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Background: Single-reference density functional theory is very successful in reproducing bulk nuclear properties
like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the
multireference level allows for restoring symmetries and, in turn, for calculating transition rates.
Purpose: We propose a new variant of the no-core-configuration-interaction (NCCI) model treating properly
isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron-
and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and
short-range forces acting in the atomic nucleus.
Methods: The method is based on solving the Hill-Wheeler-Griffin equation within a model space built of linearly
dependent states having good angular momentum and properly treated isobaric spin. The states are generated by
means of the isospin and angular-momentum projection applied to a set of low-lying (multi)particle-(multi)hole
deformed Slater determinants calculated using the self-consistent Skyrme-Hartree-Fock approach.
Results: The theory is applied to calculate energy spectra in N ≈ Z nuclei that are relevant from the point of view
of a study of superallowed Fermi β decays. In particular, a new set of the isospin-symmetry-breaking corrections
to these decays is given.
Conclusions: It is demonstrated that the NCCI model is capable of capturing main features of low-lying energy
spectra in light and medium-mass nuclei using relatively small model space and without any local readjustment
of its low-energy coupling constants. Its flexibility and a range of applicability makes it an interesting alternative
to the conventional nuclear shell model.
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I. INTRODUCTION

Atomic nucleus is a self-bound finite system composed of
neutrons and protons that interact by means of short-range,
predominantly isospin-symmetry-conserving strong force and
long-range isospin-symmetry-breaking Coulomb force. In
studies of phenomena related to the isospin-symmetry viola-
tion in nuclei, capturing a delicate balance between these two
forces is of utmost importance. This is particularly true when
evaluating the isospin-symmetry-breaking (ISB) corrections
to superallowed β decays between isobaric analog states,
[I = 0+,T = 1] −→ [I = 0+,T = 1].

Such β decays currently offer the most precise data
that give estimates of the vector coupling constant GV and
leading element Vud of the Cabibbo-Kobayashi-Maskawa
(CKM) flavor-mixing matrix [1,2]. The uncertainty of Vud

extracted from the superallowed β decays is almost an
order of magnitude smaller than that from neutron or pion
decays [3]. To test the weak-interaction flavor-mixing sector of
the Standard Model of elementary particles, such precision is
critical, because it allows us to verify the unitarity of the CKM
matrix, violation of which may signal new physics beyond the
Standard Model; see Ref. [4] and references cited therein.

The isospin impurity of the nuclear wave function—a
measure of the ISB—is small. It varies from a fraction of
a percent, in ground states of even-even N = Z light nuclei,
to about six percent in the heaviest known N = Z system,
100Sn [5]. Nevertheless, its microscopic calculation poses a
real challenge to theory. The reason is that the isospin impurity

originates from the long-range Coulomb force that polarizes
the entire nucleus and can be, therefore, calculated only within
so-called no-core approaches. In medium and heavy nuclei,
it narrows the possible microscopic models to those rooted
within the nuclear density functional theory (DFT) [6,7].

The absence of external binding requires that the nuclear
DFT be formulated in terms of intrinsic, and not laboratory
densities. This, in turn, leads to the spontaneous breaking of
fundamental symmetries of the nuclear Hamiltonian, including
the rotational and isospin symmetries, which in finite systems
must be restored. Fully quantal calculations of observables,
such as matrix elements of electromagnetic transitions or
β-decay rates, require symmetry restoration. In most of the
practical applications, this is performed with the aid of the
generalized Wick’s theorem [8]. Its use, however, leads to the
energy density functionals (EDFs) being expressed in terms
of the so-called transition densities, that is, to a multireference
(MR) DFT. Unfortunately, the resulting MR EDFs are, in
general, singular and require regularization, which still lacks
satisfactory and practical solution; see, e.g., Refs. [9–11]. An
alternative way of building a nonsingular MR theory, the one
that we use in the present work, relies on employing the EDFs
derived from a true interaction, which then acquires a role
of the EDF generator [12]. The results presented here were
obtained using in this role the density-independent Skyrme
interaction SV [13], augmented by the tensor terms (SVT ) [11].

Over the last few years we have developed the MR DFT
approach based on the angular-momentum and/or isospin
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projections of single Slater determinants. The model, below re-
ferred to as static, was specifically designed to treat rigorously
the conserved rotational symmetry and, at the same time, tackle
the explicit Coulomb-force mixing of good-isospin states. This
unique approach allowed us to determine the isospin impurities
in N ≈ Z nuclei [5] and ISB corrections to superallowed
β-decay matrix elements [14,15].

In this paper, following upon preliminary results announced
at several conferences [16–18], we introduce a next-generation
dynamic variant of the approach, which we call the no-
core configuration-interaction (NCCI) model. It constitutes a
natural extension of the static MR DFT model, and allows for
mixing states that are projected from different self-consistent
Slater determinants representing low-lying (multi)particle-
(multi)hole excitations. Technically, the model is analogous to
the generator-coordinate-method (GCM) mixing of symmetry-
projected states; see, e.g., Ref. [19]. However, the GCM
pertains to mixing continuous sets of states, and thus builds
collective states of the system, whereas NCCI involves mixing
of discrete configurations.

In quantum chemistry such a method is commonly known
under the name of configuration interaction (CI), where the
interaction means mixing of different electronic configura-
tions. In nuclear physics, models of this type go by the
name of the shell model (SM), whereupon all configurations
within a specific valence shell are considered. In recent
years, in relatively light nuclei, a no-core variant of the shell
model (NCSM) was very successfully implemented [20]. Our
approach combines the no-core aspect of the NCSM and the
mixing aspect of the CI, and, by using sets of selected DFT
configurations, it is not limited to light nuclei.

In nuclear physics the name CI is seldom used, and, in our
opinion, it is meaningful to import it from quantum chemistry,
as exemplified in the name proposed for our model. In spite
of apparent similarities, there are also differences between
the SM and CI methods. Indeed, the SM indiscriminately
uses expansions on large bases (most often of the harmonic-
oscillator states), which are unrelated with the interaction used
or properties of the system. As a result, the SM is bound to
use millions or billions of states, which strongly limits its
applicability range. On the other hand, the CI uses bases of
approximate states of the very system that is being described.
In this way, the most important correlations are already built
in into the basis states, and thus much smaller bases can be
used. At present, another difference between the NCSM and
NCCI methods is in the fact that the former is often rooted
in true nucleon interactions, and thus belongs to the class of
ab initio methods, whereas the latter still uses phenomeno-
logical density functionals. This difference may eventually
disappear once ab initio nuclear DFT methods are developed
in analogy to those available for electronic systems [21].

There are several cases when, to perform reliable cal-
culations, the NCCI approach is indispensable. One of the
most important ones relates to different possible shape-current
orientations, which within the static variant of the model
appear in odd-odd nuclei [15]. The configuration mixing is
also needed to resolve the issue of unphysical ISB correc-
tions to the analogous states of the A = 38 isospin triplet
[14,15].

The states that are mixed have good angular momenta
and, at the same time, include properly evaluated Coulomb
isospin mixing; hence, the extended model treats hadronic
and Coulomb interactions on the same footing. The model is
based on a truncation scheme dictated by the self-consistent
deformed Hartree-Fock (HF) solutions, and can be used to
calculate spectra, transitions, and β-decay rates in any nucleus,
irrespective of its even or odd neutron and proton numbers.

