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We further investigate the cluster emission from heavy nuclei beyond the lead region in the framework of
the preformed cluster model. The refined cluster-core potential is constructed by the double-folding integral of
the density distributions of the daughter nucleus and the emitted cluster, where the radius or the diffuseness
parameter in the Fermi density distribution formula is determined according to the available experimental data on
the charge radii and the neutron skin thickness. The Schrödinger equation of the cluster-daughter relative motion
is then solved within the outgoing Coulomb wave-function boundary conditions to obtain the decay width. It is
found that the present decay width of cluster emitters is clearly enhanced as compared to that in the previous case,
which involved the fixed parametrization for the density distributions of daughter nuclei and clusters. Among
the whole procedure, the nuclear deformation of clusters is also introduced into the calculations, and the degree
of its influence on the final decay half-life is checked to some extent. Moreover, the effect from the bubble
density distribution of clusters on the final decay width is carefully discussed by using the central depressed
distribution.
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I. INTRODUCTION

Since the discovery of radioactivity by Becquerel in 1896,
nuclear physics has entered into the field of natural science.
Subsequently, at the initial stage of nuclear physics, α decay
was identified and recognized in a series of experiments. On
the other side, unstable heavy nuclei or superheavy nuclei
would also decay via fission (such as spontaneous fission)
to the stable products. As the intermediate case between
the abovementioned disintegration modes, heavier cluster
emissions were first conjectured to exist in the 1980s. Based
on the superasymmetric fission model (SAFM), Sándulescu,
Poenaru, and Greiner [1] theoretically predicted this new kind
of radioactive mode, triggered by the strong interaction and
Coulomb interaction as well. Lu et al. [2] in particular indi-
cated the possibility of carbon emission and the most potential
emitters, 223,224Ra. Very impressively, this phenomenon, 14C
emission from 223Ra, was really and truly confirmed in the
experiment proposed by Rose and Jones 4 yr later [3]. Since
then, a great deal of effort has been devoted to this fascinating
subject, with regard to both the experimental and theoretical
aspects [4–6]. Up to now, more than 20 cluster emissions
in various actinide isotopes, decaying to the doubly magic
nucleus 208Pb or its neighboring nuclei, have been discovered
and reported via the continuous detection of such a peculiar
and extremely rare decay mode [4,5]. Moreover, it is of great
interest to denote that the concept of heavy-particle emission
was recently expanded to allow emission of quite heavier
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clusters (Zc > 28) from superheavy elements and daughter
nuclei around the doubly magic nucleus 208Pb, implying the
possibility of another decay mechanism of superheavy nuclei
[7,8]. This speculation stimulated the renewed interest in
cluster radioactivity to some extent as well.

As is known to all, the spontaneously emitted particle in
cluster decay is heavier than an α particle but lighter than the
lightest fragment in nuclear fission. In this sense, it appears to
be natural and straightforward to deal with the cluster emission
from two aspects, namely, the fissionlike theory [1,7–14]
and the α-like theory [15–23]. Within the former picture,
the decay process is treated as a consecutive evolution of
geometrical shapes and the formation of clusters is considered
to be involved in the adiabatic rearrangement of parent nuclei.
Besides the (analytical) SAFM method actually belonging to
this category [7–9], the generalized liquid-drop model has
been previously conducted to describe the cluster emission,
where the macroscopic deformation energy plus the empirical
microscopic correction was employed to give the potential
barrier [12]. Recently, Denisov [13] combined the extended
Thomas-Fermi approach accompanied by the microscopic
shell correction with Skyrme and Coulomb forces to establish
a multidimensional model of cluster radioactivity. In the
framework of the Coulomb and proximity potentials [14], the
cluster formation probability is evaluated as the penetrability
through the internal part of the potential barrier, similar to the
previous work of Poenaru and Greiner [9]. Meanwhile, this
treatment leads to the recognition of different preferences for
the type of emitted cluster in the trans-tin and the trans-lead
regions. From the inverse perspective, the cluster preformation
factor (Pc) can be extracted by dividing the experimental decay
width by the product of the penetration probability and the
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assault frequency, and the obtained values agree with previous
ones reasonably well [22,23]. As for the traditional α-decay
approach, the cluster is recognized to be preformed in the
decaying nucleus before its penetration along with a certain
preformation probability. The Pc value can be calculated
either with some simply analytical assumption [20,21] or
via solving the Schrödinger equation for the dynamic flow
of mass and charge [17–19]. On the basis of the latter
choice, the preformed cluster model (PCM) quantitatively
well describes the lifetimes of cluster emitters. By introducing
the effects of nuclear deformations and orientations [18], the
PCM has been improved in the recent investigation. The
effective cluster model, together with the simple expression
of the cluster preformation factor (related with the size of the
clusters and daughters), has been employed to successfully
calculate half-lives of cluster radioactivity [20,21]. More-
over, detailed progress on the microscopic theory of cluster
decay has been reviewed in Ref. [6] in terms of structural
aspects.

