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By using the general triaxial rotor model (TRM) and the phonon-configuration mixing scheme within an
anharmonic-vibrator (AHV) framework, a series of global correlations between electromagnetic properties of
nuclear 2+

1 and 2+
2 states are analytically established. The correlations from both models can roughly describe

the experimental data involving quadrupole collectivity with few exceptions. Furthermore, there seems to be a
robust orthogonal transformation between the AHV and the TRM bases for realistic nuclear systems, suggesting
that the two models may in fact be describing the collective features of nuclear low-lying states in similar model
spaces.
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I. INTRODUCTION

The quadrupole collectivity exhibited by low-lying states
in atomic nuclei robustly maintains rotational characteristics.
This includes a large range of nuclei for which the low-lying
levels do not behave like those of an axially symmetric rigid ro-
tor, because they have energy ratios of R = E(4+

1 )/E(2+
1 ) that

deviate, often substantially, from 10/3. For example, most dou-
bly even nuclei with A > 56 for which R = E(4+

1 )/E(2+
1 ) < 3

and B(E2,2+
1 → 0+

1 ) < 100 W.U. have ratios of quadrupole
transition rates B(E2,4+

1 → 2+
1 )/B(E2,2+

1 → 0+
1 ) near 10/7,

which is the axially symmetric rigid rotor limit [1]. Further-
more, theoretical shell-model calculations, with both effective
interactions and random interactions, tend to provide the
rotational Alaga ratio of Q2(2+

1 )/B(E2,2+
1 → 0+

1 ) = 64π/49,
regardless of the low-lying spectrum behavior [2–4].

A recent experimental survey [5] of quadrupole moments
of the lowest two Iπ = 2+ states [denoted by Q(2+

1 ) and
Q(2+

2 ), respectively] demonstrated a global Q(2+
1 ) = −Q(2+

2 )
correlation, i.e., another rotorlike correlation proposed therein,
across a wide range of masses and deformations accompanied
by R values between 2 (the vibrational limit) and 10/3. One of
the present authors also observed a robust Q(2+

1 ) = −Q(2+
2 )

correlation in shell-model random-interaction ensembles with-
out rotational yrast states [6].

It is important to note here that only the pure axially
symmetric rotor requires R = 10/3. Several more general
nuclear rotor models can produce “realistic” low-lying spectra
away from this limiting behavior. This includes models with a
strong microscopic underpinning, such as the coupled-SU(3)
model [1] and the Sp(3,R) model [7], as well as others that
are more phenomenological, such as the triaxial rotor model
(TRM) [8]. One of these models, the TRM with three E2-
tensor-independent inertia for the three different principal axes
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[9], trivially gives rise to the Q(2+
1 ) = −Q(2+

2 ) correlation
without limits on the R value. This approach, which adopts
five model parameters and an analytical formalism, has been
used extensively for the description of experimental data on
E2 collectivity [10–13].

It is also possible that the Q(2+
1 ) = −Q(2+

2 ) correlation
might be present in nonrotor models. Here we consider the pos-
sibility of describing it through phonon-configuration mixing
in the anharmonic-vibrator model (AHV) [14–16]. In the early
90s, Casten et al. [17] discussed the linear correlation between
E(4+

1 ) and E(2+
1 ) of nuclei in the AHV model, showing that

the model could be applied to nuclei with R = 2.05 ∼ 3.15.
Thus, the AHV model likewise has a much weaker constraint
on the R value than the axially symmetric rotor model, while
still describing quadrupole collective features. Therefore, it too
might provide a spectrally consistent explanation for the global
Q(2+

1 ) = −Q(2+
2 ) correlation, while perhaps also providing

other correlations between electromagnetic properties and
spectra. However, Ref. [17] only focused on the AHV behavior
of the yrast band and thus did not consider the effects of
phonon-configuration mixing. The experimental evidence for
the global existence of phonon-configuration mixing in 2+

1
and 2+

2 states is not well established yet, to the best of our
knowledge, but is nevertheless worth exploring.

