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Odd-even staggering of binding energy for nuclei in the sd shell
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In this paper we study odd-even staggering phenomena of binding energy in the framework of the nuclear shell
model for nuclei in the sd shell. We decompose the USDB effective interaction into the monopole interaction and
multipole (residual) interactions. We extract the empirical proton-neutron interaction, the Wigner energy, and the
one-neutron separation energy using calculated binding energies. The monopole interaction, which represents the
spherical mean field, provides contributions to the empirical proton-neutron interaction, the symmetry energy,
and the Wigner energy. It does not induce odd-even staggering of the empirical proton-neutron interaction or
the one-neutron separation energy. Isovector monopole and quadrupole pairing interactions and isoscalar spin-1
pairing interactions play a key role in reproducing an additional binding energy in both even-even and odd-odd
nuclei. The Wigner energy coefficients are sensitive to residual two-body interactions. The nuclear shell structure
has a strong influence on the evolution of the one-neutron separation energy, but not on empirical proton-neutron
interactions. The so-called three-point formula is a good probe of the shell structure.
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I. INTRODUCTION

Proton-neutron interactions are very important in atomic
nuclei. Proton-neutron interactions provide a dominant con-
tribution to the attractive mean-field potential in nuclei, and
residual proton-neutron interactions play a key role in nuclear
deformations, collective motions, and phase transitions [1–3].
Microscopically, proton-neutron correlations have been stud-
ied using the SO(5) and SO(8) models of isoscalar and isovec-
tor pairing [4–9], mean-field approaches [10–12], the nuclear
shell model with the “pair counting” operators [4,13,14],
the interacting boson model [15,16], and the nucleon-pair
approximation of the shell model [17]. Empirically, proton-
neutron interactions have been studied mainly using two
approaches: the NpNn scheme (product of the valence proton
number and the valence neutron number) [18] and empirical
proton-neutron interactions [19–33].

The empirical proton-neutron interaction between the last
i proton(s) and the last j neutron(s) in a nucleus is defined
by

δVip-jn(Z,N ) ≡ B(Z,N − j ) + B(Z − i,N )

−B(Z,N ) − B(Z − i,N − j ), (1)

where B is the binding energy. Here B is positive, and δVip-jn

is negative. The empirical proton-neutron interaction exhibits
good systematics and regularities. In our previous work [33]
we studied two of them. One is that the δV1p-1n of even-A
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nuclei is systematically stronger than that of the neighboring
odd-A nuclei (we call it odd-even staggering of δV1p-1n), and
the other is that the δVip-jn of N = Z nuclei is much stronger
than that of neighboring N �= Z nuclei, which is known as
the Wigner effect (or the Wigner energy, alternatively). For
nuclei in the sd shell, these two patterns are well reproduced
by the nuclear shell model with the USDB effective interaction
[34].

This work goes one step further along the same lines as
Ref. [33] in the shell model, but with the so-called monopole
interaction and multipole interactions. In Ref. [35] Zuker
showed that a shell-model Hamiltonian can be decomposed
into a monopole part and multipole parts. The monopole inter-
action represents the spherical mean field, and the multipole
interaction represents residual two-body correlations. In this
paper we extract the monopole and multipole interactions from
the USDB interaction and make use of them to calculate the
binding energies and δVip-jn for nuclei in the sd shell. We show
that isovector monopole pairing, isovector quadrupole pairing,
and isoscalar spin-1 pairing correlations play a key role in
the odd-even staggering of δV1p-1n and in the Wigner energy.
On the other hand, the odd-even staggering phenomenon of
one-neutron separation energy has been well known, which
is explained by the neutron-neutron pairing correlation. It
is interesting to revisit the odd-even staggering of the one-
neutron separation energy using the shell model with the
monopole and multipole interactions.

This paper is organized as follows. In Sec. II we introduce
the shell-model-interaction decomposition method suggested
by Zuker. In Sec. III we study the odd-even staggering of
δV1p-1n, the Wigner energy, and the odd-even staggering of
the one-neutron separation energy. In Sec. IV we summarize
our results.