In fact, no matter which approach is used, the preformation
and penetration probabilities of the emitted cluster crucially
depend on the type of interaction potentials between the cluster
and the residual daughter [19]. Hence the accurate components
and appropriate knowledge of the potential barrier are of great
significance for the full understanding of this important ra-
dioactive mode. Previously, we systematically investigated the
α-decay half-lives within the density-dependent cluster model,
where the double-folding potential is sensitively connected
with the proton and neutron density distributions of α particles
and core nuclei. We have recently enhanced the density-
dependent cluster model with the deduced parametrized
density distribution of daughter nuclei from the experimental
data of root-mean-square (rms) nuclear charge radii to discern
the α decay from natural nuclides [24]. Meanwhile, inspired
by the significant role of nuclear density, special attention
has been paid to the influence of differences between the
proton and the neutron density distributions in daughter nuclei
on the α-decay half-life [25,26]. Consequently, it is quite
interesting and desirable to understand the effect of the density
distribution of the cluster-core system on the cluster-emission
process. More strikingly, a few possible emitters appear exactly
to be the candidates of bubble nuclei [27,28]. Whether the
central depression in the density distribution of these clusters
would bring about a large modification in the final half-life
result is a rather interesting subject and is investigated in
the following. Moreover, these daughter nuclei in cluster
emissions are just around the typical nucleus 208Pb, and there
are available experimental data on the neutron skin in addition
to plenty of data on the charge radii [29–33]. This actually
provides a very suitable condition for us to obtain the specific
parameters in the density distribution expression according
to the experimental data instead of the artificial selection. In
the next section, we give a brief overview of the theoretical
model, especially of the density distribution of daughters and
clusters. A series of calculated results including the detailed
comparison of different cases is presented in Sec. III, and
the effect of deformation in clusters is somewhat discussed
as well. A summary and sequential conclusions are given in
Sec. IV.

II. THEORETICAL APPROACH

A. The cluster-core system within the density-dependent
cluster model

After the cluster is assumed to be preformed in the
decaying nucleus, the parent nucleus can be considered as
a two-body system consisting of the cluster interacting with
the daughter nucleus. There is no doubt that the interaction
potential between the two ingredients is the initial and crucial
input for the half-life calculation of cluster emitters. In the
present model, the Coulomb potential of the cluster-core
system is obtained by double-folding integrating the proton
density distributions of clusters and daughters and the standard
proton-proton Coulomb interaction. In contrast, the nuclear
potential is constructed by the double-folding integral of the
respective density distributions of the cluster and the core
nucleus and the effective nucleon-nucleon (NN ) interaction
[24]:

VN (r) =
∫∫

dr1dr2
[
ρn

1 (r1) + ρ
p
1 (r1)

][
ρn

2 (r2) + ρ
p
2 (r2)

]
× υ(s = |r2 + r − r1|), (1)

where r is the separation distance between the mass centers
of the cluster and the daughter nucleus. As far as the
nuclear part is concerned, the effective NN interaction is
chosen as the popular M3Y-Reid type interaction, which has
been successfully applied in radioactivity studies [20,21,23]
and nuclear reaction calculations [34,35]. This specific form
including two direct terms with different ranges plus an
exchange part, introduced by Satchler and Love [34], is given
by

υ(s) = 7999
exp(−4s)

4s
− 2134

exp(−2.5s)

2.5s
+ J00(Ec)δ(s),

(2)

where the zero-range potential J00(Ec) denoting the single-
nucleon exchange effect is written as

J00(Ec) = −276[1 − (0.005Ec/Ac)], (3)

with the kinetic energy Ec and the mass number Ac of the
cluster, to ensure the antisymmetrization of identical particles
in the cluster and the core nucleus to some extent. The density
distribution of the daughter nucleus (ρ1) and the cluster (ρ2) is
depicted via the widely used two-parameter Fermi (2pF) form,

ρ
ξ
1,2(r1,2) = ρ

ξ
0

1 + exp
( r1,2−R

ξ
1/2

aξ

) , (4)

where ξ is p or n, and the ρ
ξ
0 is determined by integrating

the density distribution equivalent to the proton number or the
neutron number of the corresponding nucleus. The half-density
radius R