We begin by giving in Sec. II a short overview of the
theoretical framework of our NCCI model. In Sec. III, a new
set of the ISB corrections to the canonical set of superal-
lowed β decay is presented. As compared to our previous
results [15], the new set includes mixing of reference states
corresponding to different shape-current orientations in odd-
odd N = Z nuclei. In Sec. IV, applications involving mixing
of several low-energy (multi)particle-(multi)hole excitations
are discussed. Here, we determined low-spin energy spectra
in selected nuclei relevant to high-precision tests of the weak-
interaction flavor-mixing sector of the Standard Model. The
calculations were performed for 6Li and 8Li nuclei (Sec. IV A),
A = 38 Ar, K, and Ca nuclei (Sec. IV B), 42Sc and 42Ca nuclei
(Sec. IV C), and 62Ga and 62Zn nuclei (Sec. IV D; Summary
and perspectives are given in Sec. V).

II. THE NO-CORE CONFIGURATION-INTERACTION
MODEL

The static model developed in our previous works [15,22]
involved the isospin and angular momentum projections (after
variation) of a single Slater determinant, followed by a
rediagonalization of the Coulomb force, so as to account
properly for the isospin mixing. Here we extend the model
towards a variant, in which we allow for a mixing of states
projected from different low-lying (multi)particle-(multi)hole
Slater determinants ϕi with the mixing matrix elements derived
from the same Hamiltonian that is used to calculate them.

The computational scheme of our NCCI model is sketched
in Fig. 1. It proceeds in four major steps:

(i) First, a set of relevant low-lying (multi)particle-
(multi)hole HF states {ϕi} is calculated along with
their HF energies e

(HF)
i . States {ϕi} form a subspace of

reference states for subsequent projections.
(ii) Second, the projection techniques are applied to the set

of reference states {ϕi}, so as to determine the family
of states {�(i)

T IK} having good isospin T , angular
momentum I , and angular-momentum projection on
the intrinsic axis K .

(iii) Third, states {�(i)
T IK} are mixed, so as to properly

take into account the K mixing and Coulomb isospin
mixing—this gives the set of good angular-momentum
states {�(i)

T̃ Iα
} of the static model [14,15]. Here we

label them with the dominating values of the isospin
T̃ , and auxiliary quantum numbers α. Note that in this
step, the mixing is performed for each configuration i
separately (the static model).

(iv) Finally, the results of the dynamic model correspond
to mixing nonorthogonal states {�(i)

T̃ Iα
} for all con-

figurations i, and for all values of T̃ and α. This
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MEAN FIELD
compute a set of n self-consistent Slater determinants

corresponding to low-lying p-h excitations

PROJECTION
compute the I-,K- and T-projected states

K- AND T-MIXING
compute the K-mixing of Coulomb T-mixed states

CONFIGURATION INTERACTION
solve the Hill-Wheeler equation

Ek , |Ik

FIG. 1. Computational scheme of the NCCI model. See text for
details.

is performed by solving the Hill-Wheeler equation
H|Ik〉 = EkN |Ik〉 [23] in the collective space spanned
by the natural states corresponding to sufficiently
large eigenvalues of the norm matrix N . This is the
same technique that is used in the code to handle the
K mixing alone. The method is described in details in
Ref. [24].

We note here that all wave functions considered above
correspond to good neutron (N ), and proton (Z) numbers, and
thus to a good third component of the isospin, Tz = 1

2 (N − Z).
We also note that the configuration interaction, which is taken
into account in the last step, could have also equivalently been
performed by directly mixing the projected states {�(i)

T IK}. The
procedure outlined above simply aims to obtain separately the
results of the static and dynamic model. The NCCI calculations
discussed below were performed using a new version of the
HFODD solver [25], which was equipped with the NCCI
module. This new implementation was based on the previous
versions of the code [24,26,27].

Numerical stability of the method depends on necessary
truncations of the model space. In this work, numerically
unstable solutions are removed by truncating the natural states
corresponding to small eigenvalues of the norm matrix N .
It means that only the natural states corresponding to the
eigenvalues of the norm matrix that are larger than certain
externally provided cutoff parameter ζ are used to build
the so-called collective space. Although such a truncation
procedure gives reliable values of the energy, a full stability of

the method still requires further studies. Other methods, e.g.,
based on truncating high-energy states {�(i)

T̃ Iα
}, or combined

methods involving both truncations simultaneously, need to be
studied as well.

III. A NEW SET OF THE ISB CORRECTIONS TO
SUPERALLOWED β DECAYS

In this section we present results obtained within the NCCI
model, which pertain to removing the uncertainty related to
ambiguities in the shape-current orientation. Similar to our
previous applications within the static model, the ground
states (g.s.) of even-even nuclei, |I = 0,T ≈ 1,Tz = ±1〉, are
approximated by the Coulomb T -mixed states,

|I = 0,T ≈ 1,Tz = ±1〉 = �
(1)
T̃ =1,I=0,K=0

=
∑

T �1

c
(1)
T �

(1)
T ,I=0,K=0, (1)

which were angular-momentum projected from the MF g.s. ϕ1

of the even-even nuclei, obtained in the self-consistent Hartree-
Fock (HF) calculations. States ϕ1 are always unambiguously
defined by filling in the pairwise doubly degenerate levels of
protons and neutrons up to the Fermi level. In the calculations,
the Coulomb T mixing was included up to T = 4.

Within our dynamic model, the corresponding isobaric
analogs in N = Z odd-odd nuclei, |I = 0,T ≈ 1,Tz = 0〉,
were approximated by

|I = 0,T ≈ 1,Tz = 0〉 =
∑

k=X,Y,Z

∑

T̃ =0,1,2

c
(k)
T̃

�
(k)
T̃ ,I=0,K=0

.

(2)

The underlying MF states ϕk were taken as the self-consistent
Slater determinants |ν̄ ⊗ π ; k〉 (or |ν ⊗ π̄ ; k〉) representing
the antialigned configurations corresponding to different
shape-current orientations k = X,Y,Z. Let us recall that the
antialigned states are constructed by placing the odd neutron
and odd proton in the lowest available time-reversed (or
signature-reversed) s.p. orbits. These states are manifestly
breaking the isospin symmetry. Using them is the only way
to reach the |I = 0,T ≈ 1,Tz = 0〉 states in odd-odd N = Z
nuclei. The reason is that, within a conventional MF approach
with separate proton and neutron Slater determinants, these
states are not representable by single Slater determinants; see
discussion in Ref. [22].