2469-9985/2016/94(2)/024312(8) 024312-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.94.024312


FU, CHENG, JIANG, ZHAO, AND ARIMA PHYSICAL REVIEW C 94, 024312 (2016)

II. MULTIPOLE DECOMPOSITION
OF SHELL-MODEL INTERACTIONS

The shell-model-interaction decomposition method is pre-
sented in Refs. [35,36]. Here we briefly review the essential
ideas and formulas.

The shell-model effective interaction is defined by

Heff = H0 + V. (2)

Here the first term, H0, is the single-particle energy term,

H0 =
∑

j

εj

∑
mτ

a
†
jmτ ajmτ ,

where εj is the single-particle energy of orbit j . The second
term in Eq. (2), V , is the two-body interaction term,

V =
∑
JT

∑
j1�j2

∑
j3�j4

VJT (j1j2j3j4)√(
1 + δj1j2

)(
1 + δj3j4

)
×

∑
mτ

AJT
mτ (j1j2)

†
AJT

mτ (j3j4), (3)

where VJT (j1j2j3j4) are two-body matrix elements.
VJT (j1j2j3j4) is isoscalar if T = 0 and isovector if T = 1.
AJT

mτ (j1j2)
†

is the creation operator of a nucleon pair with spin
J and isospin T , i.e.,

AJT
mτ (j1j2)

† = (
a
†
j1

× a
†
j2

)JT

mτ
.

The form of V in Eq. (3) is called the pairing-type form.
Using Eq. (3) and angular momentum algebra, V can be

rewritten in the so-called multipole-type form, i.e.,

V =
∑
J ′T ′

(−)J
′+T ′ ∑

j1�j2

∑
j3�j4

ωJ ′T ′(j1j3j2j4)√(
1 + δj1j2

)(
1 + δj3j4

)
×QJ ′T ′

(j1j3) · QJ ′T ′
(j2j4)

+
∑

j1�j2�j4

√
2(2j2 + 1)ω00(j1j4j2j2)√(

1 + δj1j2

)(
1 + δj2j4

) Q00(j1j4),

(4)

where

ωJ ′T ′(j1j3j2j4) =
∑
JT

(−)j2+j3+J+J ′+T +T ′+1

×
√

(2J + 1)(2T + 1)VJT (j1j2j3j4)

×
{
j1 j3 J ′
j4 j2 J

}{
1
2

1
2 T ′

1
2

1
2 T

}
. (5)

{j1 j3 J ′
j4 j2 J } is a six-j symbol, and QJ ′T ′

(j1j3) is a multipole
operator with spin J ′ and isospin T ′, i.e.,

QJ ′T ′
(j1j3) ≡ (

a
†
j1

× ãj3

)J ′T ′
,

ãjmτ ≡ (−)j−m(−)
1
2 −τ aj−m−τ .

In Ref. [35] Zuker defines the monopole interaction. In one
major shell, the monopole interaction is written

Hm = H0 + Vm,

where

Vm =
∑
JT

∑
j1�j2

VT (j1j2)
∑

mτ AJT
mτ (j1j2)

†
AJT

mτ (j1j2)√(
1 + δj1j2

)(
1 + δj3j4

) ,

(6)

VT (j1j2) =
∑

J VJT (j1j2j1j2)(2J + 1)
[
1 − (−)J+T δj1j2

]
(2j1 + 1)

[
(2j2 + 1) + (−)T δj1j2

] .

(7)

Vm in Eqs. (6) and (7) is also written [35,36]

Vm =
∑
j1j2

[(
aj1j2 − bj1j2

3δj1j2

4
(
1 + δj1j2

)
)

nj1

(
nj2 − δj1j2

)
1 + δj1j2

+ bj1j2

T1 · T2

1 + δj1j2

]
,

where

aj1j2 = 1
4 [3V1(j1j2) + V0(j1j2)],

bj1j2 = V1(j1j2) − V0(j1j2).

The monopole interaction provides the average energy of
configurations at a fixed number of particles and isospin in
each orbit, which is the spherical mean-feld energy [35,36]. It
exhausts the contributions of the monopole (namely, J ′ = 0)
terms in Eq. (4), and the other terms (the multipole J > 0
terms) generate residual correlations beyond the mean field.

