takes the form of a discrete sum:

U (k1,ω̃ + e(k1)) = 2

k1

∑
jsl

(2j + 1)(2τ + 1),

×
∑
i,n

T
js
il,il(Kn,ω̃ + H0(ki,Kn))�Kn.

(41)

Here matrix elements T
js
il,il are defined by Eq. (37). It is

straightforward to extract explicitly the Hartree–Fock part
(caused by the bare interaction V̂ only) and the bound-state
part from the self-energy by using this explicit formula. We
note also that the diagonalization procedure should be done for

FIG. 6. Real part of nucleon self-energy as a function of momen-
tum and energy, calculated for a Fermi momentum kF = 1.3 fm−1.

every value of Kn and the matrix elements for different ki and
ω̃ are calculated by using just the same system of pseudostates
of the effective Hamiltonain.

As an example we show in Figs. 6 and 7 the real and
the imaginary parts of the self-energy U calculated at kF =
1.3 fm−1 for various sp momenta k1 and energies ω. The
pole structure in the Bethe-Goldstone equation leads to an
imaginary part only at energies ω above the Fermi energy εF ,
which is around −37 MeV in our example. This pole structure
is also important for the energy dependence of the real part of
U . It is seen that Re U (k1,ω) is decreasing when the energy
ω is rising being negative, has a minimum around ω = 0, and
then rises at positive values of ω.

As a consequence, the momentum dependence of the single-
particle potential U (k1,ω) at a fixed value of ω is much stronger
than that for the self-consistent definition of the energy variable

FIG. 7. Imaginary part of nucleon self-energy as a function of
momentum and energy, calculated for a Fermi momentum kF =
1.3 fm−1.
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FIG. 8. Real part of the self-energy, calculated at fixed energies
ω = −50 MeV (dashed curve) and ω = 0 MeV (dash-dotted curve)
and found self-consistently following Eq. (24) (solid curve). Example
for a Fermi momentum kF =1.3 fm−1.

according to Eq. (24) if we consider momenta below or slightly
above the Fermi momentum. This is visualized in Fig. 8, in
which we compare results for Re U (k1,ω) for different energies
ω with a single-particle potential found self-consistently.

This feature is well known and was discussed in the
literature as an enhancement of the effective mass at the Fermi
energy from the energy dependence of the self-energy or the
so-called E-mass effect [6,29].

C. Calculation of the sp potential
and the equation of state

As another example, we calculate the self-consistent sp
potential and the equation of state by using the simple effective
mass approximation for the sp energy at each iteration step.
However, to check the reliability of this technique, two types
of such an approximation have been employed, which differ
by the maximal single-particle momentum value kmax

1 used in
the fitting of the effective mass parameters: kmax

1 = 1.5kF (the
calculation 1) and kmax

1 = 4kF (the calculation 2).
It turns out that case 1 in which one makes use of the

smaller fitting interval leads to a slightly smaller effective mass
(m∗/m = 0.694 at kF = 1.3 fm−1) than in case 2 where
one gets m∗/m = 0.746 (here m is the nucleon mass). In
Figs. 9(a) and 9(b) the real and imaginary parts of the sp
potentials calculated from self-consistent iterations by using
these two approximations in energy terms H0 are represented.
One observes clearly that the shape in these figures is
somewhat similar. The calculation 2, however, yields slightly
larger absolute values for the real and imaginary parts. The
differences seem to be small in this figure. Note, however,
that the real part of the self-energy in calculation 2 is up
to 2 MeV more attractive than the corresponding values for
calculation 1.

These differences become even more visible in the binding
energy dependence of the Fermi momentum kF obtained
from the corresponding sp potentials by using the formula
(26). In Fig. 10, we compare the results of our discrete

(a)

(b)

FIG. 9. Real (a) and imaginary (b) parts of the sp potential
calculated self-consistently by using the effective mass approxima-
tions according to calculations 1 (dash-dotted curve) and 2 (solid
curve).

wave-packet technique using the above two approximations
1 and 2 with the results of the fully self-consistent approach
from Refs. [6,30], where angle-independent energy terms in
the BGE with the exact nonaveraged Pauli projector have
been used. The agreement of the latter results with the EOS
found in the WP approach for calculation 2 is somewhat
good, while calculation 1 with a shorter fitting interval for
the effective mass approximation results in a smaller binding
energy. This reflects a real problem with the effective mass
approximation.