This work aims to examine the ability of the TRM
and phonon-configuration mixing in the AHV to describe
global correlations between nuclear low-lying electromagnetic
properties and level properties. First, in Sec. II, we review the
formalism of the TRM and the AHV, which will be used to
derive possible correlations among excitation energies, E2
transition rates, and electromagnetic moments. We then report
in Sec. III an experimental survey based on the ENSDF
database [18] to verify the applicability of the correlations
derived from the previous step for the two models. Finally,
in Sec. IV, we discuss the possibility that there is in fact
an underlying relation between these two seemingly different
views of nuclear collectivity, the TRM and the AHV. In Sec. V
we summarize the main features and conclusions of our study.
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II. MODEL FRAMEWORKS

A. The TRM

Details on the formalism of the TRM with independent
inertia and electric quadrupole tensors were presented in
Ref. [9]. Here, we only present a few key formulas that are
needed for this work. In the TRM, the Hamiltonian matrices
for 2+ and 4+ states, respectively, are written schematically as

H 2+
TRM =

(
6A 4

√
3G

4
√

3G 6A + 4F

)
,

H 4+
TRM =

⎛
⎜⎝

20A 12
√

5G 0

12
√

5G 20A + 4F 4
√

7G

0 4
√

7G 20A + 16F

⎞
⎟⎠, (1)

where A, G, and F are Hamiltonian parameters related to the
three components of the inertia tensor.

The 2+ states are orthogonal combinations of the K = 0
and K = 2 configurations, according to

|2+
1 〉 = cos �|K = 0〉 − sin �|K = 2〉,

|2+
2 〉 = sin �|K = 0〉 + cos �|K = 2〉, (2)

where K is the projection of the angular momentum with
respect to the intrinsic coordinate system and tan 2� =
2
√

3G/F defines the K mixing.
The electric quadrupole properties of the lowest 2+ states

can be expressed as

B(E2,2+
1 → 0+

1 ) = Q2
0

16π
cos2(γ + �),

B(E2,2+
2 → 0+

1 ) = Q2
0

16π
sin2(γ + �),

B(E2,2+
2 → 2+

1 ) = 5Q2
0

56π
sin2(γ − 2�),

Q(2+
1 ) = −2

7
Q0 cos(γ − 2�) = −Q(2+

2 ), (3)

where Q0 is the static quadrupole moment and γ is a parameter
related to the nuclear quadrupole deformation. One sees that a
Q(2+

1 ) = −Q(2+
2 ) correlation is unconditionally conserved in

the TRM.

B. The AHV

In the AHV description [15], the model space of 2+
1 and 2+

2
states can be constructed from one-phonon and two-phonon
excitations of the phonon vacuum |0〉 (namely, the 0+ “ground
state”) denoted by |1〉 and |2〉, respectively. In this model space,
the Hamiltonian matrix is written as

H 2+
AHV =

(
�ω λ
λ 2�ω

)
, (4)

where �ω and λ are the one-phonon excitation energy and
the mixing energy between the phonon configurations, respec-
tively. The 2+

1 and 2+
2 states of an AHV nucleus correspond to

a mixing of the two configurations, defined by

|2+
1 〉 = a1|1〉 + a2|2〉,

(5)
|2+

2 〉 = −a2|1〉 + a1|2〉,
where a1 and a2 are amplitudes derived from diagonalization
of Eq. (4) with the normalization constraint, a2

1 + a2
2 = 1. The

electric quadrupole operator in the AHV [19] is given by

Q̂ = χ (b† + b̃), (6)

where b† and b̃ are creation and (time-reversed) annihilation
operators of the phonon, respectively, and χ is a free parameter.
The quadrupole properties in this model are given by

B(E2,2+
1 → 0+

1 ) = χ2a2
1

5
〈0||b̃||1〉2,

B(E2,2+
2 → 0+

1 ) = χ2a2
2

5
〈0||b̃||1〉2,

B(E2,2+
2 → 2+

1 ) = χ2
(
a2

1 − a2
2

)2

5
〈1||b̃||2〉2,

Q(2+
1 ) = 8χa1a2

5

√
2π

7
〈1||b̃||2〉 = −Q(2+

2 ). (7)

Again, we have a Q(2+
1 ) = −Q(2+

2 ) correlation regardless of
the spectral behavior.

We should emphasize that the Q(2+
1 ) = −Q(2+

2 ) correla-
tion only emerges when the 2+ model space is constructed
solely in terms of the |1〉 and |2〉 states. In principle, there
may be multiphonon mixing in the 2+

1 and 2+
2 states, which

can distort this correlation. Because the Q(2+
1 ) = −Q(2+

2 )
correlation seems to be present in experiment [5], we conclude
that these multiphonon configurations are probably not very
important in realistic nuclei. In what follows, we therefore
neglect them in our AHV analysis and assume an appropriately
truncated version of the AHV model.