In Ref. [35] it is shown that the multipole interactions,
VQ, VS , VD , VP , and VM , play important roles in shell-model
descriptions of low-lying states of atomic nuclei. VQ is the
quadrupole-quadrupole interaction [namely, the (J ′,T ′) =
(2,0) term in Eq. (4)], which generates the SU(3) rotational
motion and the quadrupole deformation in a nucleus [37]. VS

and VD are the isovector monopole and quadrupole pairing
interaction [namely, the (J,T ) = (0,1) and (2,1) terms in
Eq. (3)], respectively; they are the most important pairing
interactions in the isovector channel. VP is the isoscalar
spin-1 pairing interaction [namely, the (J,T ) = (1,0) term
in Eq. (3)], which may generate an isoscalar proton-neutron
pairing correlation. VM consists of three multipole-multipole
interactions: the quadrupole-quadrupole interaction [the
(J ′,T ′) = (2,0) term], the hexadecapole-hexadecapole
interaction [the (J ′,T ′) = (4,0) term], and the στ · στ
interaction [the (J ′,T ′) = (1,1) term].

In this work we study nuclei in the sd shell using
the shell model with the USDB effective interaction [34]
(denoted HUSDB) and schematic Hamiltonians consisting of the
monopole interaction and the multipole interactions, such as

HmQ = Hm + VQ,

HmQS = Hm + VQ + VS,

HmQSDP = Hm + VQ + VS + VD + VP ,

HmM = Hm + VM,

HmMS = Hm + VM + VS,

HmMSDP = Hm + VM + VS + VD + VP .
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FIG. 1. Differences (in MeV) between the binding energies
calculated by the shell model with the USDB interaction and those
calculated with Hm and HmQ. One sees that the binding energy
calculated with Hm is close to that calculated with the USDB
interaction for spherical nuclei but not for deformed nuclei.

In the schematic Hamiltonians, Hm, VQ, VM , VS , VD , and VP

are extracted from HUSDB one by one. We exemplify this using
the case of HmMS . First, the monopole interaction, Hm, is
obtained from Eqs. (6) and (7), in which the two-body matrix
elements, VJT (j1j2j3j4), are directly taken from HUSDB. Next,
the multipole-multipole interaction, VM , is obtained by Eqs. (4)
and (5), in which VJT (j1j2j3j4) are taken from (HUSDB − Hm).
Finally, the pairing interaction, VS , is obtained by Eq. (3), in
which VJT (j1j2j3j4) are taken from (HUSDB − Hm − HM ).

Using the shell model with the USDB interaction and the
schematic Hamiltonians mentioned above, we calculate the
ground-state energies and the empirical proton-neutron inter-
actions for 65 nuclei in the sd shell (18–25F, 20–28Ne, 22–29Na,
24–30Mg, 26–31Al, 28–34Si, 30–35P, 32–36S, 34–37Cl, 36–38Ar, and
38–39K). In Fig. 1 one sees that for spherical nuclei the binding
energies calculated with the monopole interaction, Hm, are
close to those calculated with the USDB interaction. For de-
scribing deformed nuclei (especially 24Mg), Hm (the spherical
mean field) is no longer enough; the quadrupole-quadrupole
interaction and other residual interactions are necessary.

III. RESULTS AND DISCUSSION

By summing δV1p-1n over all valence protons and valence
neutrons, the integrated proton-neutron interaction between

FIG. 2. Integrated proton-neutron interactions, Vpn, extracted
from experimental data on binding energies and those obtained by
the shell model with the USDB interaction and Hm. The straight
line is plotted according to V SM

pn = V
Expt.

pn . Hm provides an important
contribution to Vpn.

valence nucleons in a nucleus is given by

Vpn(Z,N ) ≡
Z∑

Zx=Z0+1

N∑
Nx=N0+1

δV1p-1n(Zx,Nx)

= B(Z,N0) + B(Z0,N ) − B(Z,N ) − B(Z0,N0),

where Z0 and N0 are the nearest magic numbers below the
nucleus. For nuclei in the sd shell, we have Z0 = N0 = 8 and

Vpn(Z,N ) = B(Z,8) + B(8,N ) − B(Z,N ) − B(8,8).