For odd-odd nuclei, mixing coefficients c
(k)
T̃

in Eq. (2)
were determined by solving the Hill-Wheeler equation. In the
mixing calculations, we only included states �

(k)
T̃ ,I=0,K=0

with

dominating isospins of T̃ = 0,1 and 2, that is, the Hill-Wheeler
equation was solved in the space of six or nine states for axial
and triaxial states, respectively. We recall that each of states
�

(k)
T̃ ,I=0,K=0

contains all Coulomb-mixed good-T components

�
(k)
T ,I=0,K=0.
The three states corresponding to a given dominating

isospin are linearly dependent. One may therefore argue that
the physical subspace of the I = 0 states should be three
dimensional. In the calculations, all six or nine eigenvalues
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FIG. 2. (a) Eigenvalues of the norm matrix obtained in the NCCI
calculations for the I = 0 states of odd-odd nuclei. Depicted are
typical results obtained for two representative examples of axial (46V)
and triaxial (50Mn) nuclei. The boxes give values of eigenenergies
obtained by including three, six or nine eigenvalues of the norm
matrix. (b) Dependence of the ISB corrections to superallowed
46V → 46Ti and 50Mn → 50Cr decays on a number of collective
states retained in the mixing calculations. Dimension of the collective
space decreases from the left- to the right-hand side from D = 9(6)
in 50Mn(46V), respectively.

of the norm matrix N are nonzero, but the linear dependence
of the reference states is clearly reflected in the pattern they
form. For two representative examples of axial (46V) and
triaxial (50Mn) nuclei, this is depicted in Fig. 2. Note, that
the eigenvalues group into two or three sets, each consisting
of three similar eigenvalues. Note also that the differences
between the sets are large, reaching three-four orders of
magnitude. Lower part of the figure illustrates dependence of
the calculated ISB corrections δC, on a number of the collective
states retained in the mixing. As shown, the calculated
corrections are becoming stable within a subspace consisting
five (or less) highest-norm states. Following this result, we
have decided to retain in the mixing calculations only three
collective states built upon the three eigenvectors of the norm
matrix corresponding to the largest eigenvalues.

Based on this methodology, we calculated the set of the
superallowed transitions, which are collected in Tables I
and II. Table I shows the empirical f t values, calculated
ISB corrections, and so-called nucleus-independent reduced
lifetimes,

F t ≡ f t(1 + δ′
R)(1 + δNS − δC) = K

2G2
V

(
1 + 
V

R

) , (3)

where δ′
R and δNS are the radiative corrections [28]. Errors of

F t include errors of the empirical f t values [29,30], radiative
corrections δ′

R and δNS [28], and our uncertainties estimated
for the calculated values of δC.

TABLE I. Results of calculations performed for nuclei, for which
the superallowed transitions have been measured. Listed are empirical
f t values [30]; calculated ISB corrections δ

(SV)
C and the corresponding

F t values; empirical corrections δ
(exp)
C calculated using Eq. (5);

contributions coming from the individual transitions to the χ2 budget
in the confidence-level test. As in Ref. [30], we give two digits of the
calculated errors of the F t values.

Parent f t δ
(SV)
C F t δ

(exp)
C χ 2

i

nucleus (s) (%) (s) (%)

Tz = −1 :
10C 3042(4) 0.579(87) 3064.5(52) 0.37(15) 3.5
14O 3042.3(27) 0.303(30) 3072.3(33) 0.36(6) 0.0
22Mg 3052(7) 0.270(41) 3081.4(72) 0.62(23) 1.4
34Ar 3053(8) 0.87(13) 3063.6(91) 0.63(27) 1.3

Tz = 0 :
26Al 3036.9(9) 0.329(49) 3071.8(20) 0.37(4) 0.8
34Cl 3049.4(12) 0.75(11) 3067.6(38) 0.65(5) 10.9
42Sc 3047.6(14) 0.77(27) 3069.2(85) 0.72(6) 3.1
46V 3049.5(9) 0.563(84) 3075.1(32) 0.71(6) 1.3
50Mn 3048.4(12) 0.476(71) 3076.5(32) 0.67(7) 2.4
54Co 3050.8(+11

−15) 0.586(88) 3075.6(36) 0.75(8) 1.3
62Ga 3074.1(15) 0.78(12) 3093.1(48) 1.51(9) 43.2
74Rb 3085(8) 1.63(24) 3078(12) 1.86(27) 0.3

F t = 3073.7(11) χ 2 = 69.5
|Vud| = 0.97396(25) χ 2

d = 6.3
0.99937(65)

Except for transitions 14O → 14N and 42Sc → 42Ca, all ISB
corrections were calculated using the prescription sketched
above. For the decay of a spherical nucleus 14O, the reference
state is uniquely defined and thus the mixing of orientations
was not necessary, whereas for that of 42Sc, an ambiguity of
choosing its reference state is not related to the shape-current
orientation. For both cases, the values and errors of δC were
taken from Ref. [15]. For the remaining cases, to account
for uncertainties related to the basis size and collective-space
cutoff, we assumed an error of 15%. This is larger than the
10% uncertainties related to the basis size only, which were
assumed in Ref. [15].

Systematic errors related to the form and parametrization
of the functional itself were not included in the error budget.
Moreover, similarly to our previous works [14,15], transition
38K → 38Ar was disregarded. We recall that for this transition,

TABLE II. Similar as in Table I but for the transitions that are
either unmeasured or measured with insufficient accuracy to be used
for the SM tests.

Parent δ
(SV)
C Parent δ

(SV)
C

nucleus nucleus
(%) (%)

Tz = −1 : Tz = 0 :
18Ne 1.37(21) 18F 1.22(18)
26Si 0.427(64) 22Na 0.335(50)
30S 1.24(19) 30P 0.98(15)
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the calculated value of the ISB correction is unacceptably
large because of a strong mixing of Nilsson levels originating
from the d3/2 and s1/2 subshells. The problem can be partially
cured by performing configuration-interaction calculations;
see Ref. [18] and discussion in Sec. IV B.

To conform with the analyses of Hardy and Towner (HT)
and Particle Data Group, the average value F t = 3073.7(11)s
was calculated using the Gaussian-distribution-weighted for-
mula. This leads to the value of |Vud| = 0.97396(25), which
is in very good agreement both with the Hardy and Towner
result [30], |V (HT)

ud | = 0.97425(22), and central value obtained
from the neutron decay |V (ν)

ud | = 0.9746(19) [31]. By combin-
ing the value of |Vud| calculated here with those of |Vus| =
0.2253(8) and |Vub| = 0.00413(49) of the 2014 Particle Data
Group [3], one obtains

|Vud|2 + |Vus|2 + |Vub|2 = 0.99937(65), (4)

which implies that the unitarity of the first row of the CKM
matrix is satisfied with a precision better than 0.1%. Note that,
in spite of differences between individual values of δC, the
values ofF t and |Vud| obtained here are in excellent agreement
with the results of our previous works [14,15].

The last two columns of Table I show results of the
confidence-level (CL) test, as proposed in Ref. [29]. The CL
test is based on the assumption that the CVC hypothesis is
valid up to at least ±0.03%, which implies that a set of
structure-dependent corrections should produce statistically
consistent set of F t values. Assuming the validity of the
calculated corrections δNS [32], the empirical ISB corrections
can be defined as

δ
(exp)
C = 1 + δNS − F t

f t(1 + δ′
R)

. (5)

By the least-square minimization of the appropriate χ2, and
treating the value of F t as a single adjustable parameter, one
can attempt to bring the set of empirical values δ

(exp)
C as close

as possible to the set of δC.
The empirical ISB corrections deduced in this way are

tabulated in Table I. The table also lists individual contributions
to the χ2 budget, whereas the total χ2 per degree of freedom
(χ2

d = χ2/nd for nd = 11) is χ2
d = 6.3. This number is

considerably smaller than the number quoted in our previous
work [15], but much bigger than those obtained within (i)
perturbative model reported in Ref. [29] (1.5), (ii) shell
model with the Woods-Saxon radial wave functions (0.4) [28],
(iii) shell model with Hartree-Fock radial wave functions
(2.0) [33,34], (iv) Skyrme-Hartree-Fock with RPA (2.1) [35],
and relativistic Hartree-Fock plus RPA model (1.7) [36]. It
is worth stressing that, as before, our value of χ2/nd is
deteriorated by two transitions that strongly violate the CVC
hypothesis, 62Ga → 62As and 34Cl → 34S. These transitions
give the 62% and 15% contributions to the total error budget,
respectively. Without them, we would have obtained χ2

d =
χ2/9 = 1.7.