Thus, we have demonstrated clearly that the diagonalization
technique developed here is very useful for evaluation of the

FIG. 10. Binding energy per nucleon calculated via the wave-
packet diagonalization technique for the effective mass approxi-
mations in calculations 1 (dashed curve) and 2 (solid curve) in
comparison with the results for the conventional sp spectrum choice
(dotted curve). The dash-dotted curve corresponds to the results of
the fully self-consistent calculations for the continuous choice from
Refs. [6,30].
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Brueckner reaction matrix and the single-particle spectrum in
nuclear matter at various densities. However, the accurate treat-
ment of the nuclear matter EOS still requires also calculation of
three- and few-body correlation contributions for the binding
energy in nuclear matter. This leads to solving complicated
three-body equations for the reaction matrix such as the
Bethe-Faddeev ones. A direct solution of the latter equations
for realistic NN and 3N interactions in fully self-consistent
scheme is a very hard task nowadays. However, it seems that
some effective three-body Hamiltonian can be defined for the
three-body system in the Pauli-allowed subspace [in much the
same way as the two-body one from Eq. (32)], so that the
diagonalization technique might be generalized for a proper
account of three-body correlations as well. Such an approach
will simplify enormously the evaluation of three-body force
contribution in a traditional scheme.

V. SUMMARY

In the present work, we have demonstrated that the accurate
multienergy solution for the Lippmann-Schwinger integral
equation for the single- and coupled-channel t matrix can be
easily found from the direct single diagonalization procedure
for the total Hamiltonian matrix in the L2 basis of the stationary
wave packets. This approach was tested carefully for two
particular NN interaction models both for a single channel
and also coupled-channel transition operators. In all the cases,
a very good accuracy of the direct diagonalization procedure
as compared to the solution of the respective integral equation
was attained. Thus, this approach provides a very efficient way
for finding the coupled-channel off-shell t matrix at various
energies.

This important feature is especially valuable for solving the
few-body scattering problems where the kernel of the Faddeev-
like equation includes the fully off-shell t matrix at many
energies.

At the next step, we have generalized this approach to a so-
lution of the Bethe-Goldstone integral equation and derived an
explicit form of the effective Hamiltonian in the Pauli-allowed
two-particle subspace. Thus, the multiple numerical solutions
for the Bethe-Goldstone integral equation for the reaction
matrix at different values of the relative momentum and energy
have been replaced by a single matrix diagonalization of the
effective Hamiltonian in the Pauli-allowed subspace which is
much simpler and faster.

The method can be extended to modern modifications of the
BHF approach which include more complicated forms of the
particle and hole propagators (such as the pphh propagator
[5]), nonzero temperature regime, etc. Moreover, this direct
diagonalization technique might open a door to reliable and
accurate treatment of three- and few-body correlations in dense
nuclear matter.
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APPENDIX: EIGENVALUES
OF THE COUPLED-CHANNEL TOTAL RESOLVENT

IN THE WPCD APPROACH

1. Approximation for the total resolvent
in a single-channel case

To find the eigenvalues for the total resolvent in the
pseudostate basis, let us remind some results from the general
WPCD approach [8].

The scattering wave packets for some Hamiltonian ĥ are
constructed as integrals of the exact scattering wave functions
|ψ(E)〉 over some discretization intervals [εi−1,εi]Ni=1, (simi-
larly to free WPs):

|z̄i〉 = 1√
�i

∫ εi

εi−1

dE|ψ(E)〉, �i = εi − εi−1. (A1)

These scattering WP states, jointly with the possible bound
states |zb

n〉 of the Hamiltonian, form a WP space for the
Hamiltonian ĥ with the projector [8]:

p =
Nb∑
n=1

∣∣zb
n

〉〈
zb
n

∣∣ +
N∑

i=1

|z̄i〉〈z̄i |, (A2)

where Nb is a number of bound states. The Hamiltonian can
be approximated as a finite sum in such a WP space:

ĥ ≈ pĥp =
Nb∑
n=1

∣∣zb
n

〉
εb
n

〈
zb
n

∣∣ +
N∑

i=1

|z̄i〉ε̄i〈z̄i |, (A3)

where εb
n and the midpoints ε̄i = 1

2 [εi−1 + εi] represent
eigenvalues of the total Hamiltonian for its bound states
and discretized continuum states correspondingly. Then, the
finite-dimensional approximation for the total resolvent in the
basis built takes the same diagonal form:

ĝ(E) ≈ pĝ(E)p =
Nb∑
n=1

∣∣zb
n

〉〈
zb
n

∣∣
E − εb

n

+
N∑

i=1

|z̄i〉gi(E)〈z̄i |, (A4)

where eigenvalues gi(E) are expressed as follows [8]:

gi(E) = 1

�i

[
ln

∣∣∣∣E − εi−1

E − εi

∣∣∣∣ − iπθ (E ∈ [εi−1,εi])

]
. (A5)

Here the generalized Heaviside-type theta function is intro-
duced:

θ (E ∈ [εi−1,εi]) =
{

1, E ∈ [εi−1,εi],

0, E /∈ [εi−1,εi].
(A6)

It should be stressed that the formula (A5) is universal for any
Hamiltonian for which the WP states can be constructed. Thus,
it is also valid for a free resolvent g0(E) eigenvalue in the free
WP basis (8).