As shown in Fig. 2, the integrated proton-neutron inter-
actions, Vpn, obtained by the shell model with the USDB
interaction are in good agreement with those extracted from
experimental data on binding energies. In Ref. [33] we
demonstrate that the isoscalar proton-neutron interactions are
consistent with the empirical proton-neutron interactions. In
the present work we show that the monopole interaction
(namely, the spherical mean field) plays a key role in the
integrated proton-neutron interaction, which is similar to the
conclusions in Refs. [30,32].

In the Weizsäcker nuclear binding energy formula, the
average energy of empirical proton-neutron interactions is
explained by the symmetry energy [31]. In Ref. [38] Jiang
et al. extracted symmetry energy coefficients for atomic nuclei
using local mass relations. In this work we extract the volume
symmetry energy coefficient, c(V )

sym, using the same method as in
Ref. [38]. Binding energies are either taken from experimental
data or calculated by the shell model. Results for nuclei in the
sd shell are presented in Table I. One sees all the symmetry
energy coefficients are close to each other, including that
calculated with Hm. This indicates that correlations beyond
the spherical mean field do not have much influence on the
symmetry energy in atomic nuclei. We note that the c(V )

sym
calculated with Hm is slightly larger than that obtained with
the USDB interaction.
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TABLE I. The symmetry energy coefficient extracted
using local mass relations in Ref. [38] for nuclei in the
sd shell. Expt.: the result extracted from experimental
data on binding energies. All other entries under "Result"
represent results obtained by the nuclear shell model with
different interactions. In Ref. [38] the symmetry energy
coefficient c(V )

sym is equal to 32.10 MeV.

Result c(V )
sym (MeV)

Expt. 32.49
USDB 33.17
Hm 34.74
HmQ 34.60
HmQS 34.49
HmQSD 35.09
HmQSP 34.38
HmQSDP 34.86
HmM 34.42
HmMS 34.55
HmMSD 34.33
HmMSP 34.24
HmMSDP 34.04

A. Odd-even staggering of δV1p-1n

In Fig. 3 one sees that δV1p-1n values extracted from
experimental data on binding energies (thick gray lines) exhibit
odd-even staggering behavior, i.e., the δV1p-1n values of even-A
nuclei are systematically stronger than those of odd-A nuclei. It
was suggested that proton-neutron pairing interactions induce
an additional binding energy in odd-odd nuclei, which leads
to the odd-even staggering of δV1p-1n [39,40]. Similarly, in
Ref. [41] the odd-even staggering of δV1p-1n was explained
by additional binding energies in odd-odd nuclei due to
configuration mixing originating from residual proton-neutron
interactions. In our previous work [33] we found that there
exists an additional binding energy for both even-even and
odd-odd nuclei, which leads to the odd-even staggering of
δV1p-1n.

As shown in Fig. 3, δV1p-1n values obtained by the shell
model with Hm (red circles) do not exhibit odd-even staggering
behavior, which means that the spherical mean field does not
induce odd-even staggering. With consideration of quadrupole
deformation, δV1p-1n values obtained with HmQ (blue trian-

FIG. 4. V ′
pn versus neutron number N for F, Ne, Na, and Mg

isotopes.

gles) exhibit very weak odd-even staggering behavior. By
considering more residual interactions, the odd-staggering
phenomenon is well reproduced (we exemplify δV1p-1n with
HmM , HmQS , and HmMS in Fig. 3).

Now let us focus on the additional binding energy for
even-even and odd-odd nuclei. We study the integrated proton-
neutron interaction, Vpn, which can be separated into two
parts: a smooth part (denoted Vsmooth) and the residual part
(denoted V ′

pn). The smooth part of Vpn is described by a linear
function, Vsmooth(N ; Z) ≡ aZN + bZ . Here aZ and bZ are
parameters to be fixed. The residual part of Vpn is then defined
by V ′

pn ≡ Vpn − Vsmooth = Vpn(Z,N ) − aZN − bZ , which is
expected to be sensitive to odd-even staggering phenomena
in the empirical proton-neutron interactions. In this work
we calculate V ′

pn using the shell model with the schematic
Hamiltonians. The results for F, Ne, Na, and Mg isotopes are
presented in Fig. 4.