ξ
1/2 is related to the mass number of the cluster and the

daughter, R
ξ
1/2 = cξA

1/3
1,2 . As a consequence, the rms proton

and neutron radii of the cluster or the daughter nucleus can be
obtained by

Rξ ≡
√

〈r2〉 =
[∫

ρ(r)r4dr∫
ρ(r)r2dr

]1/2

, (5)
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and the details about the choice of the parameter cξ and the
diffuseness aξ are presented in the next subsection. Once
the nuclear and Coulomb interaction potentials are conducted
via the above procedure, the following process proceeds by
solving the stationary Schrödinger equation, aiming at the
relative motion of the emitted cluster with respect to the core
nucleus,

(
− �

2

2μ

d2

dr2
+ V (r)

)
ϕn�j (r) = Qϕn�j (r). (6)

Here the total interaction potential V (r), composed of the
attractive nuclear term, the repulsive Coulomb term, and the
additional centrifugal part, is written as

V (r) = λVN (r) + VC(r) + �(� + 1)�2

2μr2
, (7)

where μ is the reduced mass of the cluster-core system
measured in the unit of the nucleon mass μ = AcAd

Ac+Ad
, and

� is the angular momentum carried by the emitted cluster.
Because the decay energy Q is very sensitive to the final
half-life calculation and its accuracy cannot be sufficiently
predicted in a given potential, the renormalization factor λ of
the nuclear potential is set to adjust the experimental Q value.
In the meantime, the quantum number n, namely, the number
of the internal nodes in the radial wave function, is chosen
according to the Wildermuth and Tang condition [36],

G = 2n + L =
Ac∑
i=1

(
g

Ac+Ad

i − g
Ac

i

)
, (8)

to satisfy the main effect of the Pauli principle besides the
partial absorbtion of this effect into the cluster-core nuclear
potential. In the above expression, g

Ac+Ad

i are the oscillator
quantum numbers of the ingredient nucleon in the cluster, and
their values are confined to guarantee the cluster completely
outside the shell occupied by the core nucleus. The g

Ac

i are the
interior quantum numbers of the Ac nucleons for the cluster
in the shell model. In this way, the quantum numbers of the
cluster are related to the shell-model quantum numbers of these
nucleons forming the cluster. Here we take gi = 6 for nucleons
beyond the N = 126 neutron shell closure, gi = 5 for nucleons
with 82 < Z and N � 126, and gi = 4 in the region of 50 < Z
and N � 82. Subsequently, the quasibound solution ϕn�j (r) is
achieved with the outgoing Coulomb wave-function boundary
condition due to the dominant position of the Coulomb and
centrifugal potentials [21,37]:

ϕn�j (r) = N�j [G�(kr) + iF�(kr)], (9)

where N�j is the normalization constant, and G� and F� are,
respectively, the irregular and regular Coulomb wave functions
with the wave number k = √

2μQ/�. The probability rate
per second that the cluster goes through a surface element is
P�j = |ϕn�j (r)|2/r2vdS, where the velocity v of the cluster at
large distances is v = �k/μ and dS = r2 sin θdθdφ. Provided
that |G�j + iF�j |2 = 1 at large distances and that the inner
and outer solutions should be matched at the large distance R
beyond the range of the nuclear potential, one can obtain the

decay width by integrating P�j over the angles,

� = �
2k

μ
|N�j |2 = �

2k

μ

|ϕn�j (R)|2
G�(kR)2 + F�(kR)2

, (10)

which yields almost the same value regardless of the choice of
R as long as it has been located in the regime with varnishing
nuclear potential. It is then indispensable to include the cluster
preformation factor Pc, measuring the extent to which the
cluster is formed at the nuclear surface, to calculate the
absolute half-life of cluster decay. The clustering phenomenon
has now been considered as one basic dynamic in nuclear
structure and reaction, and cluster structure in fact plays an
important role not only in light nuclei [38] but also in heavy
ones [39]. As mentioned before, the cluster preformation
probability can be taken into account from different aspects and
basements. In the present study, the Pc value can be extracted as
the ratio of the experimental decay width to the calculated one
via the formula Pc = �expt/�calc, in which the experimental
decay width �expt is related to the experimental half-life by the
well-known relationship �expt = � ln 2/T1/2. Based on some
available experimental cases, the formation of clusters should
decrease considerably in magnitude with the increasing of their
size. Moreover, a given cluster can emit from different parent
nuclei, somewhat requiring that the preformation factor should
correlate with the size of the parent nucleus or its daughter.
With these factors in mind, the cluster preformation factor is
supposed to behave as follows [21]:

log10 Pc = a
√

μ(ZcZd )1/2 + b, (11)

where Zc and Zd are the atomic numbers of the cluster
and the daughter nucleus, respectively, and the parameters
a and b are to be determined. It should be noted that the
objective of this article is actually focused on the effect of the
density distributions of clusters and daughters on the decay
width, and the Pc values are consequently expected to preform
differently regarding different density distributions. As well,
it is exciting to check whether the trend of Pc matches such
a linear relationship, which is valuable for the description of
cluster emission half-lives especially for the unknown emitters
such as superheavy nuclei and the lighter nuclei beyond the tin
region.

Before concentrating on the parameters involved in the
daughter and cluster densities, we take into account the effect
that nuclear deformation deviated from spherical symmetry
has had on cluster emission. As far as available cluster decay is
concerned, the daughter nucleus is mostly in the close location
around the doubly magic nucleus 208Pb, and these nuclei are
generally spherical or near spherical. By contrast, several
emitted clusters are considered to possess deformed shapes.
The cluster emitter can then be figured as a system comprising a
spherical daughter nucleus interacting with an axial-symmetric
cluster. The deformed density distributions of clusters are
taken as the 2pF form all the same, but accompanied by an
orientation-dependent half-density radius,

R
1/2
2 (θ ) = cA

1/3
2 [1 + β2Y20(θ ) + β4Y40(θ )], (12)

where β2 and β4 are the quadrupole and hexadecapole
deformation parameters [40]. The rms nuclear radii are then
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obtained as

R ≡
√

〈r2〉 =
[∫∫

ρ2(r,θ )r4 sin θdrdθ∫∫
ρ2(r,θ )r2 sin θdrdθ

]1/2

. (13)

The orientation-dependent double-folding potential can then
be evaluated via the sum of different multipole components
after the multipole expansion of the deformed density is
adopted (see details in Refs. [21,35] and references therein).
The daughter nucleus can be in any direction with respect to the
symmetrical axis of the deformed cluster, leading to a different
partial decay width �(β) depending on this orientation. Hence
once �(β) is evaluated via the abovementioned spherical
situation, the final decay width can be simply reached by
averaging the partial decay width all along the direction,

� =
∫ π/2

0
�(β) sin βdβ, (14)

where β is the orientation angle between the spherical daughter
and the symmetric axis of the cluster.

B. Parameter choice in the density distribution of clusters
and daughter nuclei

In the previous studies based on the double-folding poten-
tial, the particular parameters in the 2pF formula of the density
distribution are usually fixed as the constants R1/2 = 1.07A1/3

fm and a = 0.54 fm, within which the matter radius of heavy
nuclei would be approximately produced as Rrms ≈ 1.2A1/3.
Given that there have been a number of available experimental
data on nuclear charge radii, it appears to be more reasonable
and convincing to obtain these parameters from the exper-
imental nuclear radii, while the crucial cluster-core system
potential is quite sensitive to the density distribution. We have
recently paid special attention to long-lived α-decaying nuclei
considering the density distributions (2pF) of daughter nuclei
in this way [24]. It has been found that the agreement between
theory and experiment has improved and the predicted α-decay
half-lives have been reduced particularly for several probable
candidates of natural α emitters. More strikingly, it has been
found that the neutron skin thickness is considerable for heavy
nuclei like these daughter nuclei in cluster or α emissions.
Therefore the proton and neutron density distributions should
be distinguished to detect their effects on the cluster decay
width. Fortunately, these daughter nuclei in cluster emissions
usually possess experimental data about the nuclear charge
radii and the available value of the neutron skin, offering
an excellent opportunity for our following work. Meanwhile,
some emitted clusters may be possible bubble nuclei and then
the peculiar density distribution in their central part should
receive special attention. To begin with, the proton and neutron
density distributions of daughter nuclei are believed to exhibit
different parameters, (cp