The diagonalization procedure for the total Hamiltonian
matrix h in free WP basis {|xi〉}Ni=1 results in a finite set of
eigenvectors {|zi〉}Ni=1 with the respective eigenenergies {Ei}.
Assume further that these eigenfunctions are enumerated in
order of increasing the eigenvalues. If there is a bound state
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in the system, the first state |z1〉 with negative energy E1 is
assumed to be an approximation for this bound state wave
function |zb〉, while all the other eigenfunctions with positive
eiegenvalues are pseudostates representing somehow the total
Hamiltonian continuum. It was shown previously [8] that these
normalized pseudostates can be considered as approximations
for scattering WPs (rather than approximations for non-
normalized scattering wave functions). So one can replace
exact scattering WP functions in Eq. (A4) with corresponding
pseudostates. Finally, the pseudostate approximation (6) for
the total resolvent is found in which the exact eigenvalues
(A5) for scattering WPs are used.

The only problem which arises here is how to construct
the discretization mesh {εi} in such a way that pseudostate
energies {Ei} are coincided with eigenvalues ε̄i from Eq. (A3)
in the exact scattering WP basis. Such a reconstruction of
the intervals [εi−1,εi]Ni=1 can be done approximately by the
following way:

ε0 = 0, εi = 1

2
[Ei + Ei+1], i = 1, . . . ,N − 1,

εN = EN + 1

2
(εN−1 − εN−2). (A7)

Here the midpoints ε̄i of the reconstructed bins differ a little bit
from the exact Ei values, however, with increasing the basis
dimension, this difference becomes smaller and does not cause
visible errors in the whole solution.

Thus, the eigenvalues of the total resolvent in the pseu-
dostate basis can be found by using the formula (A5) in
which endpoints of the energy intervals are calculated from
pseudoenergies Ei using Eq. (A7).

2. Coupled-channel pseudostates and the total
resolvent eigenvalues

In case of the coupled-channel total Hamiltonian ĥ, the
scattering wave packets are constructed from the exact scat-
tering wave functions |ψ�(E)〉 defined in the eigenchannel
representation. So, for this purpose, the continuous spectra
in eigenchannels �=1 and 2 are divided onto intervals

{[ε�
k−1,ε

�
k ]N�

k=1}2
�=1 and the coupled-channel scattering WPs are

introduced:∣∣z̄�
k

〉 = 1√
��

k

∫ ε�
k

ε�
k−1

dE|ψ�(E)〉, ��
k = ε�

k − ε�
k−1, (A8)

similarly to the one-channel case.
Further, one adds the possible bound states and introduces

the WP space for the total coupled-channel Hamiltonian,
similarly to the one-channel case. At last, one gets the
following WP approximation for the total coupled-channel
resolvent,

ĝ(E) ≈
Nb∑
n=1

∣∣zb
n

〉〈
zb
n

∣∣
E − En

+
2∑

�=1

N�∑
k=1

∣∣z̄�
k

〉
g�

k (E)
〈
z̄�
k

∣∣, (A9)

where eigenvalues g�
k (E) are defined by the formula:

g�
k (E) = 1

��
k

[
ln

∣∣∣∣E − ε�
k−1

E − ε�
k

∣∣∣∣ − iπθ
(
E ∈ [

ε�
k−1,ε

�
k

])]
,

(A10)

which is just the same as Eq. (A5) for the single-channel
resolvent eigenvalues where the �-channel interval endpoints
ε�
k should be used.

To treat coupled-channel pseudostates, we have shown
previously [8,14] that the free WP basis states in the initial
unperturbed channels (e.g., channels corresponding to the
fixed orbital momentum l value) should be constructed in
such a way that the free Hamiltonian matrix has degenerate
discrete eigenvalues [8,14]. In such a case, the spectrum of the
total Hamiltonian matrix h consists of pairs of slightly shifted
nearby eigenenergies (except possible bound states). Thus,
this spectrum can be separated onto two branches. Finally,
these two separated branches of eigenvalues are considered as
discretized eigenchannel spectra.

For the two-channel case discussed in the present paper, this
separation is done just by dividing the eigenvalues of the total
Hamiltonian matrix with even and odd indices. Further, the
discretization endpoints are built for each of two eigenchannels
� = 1,2 separately from the eigenvalues E�

i by using the
algorithm similar to the single-channel one (A7).
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