In Fig. 4 one sees that the V ′
pn values obtained by the

shell model with HmQSDP are close to those obtained by
the shell model with the USDB interaction or extracted from
experimental data on binding energies. For the F and Na
isotopes, the V ′

pn values for odd-odd nuclei are smaller than
those for neighboring odd-A nuclei; for the Ne and Mg
isotopes, the V ′

pn values for ven-even nuclei are smaller than

FIG. 3. δV1p-1n for nuclei in the sd shell.

024312-4



ODD-EVEN STAGGERING OF BINDING ENERGY FOR . . . PHYSICAL REVIEW C 94, 024312 (2016)

FIG. 5. δV2p-2n for nuclei in the sd shell.

those for neighboring odd-A nuclei. This result indicates an
additional binding for both even-even and odd-odd nuclei.

The results obtained by the shell model with HmQ, HmM ,
and HmQS show different scenarios. As shown in Fig. 4, V ′

pn
values obtained with HmQ do not show odd-even staggering
but exhibit a parabolic behavior with the neutron number.
This means that HmQ provides an additional binding energy
for neither even-even nor odd-odd nuclei. For the F and Na
isotopes, V ′

pn values obtained with HmM and HmQS for odd-odd
nuclei are smaller than those for neighboring odd-A nuclei
(not obvious for the Na isotopes); for the Ne and Mg isotopes,
V ′

pn values obtained with HmM and HmQS exhibit a parabolic
behavior with the neutron number. This result means that HmM

and HmQS provide an additional binding energy for odd-odd
nuclei but not for even-even nuclei. The isovector quadrupole
pairing interaction and the isoscalar spin-1 proton-neutron
pairing interaction are important in reproducing the additional
binding energy in even-even nuclei.

B. Wigner energy

In nuclear binding energy formulas, the symmetry energy
depends on (N − Z)2 (or the squared isospin, T 2), and
the Wigner energy depends on |N − Z| (or T ). In a few
microscopic models these two energies are unified by the
so-called total symmetry energy, which depends on T (T + X),
where the value of X represents the ratio of the Wigner
energy to the symmetry energy. In Wigner’s SU(4) spin-
isospin symmetry theory [42] the total symmetry energy is
proportional to T (T + 4). In the seniority scheme in a single-j
shell or the SU(2) symmetry theory [43] it is proportional to
T (T + 1), which is an eigenvalue of the operator, T 2. Fitting
the experimental data on binding energies, one usually obtains
an empirical value of X ranging between 1 and 4 [44].

The Wigner energy has constantly attracted atten-
tion [22,33,45–54] among nuclear physicists. In the recent
literature a more sophisticated definition of the Wigner energy
is as follows:

BW(Z,N ) = −W (A)|N − Z| − d(A)δZ,Nπnp. (8)

Here δZ,N is equal to 1 if N = Z and equal to 0 if N �= Z; πnp

is equal to 1 for odd-odd nuclei and vanishes for even-even
and odd-A nuclei. The first term in Eq. (8) is usually called the
“W term,” and the second term is usually called the “d term”
and represents an underbinding in the ground state of N = Z

odd-odd nuclei. In binding energy formulas, X is calculated
as

X = BW

Esym
≈ AW (A)

c
(V )
sym

, (9)

where Esym is the symmetry energy.
In Figs. 3 and 5 one sees that the δV1p-1n and δV2p-2n for

N = Z nuclei are much stronger than those for neighboring
N �= Z nuclei. This phenomenon originates from the Wigner
energy [22,45]. In Refs. [22,46] it is reported that the Wigner
energy is strongly suppressed if isoscalar interactions are
removed. In our previous work [33] it is shown that the values
of δV2p-2n decrease dramatically when isoscalar interactions
are removed, but δV2p-2n values for N = Z nuclei continue
to be much stronger than those for their N �= Z neighbors.
This indicates that removing isoscalar interactions strongly
suppresses the total symmetry energy, but the value of X
remains nearly unchanged.