IV. LOW-ENERGY SPECTRA OF SELECTED NUCLEI

In this section, we present a short overview of results
obtained using the NCCI approach. Because the model is based
on simultaneous isospin and angular-momentum projections, it
is particularly well suited to study N ≈ Z nuclei. These nuclei
are of paramount importance for stringent many-body tests of
the weak sector of the Standard Model [30,37]. In addition,
they show specific structural features, like the Wigner energy
or Nolen-Schiffer anomaly, which are difficult to reproduce
within state-of-the-art nuclear models, in particular those
rooted in a standard DFT.

A major goal of this work is to pin down strong and
weak points of the NCCI approach proposed here. Hence,
instead of performing a detailed study of a single nucleus,
with many configurations being mixed, we decided to use a
modest number of configurations and apply the model to a
somewhat broad set of nuclei, starting from very light systems
like 6,8Li up to 62Zn. By adding additional configurations, the
present results can certainly be refined. We believe, however,
that such refinements will not affect the physical conclusions
drawn in this work.

To efficiently track the MF configurations and to improve
convergence properties of self-consistent calculations, all
reference states used in the NCCI calculations below were
determined assuming the conservation of parity and signature
symmetries. For the A � 42(A = 62) nuclei, we employed
the s.p. basis consisting of N = 10(12) spherical harmonic
oscillator shells, respectively.

A. Lithium isotopes: 6Li and 8Li

The Slater determinants, which we selected for the NCCI
calculations in these two very light nuclei, are listed in
Table III. For the sake of simplicity, the states are labeled by
spherical quantum numbers p1/2 or p3/2 that dominate in the
s.p. wave functions of the odd-proton and odd-neutron states.
It turns out that such a labeling constitutes an intuitive and

TABLE III. Properties of the reference Slater determinants in
6Li and 8Li, numbered by index i and labeled by spherical quantum
numbers of particle states above 4He. Listed are the HF energies EHF

in MeV, quadrupole deformations β2, triaxiality parameters γ , and
neutron and proton s.p. alignments jν and jπ , together with their
orientations k in the intrinsic frame.

i |6Li; i〉 EHF β2 γ jν jπ k

1 νp3/2 ⊗ πp3/2 − 25.972 0.008 0◦ − 0.50 1.50 Z
2 νp3/2 ⊗ πp3/2 − 26.787 0.330 0◦ 0.50 0.50 Z
3 νp3/2 ⊗ πp3/2 − 26.510 0.216 60◦ − 1.50 1.50 Y
4 νp3/2 ⊗ πp3/2 − 27.244 0.207 60◦ 1.50 1.50 Y
5 νp3/2 ⊗ πp3/2 − 26.846 0.090 60◦ 1.50 0.50 Y
i |8Li; i〉 EHF β2 γ jν jπ k

1 νp3/2 ⊗ πp3/2 − 39.081 0.381 0◦ − 1.50 0.50 Z
2 νp1/2 ⊗ πp3/2 − 34.041 0.361 0◦ 0.50 0.50 Z
3 νp3/2 ⊗ πp3/2 − 39.025 0.356 0◦ 1.50 0.50 Z
4 νp3/2 ⊗ πp3/2 − 35.680 0.027 0◦ − 1.50 1.50 Z
5 νp1/2 ⊗ πp3/2 − 33.443 0.352 0◦ − 0.50 0.50 Z
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FIG. 3. Comparison between experimental and theoretical energy
spectra of 6Li and 8Li.

relatively unambiguous way to describe the configurations,
even in cases of large deformations where the Nilsson picture
formally prevails. The strategy behind selecting the reference
configurations is to cover basic combinations of neutron
or proton particle-hole (p-h) excitations having all possible
alignments predicted by a simple K scheme.

Results of our calculations are shown in Fig. 3. In the
case of 6Li, theory clearly disagrees with data, with respect
to both the ordering and values of energies. Let us first discuss
the T = 0 multiplet, composed of the 1+ and 3+ states. The
ground state of 6Li has quantum numbers I = 1+,T = 0 and
the experimental total energy of this state is −31.995 MeV. In
calculations, the lowest I = 1+ state is placed above the lowest
I = 0+,T = 1 and I = 3+,T = 0 solutions, and its energy of
−27.037 MeV is almost 5 MeV higher than in experiment.
For comparison, the calculated energy of the I = 3+,T = 0
member of the isoscalar multiplet is only 1.8 MeV higher than
in experiment. Hence, it is quite evident that the model lacks
the isoscalar pairing I = 1,T = 0 correlations, cf. Ref. [38].
In the N = Z nuclei, the model, or the underlying mean field,
seems to favor the maximally aligned T = 0 configurations.
In Sec. IV C we demonstrate that the results obtained for 42Sc
corroborate these conclusions.

It is worth recalling here that in the context of searching
for possible fingerprints of collective isoscalar pn-pairing
phase in N ≈ Z nuclei, the isoscalar pairing, or deuteronlike
correlations, were intensely discussed in the literature; see
Refs. [39–43] and references cited therein. In particular, the
isoscalar pn pairing was considered to be the source of
an additional binding energy that could offer a microscopic
explanation of the so-called Wigner energy [44]—an extra
binding energy along the N = Z line, which is absent in
the self-consistent MF mass models. In spite of numerous
recent works following these early developments attempting
to explain the isoscalar pn-pairing correlations and the Wigner
energy (see Refs. [45–50] and references cited therein), the
problem still lacks a satisfactory solution.

There are at least two major reasons for that: (i) an
incompleteness of the HFB (HF) approaches used so far, which
consider the pn mixing only in the particle-particle channel
(see discussion in Ref. [22]), and (ii) difficulties in evaluating

the role of beyond-mean-field correlations. Recently, within
the RPA including pn correlations, the latter problem was
addressed in Ref. [47]. Their systematic study of the isoscalar
and isovector multiplets in magic and semimagic nuclei
somewhat clearly indicated a missing relatively strong T = 0
pairing. This seems to be in line with our NCCI model findings
concerning description of T = 0,I = 1 states, but seems to
contradict the conclusions of Refs. [46,48].

Concerning the T = 1 multiplet consisting of the 0+ and 2+
states, the theory tends to overbind the 0+ state by 0.8 MeV and
underbind the 2+ state by 0.4 MeV. This level of agreement is
much better than the one obtained for the isoscalar multiplet. It
should be rated as fair, but not fully satisfactory. It is, therefore,
interesting and quite surprising to see that the addition of two
neutrons in 8Li seems to change the situation quite radically.
Indeed, in this nucleus, for both the binding energies and
distribution of levels below 5 MeV, the overall agreement
between theory and experiment is very satisfactory, even if
the calculated 1+

1 and 3+
1 states are interchanged; see Fig. 3.