1 ,a
p
1 ) and (cn

1 ,a
n
1 ), despite the same

2pF form. Their differences are deduced from the the neutron
skin thickness, defined by the discrepancy between the rms
neutron radius and the rms proton radius: �Rnp = Rn − Rp.
As mentioned in Refs. [30,31], there are two extreme cases
for the density distribution, namely, the “neutron skin” type
with cn > cp and an = ap and the “neutron halo” type with
cn = cp and an > ap. It should be noted that these experiments

in antiprotonic atoms preferentially support the latter situation
of “neutron halo” density distribution. In contrast, we find
that the final half-lives of cluster emissions have little change
within the two cases actually, which is consistent with the
results in Ref. [25]. Therefore, we mainly concentrate on
the halo type density distribution in the following, for the
sake of convenience and clearness. In detail of this type,
the diffuseness parameter in the proton density distribution
of daughter nuclei is still fixed at a

p
1 = 0.54 fm as usual,

while the half-density parameter c
p
1 is determined in terms of

their experimental charge radii via the relationship (5). When
it comes to the neutron density distribution, the diffuseness
parameter an

1 can then be obtained according to the rms neutron
radius, Rn = Rp + �Rnp, with the same half-density parame-
ter cn

1 = c
p
1 . By contrast, the situation in light nuclei, i.e., these

emitted clusters, is assumed to be simpler considering that the
deviation between the proton and neutron numbers is small and
their values are small as well. Hence the proton and neutron
density distributions are assumed to behave in the same 2pF
along with the identical parameters in the present work. In
addition, the introduction of this difference in the model is
convenient and direct once we receive more information on
the neutron skin of clusters.

Nowadays, rms nuclear charge radii and corresponding
charge distributions have been accumulated for a great deal
of nuclei all over the nuclear chart, due to various effective
experimental methods such as electron scattering, muonic
atom spectra, optical and Kα x-ray isotope shifts, etc. [29].
On the contrary, the measurement on neutron rms radii
is quite restricted along with limited experimental data,
and furthermore the uncertainties of extracted neutron radii
are much more than those of charge radii even up to an
order of magnitude. Even if the typical nucleus 208Pb is
concerned, the extracted value of the neutron skin is still
accompanied by large error bars. For instance, its �Rnp

value is confined to 0.33+0.16
−0.18 fm through the parity-violating

electron scattering performed by the lead radius (PREX)
collaboration of JLab, and the neutron skin thickness is fixed
as �Rnp = 0.15 ± 0.03(stat.)+0.01

−0.03(sys.) fm from coherent
pion photoproduction cross sections. Regardless of the large
statistical errors, the �Rnp is found to be in a linear relationship
with the neutron-proton asymmetry term I = (N − Z)/A on
the basis of experimental values of 26 stable nuclei from the
antiprotonic atoms, which agrees well with other theoretical
calculations [30,31]. The specific expression of this linear
relationship is �Rnp = (0.90 ± 0.15)I + (−0.03 ± 0.02) fm,
and this formula populates the �Rnp = 0.160(52) fm for
208Pb, being consistent with both the available experiments
and theoretical reports. In the present calculations, we adopt
this concise and reliable formula to evaluate the neutron skin
thickness for these daughter nuclei involved in the cluster
emissions.

To clearly demonstrate our calculations, the concerned
cases are classified in detail as follows.

(1) The half-density radius parameter c and the diffuseness
a in the proton and neutron density distributions of both
clusters and daughter nuclei are all fixed at identical
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constants (�Rnp = 0). This case is denoted as “calc
1.”

(2) These specific parameters in the density distribution of
daughter nuclei are determined by the aforementioned
rule of the neutron halo type, while those in clusters
are still taken as the fixed values. This case is denoted
as “calc 2.”

(3) This case is the same as calc 2 but the parameters in the
density distribution of clusters are obtained according
to their charge radii. This case is denoted as “calc 3.”

Through the detailed comparison of calculated results in
the three different choices (regarding the density distribution
of clusters and daughter nuclei), the effect of the density
distribution on cluster emissions can be deeply investigated.
Moreover, a three-parameter Fermi (3pF) formula is employed
to further describe the density distribution of clusters:

ρ2(r2) = ρ0
(
1 + ωr2

2 /R2
1/2

)
1 + exp

( r2−R1/2

a

) , (15)

for detecting the influence of the central depression of density
in clusters on the cluster decay. Here ω (>0) affects the central
density, and the degree of depression in the central density
increases with the ω value increasing. For a better insight,
the depression degree, i.e., the quantitative bubble effect, is
defined to measure how the central density is depressed:

D = ρmax − ρcent

ρmax
× 100%, (16)

where ρmax and ρcent, respectively, represent the maximum
density and the central density.