In Fig. 5 one sees that δV2p-2n values obtained by the shell
model with Hm for N = Z nuclei are much stronger than those
for their N �= Z neighbors. The spherical mean field provides
contributions to the Wigner energy. δV2p-2n values obtained by
the shell model with HmMSDP are close to those extracted from
experimental data on binding energies.

In Ref. [46] Satula et al. extracted the Wigner energy
coefficients, W and d, using local mass relations in the
zeroth-order approximation, and in Ref. [54] Cheng et al.
extracted them using local mass relations in the first-order
approximation. In this work we extract W and d using the
same method as in Ref. [54] and calculate X using Eq. (9).
The values of c(V )

sym are taken from Table I.
As shown in Fig. 6, the values of W , d, and X obtained

by the shell model with Hm, HmQ, and HmQSDP are much
smaller than those extracted from experimental data on binding
energies; those obtained with HmM , HmMS , HmMSD , and
HmMSP are reasonably good; and those obtained with HmMSDP

are close to the empirical ones. We note that all the values of
W , d, and X obtained with eight schematic Hamiltonians, Hm,
HmQ, HmQSDP , HmM , HmMS , HmMSD , HmMSP , and HmMSDP ,
are smaller than those obtained with the USDB interaction.
Residual two-body interactions beyond VM , VS , VD , and VP

are necessary for precise description of the Wigner energy
coefficients.
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FIG. 6. Wigner energy coefficients, W , d , and X, for nuclei in the sd shell. (a) and (b) are the same except that the interactions are different.

The value of X extracted from experimental data on binding
energies ranges between 0.8 and 1.6 for nuclei in the sd shell.
In a single-j shell calculation with the monopole interaction
Hm, one obtains precisely X = 1 [32,43]. In our sd-shell
calculation, the X obtained by the shell model with Hm is not
equal to 1 but evolves rapidly as the mass number A changes.
This is the consequence of the shell effect. Interestingly, we
find that X obtained with HmM , HmMS , and HmMSD evolves
smoothly with values ∼1.

C. Odd-even staggering of the one-neutron separation energy

In the final part of this section, we arrive at the odd-even
staggering of the one-neutron separation energy, Sn, for O
isotopes in the sd shell. In Figure 7(a) one sees that Sn values
taken from experimental data (or those calculated by the shell
model with the USDB interaction) for even-N nuclei are 3–
4 MeV larger than those for neighboring odd-N nuclei. This
odd-even staggering phenomenon is regarded as a consequence
of the neutron-neutron monopole pairing. In Refs. [55,56] the
odd-even staggering is described by the so-called three-point
formula:

�(3)
n (Z,N ) ≡ (−)N+1

2
[Sn(Z,N + 1) − Sn(Z,N )]

= (−)N+1

2
[B(Z,N + 1)

+B(Z,N − 1) − 2B(Z,N )]. (10)

The results of �(3)
n for O isotopes in the sd shell are shown in

Fig. 7(b).
Let us focus on 17–22O and 25–27O. As shown in Fig. 7,

Sn obtained by the shell model with Hm exhibits a linear
dependence on the neutron number, and the values of �(3)

n
with Hm are close to 0. The reason is simple: the spherical

mean field does not contribute to the odd-even staggering of
the one-neutron separation energy. Sn values with HmQ exhibit
odd-even staggering with a magnitude of about 1.5 MeV,
and �(3)

n with HmQ are equal to about 0.75 MeV. This
result indicates that the quadrupole-quadrupole interaction,

FIG. 7. One-neutron separation energy, Sn, and the three-point
formula [Eq. (10)], �(3)

n , for O isotopes in the sd shell.
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which may generate the quadrupole deformation in a nucleus,
provides a small contribution to the odd-even staggering of Sn

and to �(3)
n . It should be noted that the result of the deformed

mean-field calculation is slightly different from ours: the
Kramers degenerate single-particle levels provide very strong
odd-even staggering for �(3)

n (see Fig. 1(b) in Ref. [55]). One
possible reason is that the shell-model calculation conserves
the spin symmetry, while the deformed mean-field calculation
does not. The Sn and �(3)

n values with HmS and HmMS are close
to those taken from the experimental data. The neutron-neutron
monopole pairing interaction plays a key role in the odd-even
staggering of Sn.

