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Coexistence and B(E2) values in 72Ge
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An earlier coexistence model of Ge nuclei is applied to E2 strengths connecting low-lying 0+ and 2+ states
in 72Ge. New data have smaller uncertainties and, for the first time, a value for the transition strength from the
third 2+ state to the second 0+ state. This B(E2) for the third 2+ state clearly indicates that it is the one that
should be included in the mixing, rather than the second 2+ state. My results confirm that the 0+ states are
maximally mixed, the 2+ states are weakly mixed, and the E2 matrix element involving the lower 0+ basis state
is significantly larger than the one involving the second 0+ basis state.
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I. INTRODUCTION

Many years ago, Carchidi and co-workers developed a
coexistence model [1–3] that allowed self-consistent treatment
of nuclear data for a chain of isotopes. Initially intended for
use in analyzing results of (t,p) and (p,t) experiments [1,4–6],
the model was later extended to treatments of α transfer [7,8],
proton occupancies [9], and E2 transition strengths [4,10].
Of special interest for the present purposes is the topic of
B(E2)’s connecting 0+ and 2+ states in 72Ge. These strengths
were analyzed long ago [10] in the coexistence model just
referred to. Two recent developments have prompted a return
to this problem: (i) New values of E2 transition strengths have
appeared [11] with somewhat improved uncertainties, and for
the first time, a value for the transition strength from the third
2+ state to the second 0+ state; (ii) the understanding of the
structures of the low-lying 2+ states in 72Ge has changed over
the years [10,11].

In a two-state model of 0+ states in 68−78Ge, analysis [1] of
2n transfer data produced a set of basis states that had several
simple properties: (i) The energy difference between the basis
states turned out to be a linear function of mass number A; (ii)
the mixing matrix element between the basis states was nearly
constant over the entire isotopic chain; (iii) the lower basis
state in 68,70Ge became the upper basis state in 74,76Ge with
a crossover at 72Ge. Calculations with these wave functions
reproduced 0+ (t,p) and (p,t) cross-sectional ratios in all Ge
nuclei [1].

These wave functions were later confronted with E2 transi-
tions in 70,72Ge where all four matrix elements connecting the
first two 0+ and 2+ states were known [12–14]. Calculations
[10] were able to reproduce the E2 strengths, to provide
the amount of 2+ mixing, and to determine the underlying
E2 strengths connecting basis states—while still maintaining
agreement with 2n transfer. In 72Ge, we demonstrated that the
second 2+ state did not participate in the mixing and the upper
0+ basis state did not have an appreciable E2 connection to
any 2+ state.

II. ANALYSIS AND RESULTS

In the earlier analysis [10], the first and second 2+ states of
72Ge were the focus. However, the second 2+ state has very
small strength for both 0+ states, contrary to the expectation

in a two-state model. The first two 0+ states have long been
thought to be maximally mixed ([1] and references therein])
with approximately equal admixtures of two basis states. The
earlier E2 analysis concluded that the second 0+ basis state
was not connected to either of the first two 2+ states. With
the measurement of the B(E2) connecting the third 2+ state
to the second 0+ state [11], the reason is obvious—it is the
third 2+ state that should be included in the mixing. The
experimental values of E2 transition matrix elements that are
relevant to the present analysis are listed in Table I [11]. It
can be noted that the E2’s have the expected property: the
sum of B(E2)’s from the ground state (g.s.) to the first and
third 2+ states is approximately equal to that from the excited
0+ state—0.211(4)e2 b2 vs 0.200(11)e2 b2 as expected for
nearly maximal mixing of the 0+ states. Thus, in the analysis
presented here, I consider two-state mixing between the first
and the third 2+ states. The second 2+ state is apparently the
band head of a K = 2 band [11]. I denote 0+ basis states as
ϕg and ϕe, 2+ basis states as ψg and ψe where the subscripts
g and e refer to ground and excited bands, respectively.

I write

g.s. = aϕg + bϕe, 0+
2 = bϕg − aϕe;

2+
1 = Aψg + Bψe, 2+

3 = Bψg − Aψe.

I define Mg = 〈ϕg|E2|ψg〉, Me = 〈ϕe|E2|ψe〉, and I as-
sume there is no strength connecting g to e. Then, we have
four unknowns, viz., two mixing amplitudes, two E2 matrix
elements, and four experimental numbers to fit with labels 0–3
in Table I. In the notation of Table I, the experimental and

TABLE I. Relevant E2 matrix elements in 72Ge [11].

Label Initial Final M(E2) (e b)

0 01 21 0.457(4)

1 21 02 0.35+0.01
−0.02

01 22 0.020(1)

02 22 0.0144(6)

2 01 23 0.044(1)

3 02 23 0.279+0.002
−0.004
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FIG. 1. The ratio of mixing amplitudes in the two lowest 0+ states
in 72Ge is plotted vs the amplitude ratio for the first and third 2+ states
for agreement with E2 matrix elements labeled 0–3 in Table I. (See
the text.)

basis-state M’s are related by the expressions [4],

M0M3 − M1M2 = MgMe and �M2
i = M2

g + M2
e .

These constraint equations are similar to other sum-rule
equations, but these are not defined in terms of nuclear shape.

Taking ratios, with the matrix element labeled 0 as the
denominator in each case, produces three equations in three
unknown ratios: x = b/a, y = B/A, and R = Me/Mg . With
the constraints above, inspection demonstrates solutions near
R = 0.3. The x values from the equations labeled 1–3 are
plotted vs y in Fig. 1 for R near this value. We note that the
three are equal for y near 0.40. Results of the best fit are listed
in Table II. Amplitudes derived from these best-fit ratios are
listed in Table III. Values of b and B are compared there with
those from Ref. [11]. Agreement is excellent.

Changing the sign of the matrix element labeled 2 produces
another slightly different fit, whose parameters are also listed
in Tables II and III. We note that both fits have the properties
that the 0+ states are approximately maximally mixed, the 2+
states are weakly mixed, and the value of Me is significantly

TABLE II. Results of best fit to four M(E2)’s labeled 0–3 in
Table I.

Parameter x = b/a y = B/A R = Me/Mg

Value fit 1 0.970(5) 0.395(5) 0.297(1)
Value fit 2 0.96(1) 0.283(3) 0.404(2)

TABLE III. Derived quantities from best-fit parameters.

Quantity b B Mg (e b) Me (e b)

Value fit 1 0.696(2) 0.367(4) 0.615 0.182
Value fit 2 0.693(4) 0.272(3) 0.594 0.240
Reference [11] 0.694(4) 0.360

smaller than Mg . These conclusions all agree with the earlier
analysis [10].

III. DISCUSSION AND SUMMARY

The present coexistence model has the advantage that
no information about the properties of the basis states is
needed as input—this information emerges from the fit. In
this case, the resulting structural information consists of the
extracted values of Mg and Me. There is no predetermined
assumption of shape coexistence, spherical-deformed mixing,
or axial-triaxial mixing. In the present case, the smallness
of the resulting Me suggests that the upper 0+ basis state is
nearly spherical with no strong E2 to any 2+ state—again
as concluded earlier [10]. Reference [13] later stated “We,
therefore, conclude that there is no rotational band based on
the 0+

2 . This strongly suggests that the 0+
2 state has a spherical

shape and can be treated as an “intruder” state.” Reference [11]
also found nearly maximal mixing for the 0+ states. They
concluded that their analysis “provided compelling evidence
for the coexistence of two triaxially-deformed configurations
associated with the 0+

1 and 0+
2 states.” I do not disagree with

this conclusion, but my results do not require it. It is good
enough that the second basis states are almost spherical.
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