III. NUMERICAL RESULTS AND DISCUSSION

As we all know, the cluster-core potential is pivotal for
calculating the decay width of cluster emitters. Consequently,
it is quite interesting to directly check the change of total
potential along with the different cases of density distribution
in daughter nuclei and clusters. Here we take the cluster
radioactivity 222Ra → 208Pb + 14C for illustration, involving
a spherical cluster (β2 = β4 = 0) and then bringing an
orientation-independent potential. Figure 1 presents the total
interaction λVN + VC , including the situation in the neutron
skin type density distribution of 208Pb to compare with the
neutron halo case as well. In the neutron skin case, the
diffuseness of proton and neutron densities is set as the same
value ap = an = 0.54 fm, while the radius parameters cp

and cn are separately determined from the rms proton and
neutron radii. On one hand, provided that the neutron skin
thickness brings a more expanded neutron distribution, the
potential well of the cluster-core system would be wider
and the interior potential would be reduced as well. Indeed,
from this figure, one can see that the total potential of case
calc 1 with �Rnp = 0 is the deepest in the inner region, but
gradually ascends beyond those in other cases in the middle
part of the barrier and slightly locates above the other lines
in the prefragmentation region before the coincidence of all
potentials. Additionally, this situation would be compensated
by the introduction of the deduced density distribution of the
cluster from the experimental nuclear radii, due to a little more
compact density of the cluster, as displayed by the magenta
line in Fig. 1. In the meantime, the total potential of the neutron
halo case is located below that of the skin case in the beginning
region similarly due to the more extended neutron distribution
in the former one, but they would generally follow the same

FIG. 1. Schematic diagram of the total interaction potential V (r) = λVN (r) + VC(r) between the daughter 208Pb and the cluster 14C for
the cluster emitter 222Ra. The black line denotes the case calc 1 with �Rnp = 0, the red dashed line presents the neutron skin type distribution
with �Rnp = 0.160 fm, the blue dotted line gives the halo type case, while the magenta dash-dotted line indicates the halo daughter with the
deduced density distribution of clusters (calc 3). The magnified version of the potential in the range of r = 8–12 fm is plotted in the right panel
for clarity.
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line in other regimes. On the other hand, the barrier penetration
probability of the cluster depends on the barrier beyond the
the decay energy Q in an exponential law. Meanwhile, this
primary area in case calc 1, without considering the neutron
skin, is comparable to that in case calc 3 but larger than those
in cases of neutron skin or halo type daughter, which has been
particularly shown in the right panel of Fig. 1. This indicates
that the decay width of calc 1 should be clearly reduced as
compared to that in either the halo or the skin case with
reconsideration of density distribution in the daughter nuclei,
which will be specifically examined in the representation
of calculated results. The extent of this reduction would be
decreased with the weight of specific density in the cluster
(calc 3), which is further presented in the following calculated
results. It is important to point out that the two potential curves
in halo and skin types of daughter nuclei basically coincide
except for the initial inner region, which has little to do with
the penetration process. As a result, it appears to be reasonable
and reliable to approve the claim that the final decay widths
in the two cases are quite close to each other, and we then just
give the calculated results from the preferential halo treatment
of the neutron skin thickness in experiments [30,31]. Next, we
turn to the detailed calculation of cluster emissions including
even-even and odd-A parent nuclei.

Table I represents the detailed calculated results within the
three aforementioned cases with different considerations of
density in daughters and clusters. The first column denotes
each cluster decay, and the corresponding decay energy [41] is
given in the second column. The extracted Pc = �expt/�calc

TABLE I. Comparison of calculated results from various cases
with different density distributions of daughter nuclei and clusters, as
mentioned in the previous section. Note that the logarithm of the Pc

values, extracted by �expt/�calc, is actually directly connected with the
calculated decay width. Hence the presented Pc values could indicate
the effect of density distributions on cluster decay.

Transition Q (MeV) log10 log10 log10

P calc1
c P calc2

c P calc3
c

221Fr →207 Tl+14C 31.29 −4.30 −5.59 −4.26
221Ra → 207Pb+14C 32.40 −4.28 −5.59 −4.26
222Ra → 208Pb+14C 33.05 −3.60 −4.91 −3.58
223Ra → 209Pb+14C 31.83 −4.94 −6.29 −4.95
224Ra → 210Pb+14C 30.54 −3.43 −4.82 −3.49
226Ra → 212Pb+14C 28.20 −3.64 −5.10 −3.76
228Th → 208Pb+20O 44.72 −4.06 −5.93 −4.72
230Th → 206Hg +24Ne 57.76 −5.20 −7.44 −5.59
231Pa → 208Pb+23F 51.84 −7.18 −9.25 −7.88
231Pa → 207Tl +24Ne 60.41 −6.33 −8.47 −6.62
230U → 208Pb+22Ne 61.39 −4.90 −6.91 −5.27
232U → 208Pb+24Ne 62.31 −5.35 −7.58 −5.72
233U → 209Pb+24Ne 60.49 −7.14 −9.40 −7.53
233U → 208Pb+25Ne 60.78 −6.36 −8.88 −7.21
234U → 210Pb+24Ne 58.83 −5.59 −7.94 −6.08
234U → 208Pb+26Ne 59.47 −4.99 −7.18 −5.28
234U → 206Hg +28Mg 74.11 −6.11 −8.39 −6.61
236Pu → 208Pb+28Mg 79.67 −6.81 −9.05 −7.25
238Pu → 210Pb+28Mg 75.91 −6.02 −8.35 −6.56
238Pu → 208Pb+30Mg 76.82 −6.35 −8.48 −7.00