For 22O, 23O, and 24O we find that the Sn and �(3)
n obtained

by the shell model with Hm (namely, the spherical mean field)
evolve rapidly as the neutron number changes. This anomaly
originates from the nuclear shell structure: for 17–22O the
valence neutrons occupy the 0d5/2 orbit, for 23–24O the valence
neutrons begin to occupy the 1s1/2 orbit, and for 25–28O the
valence neutrons begin to occupy the 0d3/2 orbit. The sudden
drop in Sn for N = 14–17 is due to the effective single-particle
energy differences of the three orbits. �(3)

n [Eq. (10)] is a good
probe of the nuclear shell structure. In Fig. 7, one sees that
the Sn and �(3)

n obtained by the shell model with the USDB
interaction and those with Hm have nearly the same values
for 22O, 23O, and 24O, which indicates that the contribution
from the neutron-neutron monopole pairing interaction to the
odd-even staggering of Sn is strongly suppressed.

IV. SUMMARY

In this paper we study odd-even staggering phenomena of
the nuclear binding energy in terms of the nuclear shell model
for nuclei in the sd shell. We decompose the USDB effective
interaction [34] into the monopole interaction (Hm, which
represents the spherical mean field) and residual interactions
using Zuker’s method [35]. We use schematic Hamiltonians as
well as the USDB interaction to study the odd-even staggering
of δV1p-1n, the Wigner energy, and the odd-even staggering of
the one-neutron separation energy, Sn.

The monopole interaction (namely, the spherical mean
field) is responsible for bulk properties of the empirical
proton-neutron interactions, the symmetry energy, and the one-
nucleon separation energy. However, the monopole interaction
plus the quadrupole-quadrupole interaction (namely, HmQ)
cannot explain the odd-even staggering of δV1p-1n. In our
previous work [33] we found that there is an additional binding
energy in both even-even and odd-odd nuclei, which leads to

the odd-even staggering of δV1p-1n. In this work we show that
although δV1p-1n values obtained by the shell model with HmM

and HmQS exhibit odd-even staggering behavior, these two
schematic Hamiltonians cannot explain the additional binding
in even-even nuclei. Interestingly, the odd-even staggering of
δV1p-1n values and the additional binding in both even-even
and odd-odd nuclei are well reproduced with HmQSDP . The
isovector quadrupole pairing interaction and the isoscalar
spin-1 pairing interaction play an important role.

We extract the Wigner energy coefficients, W , d, and X,
using local mass relations, in which the binding energies
are taken from experimental data or calculated by the shell
model. It is shown that the monopole interaction provides
contributions to the Wigner energy. The Wigner energy
coefficients, W , d, and X, obtained by the shell model with
HmMSDP are in good accordance with those extracted from
experimental data on binding energies. All the values of W ,
d, and X obtained with the schematic Hamiltonians, Hm,
HmQ, HmQSDP , HmM , HmMS , HmMSD , HmMSP , and HmMSDP ,
are smaller than the empirical values. Residual two-body
interactions beyond VM , VS , VD , and VP are necessary for
precise description of the Wigner energy coefficients.

The importance of the neutron-neutron pairing correlation
in the odd-even staggering phenomenon of Sn has been well
known. The spherical mean field makes no contribution to
the odd-even staggering of Sn or to the three-point formula,
�(3)

n . Our shell-model calculation with HmQ shows that the
quadrupole-quadrupole interaction, which may generate the
quadrupole deformation in a nucleus, provides a small contri-
bution. The result of the deformed mean-field calculation [55]
is slightly different from ours; one possible reason is that
the mean-field calculation breaks rotational invariance. The
nuclear shell structure has a strong influence on the evolution
of Sn but not on the empirical proton-neutron interaction. The
three-point formula, Eq. (10), is a good probe of the nuclear
shell structure.
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