The largest disagreement is obtained for the 1+
2 state, where

the theory underbinds experiment by almost 3 MeV. The states
0+

1 , 2+
2 , and 4+

1 are predicted at the excitation energies of 5.3,
4.7, and 6.2 MeV, respectively, in fair agreement with the data.

B. 0+ states in 38Ca, 38K, and 38Ar

Recently, Park et al. [51] performed high-precision mea-
surement of the superallowed 0+ −→ 0+ Fermi decay of
38Ca → 38K; see also [52]. The reported f t value of
3062.3(68) s was measured with a relative precision of ±0.2%,
which is sufficient for testing and determining the parameters
of the electroweak sector of the Standard Model. This piece of
data is the first, after almost a decade, addition to a set of
canonical 0+ −→ 0+ Fermi transitions, which are used to
determine |Vud |. Moreover, being a mirror partner to the
superallowed 0+ −→ 0+ Fermi transition 38K → 38Ar, it
allows for sensitive tests of the ISB corrections and, in turn,
for assessing the quality of nuclear models used to compute
the ISBs [51].

Unfortunately, using the DFT with the SV Skyrme func-
tional, which gives a strong mixing between the 2s1/2 and
1d3/2 orbits, it is difficult to determine the ISB corrections to
the 38K → 38Ar and 38Ca → 38K superallowed transitions. In
particular, in our previous static DFT calculations, the ISB
corrections turned out to be of the order of 9%, and thus were
disregarded [14,15].

In Ref. [18], we presented preliminary results of the NCCI
study of 38Ca and 38K. Here we extend them to calculations that
include three low-lying antialigned reference configurations
in 38K and four configurations in both 38Ca and 38Ar. Basic
properties of these reference states are listed in Table IV.

Results of our NCCI calculations, including the binding
energies of the lowest 0+

1 states, excitation energies of the first
excited 0+

2 states, and the ISB corrections to superallowed β
decays, are visualized in Fig. 4. The total binding energies of
the 0+

1 states in these three nuclei are underestimated by circa
1%. Concerning the first excited 0+

2 states, our model works
very well in 38Ca. In this nucleus, the measured excitation
energy, 
EEXP = 3057(18) keV, is only 186 keV larger than

024306-6



NO-CORE CONFIGURATION-INTERACTION MODEL FOR . . . PHYSICAL REVIEW C 94, 024306 (2016)

TABLE IV. Similar as in Table III, but for 38K, 38Ca, and 38Ar.
Here, the reference Slater determinants are labeled by the Nilsson
quantum numbers pertaining to dominant components of the hole
states below 40Ca. The first excited state in 38Ar, marked by asterisk,
was converged with a weak quadrupole constraint.

i |38K; i〉 
EHF β2 γ jν jπ k

1 |202 3
2 〉−2 0.000 0.083 60◦ −0.50 0.50 Y

2 |220 1
2 〉−2 1.380 0.035 0◦ 0.50 −0.50 Z

3 |211 1
2 〉−2 1.559 0.042 0◦ −1.50 1.50 Z

i |38Ca; i〉 
EHF β2 γ jν jπ k

1 |200 1
2 〉−2 0.000 0.088 60◦ 0 0 –

2 |200 1
2 〉−2 0.762 0.006 0◦ 0 0 –

3 |211 1
2 〉−2 1.669 0.045 0◦ 0 0 –

4 |220 1
2 〉−1 ⊗ |202 3

2 〉−1 2.903 0.015 60◦ 0 0 –

i |38Ar; i〉 
EHF β2 γ jν jπ k

1 |200 1
2 〉−2 0.000 0.088 60◦ 0 0 –

2 |200 1
2 〉−2 0.651(∗) 0.002 46◦ 0 0 –

3 |211 1
2 〉−2 1.600 0.045 0◦ 0 0 –

4 |220 1
2 〉−1 ⊗ |202 3

2 〉−1 2.754 0.017 60◦ 0 0 –

the calculated one, 
ETH = 2871 keV. Note, however, that the
calculated excitation energies of the 0+

2 states are predicted to
decrease with increasing Tz, at variance with the data. In turn,
the difference between experimental and theoretical excitation
energies of the 0+

2 in 38Ar grows to approximately 0.7 MeV.
The ISB corrections δC to the 38Ca → 38K transitions

between the 0+
1 → 0+

1 and 0+
2 → 0+

2 states are equal to 1.7%
and 1.5%, respectively. As compared to our previous static
model, which for the 0+

1 states was giving an unacceptably
large correction of 8.9%, the NCCI result is strongly reduced.
Nevertheless, it is still almost twice larger than that of Towner
and Hardy [28], who quote the value of 0.77(7)%.

Similar results were obtained for the 38K → 38Ar transi-
tions, where the calculated corrections are 1.3% (0+

1 → 0+
1 )

and 1.4% (0+
2 → 0+

2 ). Again, as compared to the static variant
of our model, the value for the 0+

1 → 0+
1 transition is strongly

reduced, but it is considerably larger than the Towner and
Hardy result of 0.66(6)%. Nevertheless, we see that the NCCI
model removes, at least partially, pathologies encountered in
the static variant.

C. A=42 nuclei: 42Sc and 42Ca

Within the conventional shell model, the 42Ca and 42Sc
nuclei are treated as two-body systems above the core of 40Ca.
Hence, they are often used by the shell-model community
to adjust the isoscalar T = 0; I = 1, 3, 5, 7, and isovector
T = 1; I = 0, 2, 4, 6 matrix elements within the f7/2 shell.
Here, we use these nuclei to test our NCCI model but, at least at
this stage, without an intention of refitting the interaction. The
aim of this exercise is to capture global trends and tendencies,
which may allow us to identify systematic features of the NCCI
model in describing these seemingly simple nuclei. From the

Δ

δ δ

FIG. 4. (a) Excitation energies of the 0+
2 states with respect to

the 0+
1 states in the A = 38 isobaric triplet nuclei: Ca, K, and Ar.

Theoretical predictions and data [53] are shown with solid and dashed
lines, respectively. Calculated values of δC are also shown. Decays
0+

2 → 0+
1 indicated in the figure are predicted to be strongly hindered.

(b) Comparison between the total binding energies of the 0+
1 states

(N = 10 harmonic oscillator shells were used).

perspective of our approach, such tests are by no means trivial,
because these nuclei are here treated within the full core-
polarization effects included; cf. discussion in Refs. [54,55].

The results of the NCCI calculations for the isovector and
isoscalar multiplets in A = 42 nuclei are depicted in Figs. 5
and 6, and collected in Table V. The reference states used
in the calculation for 42Sc are listed in Table VI. They cover
all fully aligned (Kν = Kπ ) states, which are almost purely

T=1

T=0

FIG. 5. Excitation energies of the isovector (circles) and isoscalar
(squares) multiplets in 42Sc with respect to the 0+ state. Theoretical
and experimental results are marked with open and solid symbols,
respectively.
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FIG. 6. Same as in Fig. 5, but for the isovector multiplets in 42Sc
(circles) and 42Ca (diamonds).

isoscalar, all possible antialigned states (Kν = −Kπ ), and
two K = 1 aligned states. The antialigned states manifestly
violate the isospin symmetry and, as discussed in Ref. [56], are
approximately 50-50 mixtures of the isoscalar and isovector
components. The K = 1 aligned states also violate the isospin
symmetry.