values within cases calc 1, calc 2, and calc 3, in the
logarithm scale, are respectively presented in the following
three columns. The experimental rms charge radii of a few
clusters are unavailable at present. Instead, they are estimated
by the simple relationship R = (c0 + c1A

−2/3 + c3A
−4/3)A1/3

based on the systematics of the available data, where the
parameters are c0 = 0.9071 fm, c1 = 1.105 fm, and c2 =
−0.548 fm. As one can see, log10 P calc2

c is much smaller as
compared to log10 P calc1

c , which implies that the consideration
of the neutron skin effect and the deduced density distribution
would bring a quite distinct enhancement of the decay width.
After the density distribution of clusters is also taken into
account from the experimental nuclear radii, the decay width is
diminished to a certain extent as can be seen by the comparison
of calc 2 and calc 3 and their corresponding potentials in Fig. 1,
leading to the bounce of the extracted Pc value. However, the
decay width of cluster emissions generally increases as long
as the densities of daughter nuclei and emitted clusters are
deduced from the available experimental facts about the rms
proton and neutron radii instead of previous artificial choices
without considering the neutron skin. In other words, the
preformation of clusters at the surface of the parent nucleus
may be more difficult in contrast with previous recognitions.
To obtain an overall picture, we also plot the log10 Pc versus
the quantity

√
μ(ZcZd )1/2 of Eq. (11) in Fig. 2, divided by

even-even and odd-A parent nuclei. More interestingly, it
is quite straightforward to examine whether there exists a
linear relationship between these two quantities. As expected,
the extracted Pc values in general locate around each fitted
line. Moreover, the preformation factor of even-even nuclei
appears to be higher than that of odd-A nuclei for one given
cluster, which can be understood by the hinderance effect
from the unpaired nucleons. Please note that even if the parent
nucleus involves the same odd nucleons, the situations may not
always be alike due to the different cases of emitted clusters,
i.e., even-even and odd-A clusters [21], which may cause
the agreement between the extracted Pc value and the line,
Eq. (11), of odd-A parent nuclei to be relatively worse than
that of even-even nuclei. Referring to the deformed shape of
clusters, it is inviting to check the sensitivity of the calculated
half-lives to the deformation of clusters. In Fig. 3 we take the
cluster emission 228Th → 208Pb + 20O, for example, in which
the ratio of the calculated half-life T

β2
1/2 in one certain β2 value

to that in the spherical case T 0
1/2 (namely, β2 = 0) is plotted

versus the quadrupole deformation parameter β2 of 20O in the
range of −0.35–0.30. To check the reliability of the present
treatment of the nuclear deformation [i.e., Eq. (14)], our results
are also compared with those from the exact coupled-channel
method. Here we take the case of a large deformation value
as the illustration, the present ratios T

β2
1/2/T 0

1/2 are separately
0.91 and 0.80 when the β2 values of the cluster 20O are 0.2
and 0.3, respectively, while the ratios in the coupled-channel
analysis are correspondingly 0.90 and 0.79. Obviously, these
two calculations are consistent with each other, which validates
the present approach to a great extent. From this figure, one
can see that the decreasing speed of the calculated half-life
with the deformation parameter is slightly larger in the prolate
shape region of the cluster (β2 > 0) as compared to that in

024315-6



REEXAMINING CLUSTER RADIOACTIVITY IN TRANS- . . . PHYSICAL REVIEW C 94, 024315 (2016)

FIG. 2. Variation of the extracted Pc value with the quantity
√

μ(ZcZd )1/2 including the results in the three cases and the correspondingly
fitted line, which are separated as even-even nuclei and odd-A nuclei.

the oblate case. In addition, it is clear that the calculated
half-life would be somewhat reduced with the introduction of
the deformation effect of the cluster, and the declination degree
could be easily discerned from this figure. One can see that
the increasing of the β2 value of 20O from 0 (spherical) to 0.30
could bring an approximate 20% reduction in the calculated
half-life T1/2.