The following three general conclusions can be drawn from
the results presented in Fig. 5:

(i) The model lacks isoscalar pairing T = 0,I = 1 corre-
lations. A similar deficiency was already observed in
6Li, Sec. IV A.

(ii) The model strongly prefers fully aligned isoscalar T =
0,Imax = 7 states. Again, the conclusion is consistent
with the one drawn from the calculated spectrum of
6Li.

(iii) The energy range spanned by the isovector states,

ET =1 = ET =1,I=6 − ET =1,I=0, is by a factor of two
smaller in theory than in experiment. It is not obvious,
however, whether this difference signalizes that the
model underestimates the isovector pairing correla-

TABLE V. Excitation energies (total energies) of low-lying states
(ground states) in 42Sc and 42Ca. For 42Sc, we show calculated and
experimental energies of the isovector (I = 0+, 2+, 4+, and 6+) and
isoscalar (I = 1+, 3+, 5+, and 7+) multiplets. For 42Ca, we show
the analogous energies of the isovector multiplet. All energies are in
MeV.

42Sc 42Sc 42Ca 42Ca
Iπ 
E

(th)
I 
E

(exp)
I 
E

(th)
I 
E

(exp)
I

0+ −352.961 −354.687 −360.200 −361.895

2+ 1.012 1.586 1.357 1.525
4+ 1.590 2.815 2.005 2.752
6+ 1.696 (3.200) 2.154 3.189

1+ 1.785 0.611
3+ 1.656 1.490
5+ 1.336 1.510
7+ −0.347 0.617

TABLE VI. Similar as in Table III, but for 42Sc. Here, the
reference Slater determinants correspond to configurations νf7/2 ⊗
πf7/2, and are labeled by intrinsic K quantum numbers of valence
neutrons and protons as |ν; Kν〉 ⊗ |π ; Kπ 〉. Reference states i = 1–4
correspond to antialigned configurations, Kν = −Kπ , thus carrying
no net intrinsic alignment. Reference states i = 5–8 represent aligned
configurations, Kν = Kπ , thus having the total alignments of 7, 5,
3, and 1, respectively. The remaining two configurations i = 9–10
carry net alignments of 1. The table also lists the HF energies


EI=|K| relative to the |ν; 1
2 〉 ⊗ |π ; 1

2 〉 solution. The last column shows
excitation energy of the lowest I = |K| state projected from a given
Slater determinant.

i |42Sc; i〉 
EHF β2 γ 
EI=|K|

1 |ν; 1
2 〉 ⊗ |π ; 1

2 〉 0.000 0.063 0 0.000

2 |ν; 3
2 〉 ⊗ |π ; 3

2 〉 0.802 0.031 0 0.561

3 |ν; 5
2 〉 ⊗ |π ; 5

2 〉 0.986 0.008 60 0.551

4 |ν; 7
2 〉 ⊗ |π ; 7

2 〉 0.759 0.062 60 0.085

5 |ν; 7
2 〉 ⊗ |π ; 7

2 〉 −0.929 0.061 60 −0.647

6 |ν; 5
2 〉 ⊗ |π ; 5

2 〉 0.082 0.007 60 1.160

7 |ν; 3
2 〉 ⊗ |π ; 3

2 〉 0.345 0.032 0 1.594

8 |ν; 1
2 〉 ⊗ |π ; 1

2 〉 0.340 0.060 0 1.719

9 |ν; 3
2 〉 ⊗ |π ; − 1

2 〉 0.716 0.043 0 2.164

10 |ν; 5
2 〉 ⊗ |π ; − 3

2 〉 0.986 0.011 0 2.338

tions, overbinds the stretched (aligned) configurations,
or both.

In the case of 42Ca, we focused on calculating the excitation
energies of the 0+ states, addressing, in particular, the question
of structure and excitation energy of the intruder configuration.
Experimentally, the intruder configuration is observed at very
low excitation energy of 1.843 MeV; see Ref. [57] and
references cited therein. In the calculations presented below we
assumed that the structure of intruder state is associated with
(multi)particle-(multi)hole excitations across the N = Z = 20
magic gap, which in 40Ca is of the order of 7.0 MeV; see
Ref. [54] and references cited therein. The mechanism bringing
the intruder configuration down in energy is sketched in Fig. 7.

The energy needed to elevate particles from the d3/2 sub-
shell to f7/2 is at (near)spherical shape reduced by the energy
associated with the spontaneous breaking of spherical symme-
try in the intruder configuration, and further, by a rotational
correction energy associated with the symmetry restoration.
Owing to the configuration interaction, an additional gain
in energy is expected too. The rotational correction and
configuration interaction are also expected to lower slightly
the MF g.s. energy. As shown in Fig. 7, the final value of the
intruder excitation energy is an effect of a somewhat delicate
interplay of several factors. Therefore, it is not surprising
that the intruder states pose a real challenge for both the
state-of-the-art nuclear shell models and MF-rooted theories.

In the NCCI calculations presented below, we mix states
projected from the antialigned configurations that are listed
in Table VII. The reference states can be divided into two
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Δ

Δ

Δ
Δ

FIG. 7. Schematic illustration of the interplay between the pri-
mary physical ingredients contributing to the excitation energy of the
intruder state within our model. See text for details.

classes. The first four configurations do not involve any
cross-shell excitations. They correspond to the |K〉 ⊗ |K〉
0p-0h (νf7/2)2 configurations with magnetic quantum number
of K = 1/2, 3/2, 5/2, and 7/2, respectively. The three
remaining configurations are the lowest MF configurations
involving two f 4

7/2d
−2
3/2 : (νf7/2)2 ⊗ (πf7/2)2 ⊗ (πd3/2)−2, four

f 6
7/2d

−4
3/2 : (νf7/2)4 ⊗ (νd3/2)−2 ⊗ (πf7/2)2 ⊗ (πd3/2)−2, and

six f 8
7/2d

−6
3/2 : (νf7/2)4 ⊗ (νd3/2)−2 ⊗ (πf7/2)4 ⊗ (πd3/2)−4

holes in d3/2 shell, respectively.
The results of the NCCI calculations in 42Ca are depicted

in Figs. 6 and 8 and collected in Tables V and VII. Figure 6
shows the I = 0+,2+,4+, and 6+ states—the isovector T = 1
multiplet—obtained within the NCCI calculations involving
only (νf7/2)2 reference states. The results are qualitatively
similar to those in 42Sc. In both cases, theoretical spectra
are compressed as compared to data. Detailed quantitative
comparison reveals, however, surprisingly large differences
between the theoretical and experimental spectra.

First, the energy differences δEI = 
EI (42Ca) −

EI (42Sc) for I = 2+,4+,6+ are positive (negative) in theory
(experiment), respectively. Second, the absolute values of
|δEI| are a few times larger in theory as compared to the data.