In the end, special attention should be paid to the role of the
bubble phenomenon of clusters being played in the calculation
of the decay width for cluster radioactivity. According to
the theoretical calculations in Ref. [27], 20,22O are strongly
recommended to be the candidates for the bubble nuclei, which
hold quite obvious depressed density in the central region.
On the other hand, the 3pF formula has been employed to
depict the charge density distribution and the subsequential

FIG. 3. The ratio of the calculated half-life to that in the spherical
case, denoted as T

β2
1/2/T 0

1/2, varies with the change of deformation
parameters β2 of 20O in the cluster emission of 228Th.

charge form factors of light nuclei [28]. Moreover, to maintain
the constant rms charge radius while increasing the central
depression, the 2pF distribution plus a subtraction of the
Gaussian distribution was applied to present the charge density
in Ref. [28]. Keeping these factors in mind, we plan to make use
of the 3pF density distribution of 20O [Eq. (15)], as an example,
to investigate the effect of the central depression on the final
decay width of cluster emitters. Differently, the half-density
radius parameter R1/2 = cA1/3 is determined by matching the
experimental nuclear radius; meanwhile the diffuseness a is
settled as 0.46 fm to maintain the positive value of R1/2 and
the positive depression in the center of cluster density. The
larger the ω is, the more depressed is the central density
corresponding to the larger D of Eq. (16). For one ω, the
c value in the half-density radius is obtained in terms of the
constant measured radius. We find that the calculated half-life
(with Pc = 1) increases more sharply with the enhanced ω
value at the beginning, and the increasing trend slows down
after the ω value reaches one certain value, which is clearly
shown in Fig. 4. The corresponding central depression degree
D is illustrated in the right panel of the figure as well. In detail,
when the depression D achieves about the evaluated value of
20% in Ref. [27], the calculated half-life would increase about
10% as compared to that without deliberation of the central
depression. In combination with the fact that the calculated
decay widths generally remain unchanged with two different
extreme choices of the daughter density, namely, the neutron
skin and neutron halo types, it may conclude that as long as
the nuclear radii of the daughter and the cluster are fixed, the
final decay width of cluster emission is not quite sensitive to
the specific form of density distribution.

IV. SUMMARY

To conclude, we systematically study the effect of different
density distributions of daughter nuclei and clusters on cluster
decay. The double-folding model is employed to establish
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FIG. 4. Variety of calculated half-lives with Pc = 1 versus the increasing of the depression parameter ω for cluster decay 228Th →
208Pb + 20O, which is plotted in the left panel. Correspondingly, the central depressed degree, defined as the ratio of the deviation between the
maximum and central densities to the maximum of the density, is plotted in the right panel to present a comprehensive view.

the cluster-core potential, where the specific parameters in
the proton and neutron density forms are obtained from the
combination of the experimental charge radii and the thickness
of the neutron skin. Additionally, the nuclear deformation
of clusters is somewhat considered via the deformed 2pF
distribution. It is demonstrated that the calculated half-lives
(with the unity Pc) of cluster emitters are reduced to a large
extent once the density distribution of daughter nuclei is
determined from the measured nuclear radii and especially
the consideration of the neutron skin, while the introduc-
tion of deduced density in clusters somewhat offsets this
reduction. Consequently, the preformation of a cluster before
its penetration appears to be more difficult in contrast with
previous thought. During the calculation, two extreme types
of daughter distribution, i.e., neutron halo and neutron skin, are
considered, and their resulting decay widths are actually close
to each other. We have mainly presented the calculation in the
neutron halo type in light of the experiments in antiprotonic
atoms. Furthermore, the 3pF distribution is applied to describe
the central depression of cluster density, revealing that the

decay width of cluster emission could be decreased with the
increasing of the depressed degree of the cluster. In general, the
extracted Pc values indeed conform to the simple exponential
relationship accompanied by atomic numbers of daughter
nuclei and clusters as expected.
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Rev. C 32, 572 (1985).

[9] D. N. Poenaru and W. Greiner, Phys. Scr. 44, 427 (1991).
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[30] A. Trzcińska, J. Jastrzȩbski, P. Lubiński, F. J. Hartmann, R.
Schmidt, T. von Egidy, and B. Kłos, Phys. Rev. Lett. 87, 082501
(2001).
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