TABLE VII. Similar as in Table III, but for 42Ca. Here, the Slater
determinants are labeled by spherical quantum numbers pertaining to
active neutron orbitals. The last column shows excitation energies of
the lowest 0+ states projected from a given Slater determinant.

i |42Ca; i〉 
EHF β2 γ 
EI=0

1 | 1
2 〉 ⊗ | 1

2 〉 0.000 0.069 0◦ 0.000

2 | 3
2 〉 ⊗ | 3

2 〉 0.516 0.033 0◦ 0.765

3 | 5
2 〉 ⊗ | 5

2 〉 0.544 0.007 60◦ 0.770

4 | 7
2 〉 ⊗ | 7

2 〉 0.084 0.061 60◦ 0.315

5 f 4
7/2 d−2

3/2 10.001 0.288 14◦ 6.860

6 f 6
7/2 d−4

3/2 10.986 0.414 22◦ 6.498

7 f 8
7/2 d−6

3/2 14.937 0.542 12◦ 9.619

FIG. 8. The lowest 0+ states projected from (f7/2)2 (0p-0h),
(f7/2)4(d3/2)−2 (2p-2h), (f7/2)6(d3/2)−4 (4p-4h), and (f7/2)8(d3/2)−6

(6p-6h) reference states. Open (solid) diamonds refer to calculations
performed using the SV and SVSO functionals, respectively. These
results do not include configuration mixing. The right part shows
excitation energies of the intruder state obtained within the NCCI
theory with SV and SVSO interactions.

It means that the model tends to overestimate the ISB effects
in clearly an unphysical manner. This influences the ISB
correction to the 0+ −→ 0+ Fermi β-decay matrix element,
which in the present NCCI calculation rises to δC ≈ 2.2%.
Most likely, the unphysical component in the ISB effect is
related to the time-odd polarizations and matrix elements
originating from these fields, which are essentially absent in
even-even systems. One should also remember that in the
Skyrme functionals, including, of course, the SV force used
here, the time-odd terms are very purely constrained.

Figure 8 shows the 0+ states calculated using functionals
SV. The left part of the figure depicts the lowest 0+ states pro-
jected from the reference states (f7/2)2 (0p-0h), (f7/2)4(d3/2)−2

(2p-2h), (f7/2)6(d3/2)−4 (4p-4h), and (f7/2)8(d3/2)−6 (6p-6h).
These results do not include configuration mixing. Note,
that symmetry restoration itself changes the optimal intruder
configuration to (νf7/2)4 ⊗ (νd3/2)−2 ⊗ (πf7/2)2 ⊗ (πd3/2)−2

as compared to MF, which favors (νf7/2)2 ⊗ (πf7/2)2 ⊗
(πd3/2)−2.

The right part of the figure shows excitation energies of
the intruder states as obtained within the NCCI calculations.
Here, all reference states listed in Table VII were included.
For the SV force, the excitation energy of the lowest intruder
configuration equals 7.5 MeV, and exceeds the data by
5.7 MeV. The main reason of the disagreement is related to an
unphysically large N = Z = 20 shell gap: The bare N = 20
gap deduced directly from the s.p. HF levels in 40Ca equals
as much as 11.5 MeV. Its value exceeds the experimental gap
by almost 4.5 MeV (for an overview of experimental data,
see Ref. [54] and references cited therein). It is therefore
not surprising that the combined effects of deformation and
rotational correction are unable to compensate for the large
energy needed to lift the particles from the d3/2 to f7/2 shell
(see Fig. 7).

To investigate interplay between the s.p. and collective
effects, we repeated the NCCI calculations using the functional
SVSO, which differs from SV in a single aspect, namely,
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TABLE VIII. Same as in Table VII, but for the functional SVSO.

i |42Ca; i〉 
EHF β2 γ 
EI=0

1 | 1
2 〉 ⊗ | 1

2 〉 0.000 0.064 0◦ 0.000

2 | 1
2 〉 ⊗ | 1

2 〉 0.517 0.032 0◦ 0.679

3 | 1
2 〉 ⊗ | 1

2 〉 0.496 0.007 60◦ 0.676

4 | 1
2 〉 ⊗ | 1

2 〉 0.006 0.061 60◦ 0.200

5 f 4
7/2 d−2

3/2 8.399 0.276 15◦ 5.085
6 f 6

7/2 d−4
3/2 7.377 0.402 22◦ 2.548

7 f 8
7/2 d−6

3/2 9.955 0.532 15◦ 4.103

we increased its spin-orbit strength by a factor of 1.2. This
readjustment allows one to reduce a disagreement between
theoretical and experimental binding energies in N ≈ Zsd
and lower-pf shell nuclei to ±1% level as shown in Ref. [58].
When applied to the heaviest N = Z nucleus 100Sn and its
neighbor 100In it gives 827.710 MeV and 833.067 MeV what
is in an impressive agreement with the experimental binding
energies equal 825.300 MeV (833.110 MeV) in 100Sn (100In),
respectively. Ability to reproduce masses is among the most
important indicators of a quality of DFT-based models. Such
a readjustment of the SO strength is also the simplest and
most efficient mechanism allowing us to reduce the magic
Z = N = 20 gap [59]. For the SVSO force, the bare gap equals
9.6 MeV, which is by almost 1.9 MeV smaller than the original
SV gap, but still it is much larger, by circa 2.6 MeV, than the
experimental value. Results of the NCCI calculations obtained
using functional SVSO are shown in Fig. 8. Now the projected
and NCCI calculations both favor the configuration (νf7/2)4 ⊗
(νd3/2)−2 ⊗ (πf7/2)2 ⊗ (πd3/2)−2. We also note that for both
the SV and SVSO functionals, geometrical properties of the
reference states (deformations) are very similar.

When discussing the influence of various effects on the
final position of the intruder state, it is worth stressing the
role of the symmetry restoration. The rotational correction
lowers the intruder state by 4.9 MeV, bringing its excitation
energy to 2.3 MeV, which is only 0.5 MeV above the
experiment. However, after the configuration mixing, the
excitation energy of the intruder state increases to about
3.6 MeV, that is, it becomes again 1.7 MeV higher as
compared to data. This is because of the configuration mixing
in the ground state, which lowers its energy by almost
1 MeV, whereas it leaves the position of the intruder state
almost unaffected. The reason for that is the fact that the
(νf7/2)2 antialigned reference states (states 1–4 in Tables VII
and VIII) are almost linearly dependent and thus mix rela-
tively strongly. Conversely, at deformations corresponding to
the intruder configuration (νf7/2)4 ⊗ (νd3/2)−2 ⊗ (πf7/2)2 ⊗
(πd3/2)−2, the Nilsson scheme prevails. Therefore, the intruder
configurations become almost linearly independent and appear
to mix very weakly. The amount of the mixing was tested by
performing additional calculations of matrix elements between
the lowest (νf7/2)4 ⊗ (νd3/2)−2 ⊗ (πf7/2)2 ⊗ (πd3/2)−2 con-
figuration and the excited configurations involving the same
number of (d3/2)−4 holes. All these matrix elements turned out
to be negligibly small.

π2

π1

ν1

ν2

ππ1

π
π

π
π

π
π

ν
ν

ν
ν

FIG. 9. The low-lying 0+ states in 62Zn. The first two columns
show old and new experimental data; see [60] for details. The next
three columns collect the results of the shell-model calculations
using interactions MSDI3 [61], GXPF1 [62], and GXPF1A [63],
respectively. The last three columns show results obtained within the
NCCI approach, angular-momentum projection, and pure HF method,
respectively. From Ref. [18].

D. A = 62 nuclei: 62Zn and 62Ga

For 62Zn, the results of the NCCI calculations of the low-
lying 0+ states were communicated in Ref. [18]. Here, for
the sake of completeness, we briefly summarize the results
obtained therein. The calculated spectrum of the 0+ states
below the excitation energy of 5 MeV is shown in Fig. 9.
The NCCI calculations were based on six reference states
that include: the ground state, the two lowest neutron p-h
excitations ν1 and ν2, the two lowest proton p-h excitations
π1 and π2, and the lowest proton 2p-2h excitation ππ1. Their
properties are listed in Table IX.

As discussed in Ref. [18], the calculated spectrum of
0+ states is in a very good agreement with the recent data
communicated by Leach et al. [60]. As shown in Fig. 10(a), the
calculated total g.s. energy is stable with increasing the number
of reference configurations. Its value of −526.595 MeV (N =
12 harmonic oscillator shells were used) underestimates the
experiment by roughly 2%.

In spite of the fact that the total binding energy is relatively
stable, the calculated ISB corrections to the superallowed
transition 62Ga → 62Zn strongly depend on the details of the

TABLE IX. Similar as in Table III, but for 62Zn. Here, the
Slater determinants are labeled by neutron and proton configurations
described in the text. The last column shows energies of the lowest
0+ states projected from a given Slater determinant.

i |62Zn; i〉 
EHF β2 γ jν jπ k 
EI=0

1 g.s. −521.549 0.270 31◦ 0.000 0.000 −526.405
2 π1 1.433 0.286 20◦ 0.005 0.152 Y 2.036
3 ν1 3.347 0.255 40◦ 0.689 0.318 X 3.703
4 ν2 4.287 0.240 25◦ −0.281 −0.325 Y 3.852
5 π2 5.251 0.246 48◦ −0.103 −0.076 X 5.672
6 ππ1 3.381 0.251 38◦ 0.000 0.000 3.471
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δ

π

ν

π ν ν π ππ

FIG. 10. (a) The low-lying 0+ states in 62Zn in the function of
the number of configurations included in the NCCI calculations. (b)
Calculated ISB corrections versus the number of configurations taken
into account in the daughter nucleus. Different curves correspond to
different sets of configurations taken to calculate the 0+ state in 62Ga.
(c) The HF energies of configurations included in the calculation of
62Ga; see Table X. Further details are given in the text.

calculation. This is illustrated in Fig. 10(b), which shows val-
ues of δC in function of the number of configurations taken for
the NCCI calculations in the daughter nucleus 62Zn. The four
different curves correspond to different model spaces taken for
the NCCI calculation in the parent nucleus 62Ga; see Table X
and Fig. 10(c). In terms of Nilsson numbers, counted relatively
to the 64Zn32 even-even core, the configurations X,Y,Z cor-
respond to differently aligned ν|312 3/2〉−1 ⊗ π |312 3/2〉−1

two-hole states, π1 denotes ν|312 3/2〉−1 ⊗ π |312 5/2〉−1,
two-hole state while ν1 is ν|321 1/2〉−1 ⊗ π |312 3/2〉−1. The
three curves labeled with open dots, and open and solid
triangles correspond to states 0+ projected from the [X,Y],
[X,Y,Z], and [X,Y,Z,π1] configurations, respectively. These
curves essentially overlap with each other, thus showing no
influence of the configuration mixing (in this restricted model
space) on the structure of the 0+ state in the parent nucleus.
Note, however, that an extension of the model space by adding
the lowest neutron p-h excitation, [X,Y,Z,π1,ν1], leads to an
increase in δC of about 1%. Note also, that all curves are
particularly sensitive to an admixture of the ν2 configuration
in the daughter nucleus. This admixture increases δC by
almost 4%. The analysis clearly shows that, within the present

TABLE X. Same as in Table IX, but for 62Ga.

i |62Ga; i〉 
EHF β2 γ jν jπ k 
EI=0

1 Y −512.122 0.268 30◦ −0.138 0.149 Y −516.930

2 X 0.007 0.268 30◦ 0.180 −0.170 X −0.001

3 Z 0.190 0.269 30◦ −0.299 0.264 Z 0.005

4 π1 1.266 0.284 20◦ −0.012 −0.264 X 2.175

5 ν1 1.977 0.255 35◦ −0.440 −0.351 X 3.151

implementation of the model, it is essentially impossible
to match the spaces of states used to calculate the parent
and daughter nuclei. The reasons are manifold. The lack
of representability of the T = 1,I = 0 states in the N = Z
nucleus within the conventional MF using products of neutron
and proton wave functions and difficulties in constraining the
time-odd part of the functional are two of them. Difficulty of
matching the model spaces in the parent and daughter nuclei
introduce here an artificial ISB effect. As a result, beyond a
simple mixing of orientations used in the result given in Table I,
the NCCI approach cannot be used for determining the ISB
corrections to the transition 62Ga → 62Zn.

V. SUMMARY AND PERSPECTIVES

In this work, we introduced the NCCI model involving the
isospin and angular-momentum projections and subsequent
mixing of states having good angular momentum and properly
treated Coulomb isospin mixing. The model is capable of
treating rigorously both the fundamental (spherical, particle
number) as well as approximate (isospin) nuclear symmetries.
Its potentially unrestricted range of applicability and a natural
ability to treat the core-polarization effects resulting from
a subtle interplay between the long-range Coulomb force
and short-range hadronic nucleon-nucleon forces, which are
treated on the same footing, makes it an interesting alternative
to the nuclear shell model.

The NCCI model employs states projected from the low-
lying (multi)particle-(multi)hole deformed Slater determinants
(configurations) calculated self-consistently using the Hartree-
Fock method. In the present realization, the same SV Skyrme
functional was used both to compute the configurations and to
mix the states. This restriction, however, can be easily relaxed
opening a room for various generalizations of the model. In
particular, one can attempt to correct an interaction used at the
mixing stage to improve a description of T = 0,I = 1+ states
in 6Li and 42Sc N = Z nuclei.

We demonstrated that our NCCI formalism is capable of
capturing many features of the low-lying energy spectra in
such diverse systems as 8Li, A = 38 isospin triplet nuclei
or 62Zn and 62Ga nuclei. A reasonable agreement with
experiment was obtained when using a relatively small number
of configurations, which supports our claims that the model
can indeed be applicable to medium heavy nuclei with an
affordable numerical cost. Our recent systematic study of
Gamow-Teller matrix elements in Tz = 1/2 sd- and lower
pf -shell mirror nuclei performed in Ref. [58] (see also [64])
confirms that the model can incorporate in a controlled way
many important correlations into the nuclear wave function.

Finally, we also calculated the new set of the ISB correc-
tions to superallowed T = 1,I = 0+ → T = 1,I = 0+ beta
transitions. The refined corrections are collected in Table I for
a canonical set of precisely measured transitions and in Table II
for transitions that were either unmeasured or measured with
the accuracy insufficient for the Standard Model tests. These
results are based on mixing the I = 0+ states projected from
the so-called X,Y , and Z configurations corresponding to
different shape-current orientations in odd-odd nuclei. Un-
fortunately, an attempt to perform more advanced calculation

024306-11
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for the transition 62Ga → 62Zn, which would take into account
more configurations, failed because of difficulties in matching
the model spaces in even-even and odd-odd nuclei.
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