III. SYSTEMATIC COMPARISON
WITH EXPERIMENTAL DATA

A. Spectral properties

Diagonalization of Eq. (1) for given values of A, F , and
G provides excitation energies of the 2+

1 , 2+
2 , and 4+

1 states
in the TRM approach. This diagonalization is equivalent to
solving quadratic and cubic equations. Conversely, one can
take A, G, and F in Eq. (1) as unknown variables and
experimental excitation energies as input parameters. Roots
of such equations would then give appropriate A, G, and
F parameters for each specific nucleus. We do not present
details on the mathematical process followed here. However,
we note that there may be no real-number roots of A,
G, and F for some nuclei, in which case, Eq. (3) cannot
provide observable E2 transition rates and moments. This
could happen if the experimental low-lying level scheme is
incomplete or if the TRM is inappropriate for the nucleus under
investigation.

In the ENSDF, there are 203 TRM-solvable nuclei. In
Fig. 1, we present the R = E(4+

1 )/E(2+
1 ) distribution of these

nuclei. One sees that this distribution spreads over the whole
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FIG. 1. R = E(4+
1 )/E(2+

1 ) distribution of the 203 TRM-solvable
nuclei in the ENSDF (see text). Peaks for γ instability (R � 5/2) and
an axially symmetric rotor (R � 10/3) are highlighted.

R > 2 region, indicating that the TRM could indeed provide
nonrotorlike spectra, but still maintain the rotational Q(2+

1 ) =
−Q(2+

2 ) correlation demonstrated by Eq. (3). We also note
that there are two peaks in this distribution around R = 5/2
and R = 10/3. The R = 10/3 peak obviously corresponds
to rotational nuclei with axially symmetric deformation. The
R = 5/2 peak, on the other hand, is normally taken as the sign
of the O(6) limit in the interacting boson model (IBM) [20],
corresponding to γ instability. It has been pointed out that the
TRM may share a similar structural pattern for K = 0 and
K = 2 bands with a γ -unstable model [10], in agreement with
the R = 5/2 predominance exhibited here.

The spectral structure of nuclei using the AHV approach
is simpler than that using the TRM. As demonstrated by
Eq. (5), the 2+

1 and 2+
2 states are the mixing of one-phonon and

two-phonon configurations. According to perturbation theory,
E(2+

1 ) is below the one-phonon excitation energy, i.e., �ω,
while E(2+

2 ) is beyond the two-phonon excitation energy, i.e.,
2�ω. In Fig. 2, we plot all the available experimental data on
nuclei with E(2+

2 ) versus E(2+
1 ) in the range R = 2.05 ∼ 3.15,

which were already assigned to the AHV by Casten et al. [17].
This experimental ensemble includes 177 nuclei in the ENSDF.
One sees that most R = 2.05 ∼ 3.15 nuclei fall beyond the
E(2+

2 ) = 2E(2+
1 ) line, which forms a sharp edge in Fig. 2. This

observation suggests that the ensemble of R = 2.05 ∼ 3.15
nuclei is indeed a reasonable sample of AHV nuclei, with
phonon-configuration mixing robustly existing in the 2+

1 and
2+

2 states, in agreement with the classification of Casten et al.
[17].

B. Correlation between μ(2+
1 ) and μ(2+

2 )

To calculate magnetic moments (μ) within the TRM
framework, we adopt the following schematic μ matrix

FIG. 2. Experimental E(2+
2 ) versus E(2+

1 ) for the 177 nuclei
with R = 2.05 ∼ 3.15 in the ENSDF. The E(2+

2 ) = 2E(2+
1 ) line is

highlighted.

elements for a rigid rotor with good quantum numbers IK
[21]:

〈IK = 0|μ̂|IK = 0〉 = gRI,

〈IK = 2|μ̂|IK = 2〉 = gRI + (gK − gR)
K2

I + 1
. (8)

Here, μ̂ is the magnetic-moment operator; gR and gK are the g
factors for rotational motion and intrinsic motion, respectively.
The exchange matrix 〈IK = 0|μ̂|IK = 2〉 vanishes, because
μ̂ is a rank-one vector. For a uniformly charged liquid drop,
protons and neutrons have the same contribution to the total
nuclear angular momentum in the laboratory frame, but only
the protons contribute to the magnetic moment. Thus, on
average, gR � Z/A [21], where Z is the proton number and
A is the mass number. The term gK in Eq. (8) represents
the magnetic moment from quasiparticle excitations in the
intrinsic frame. In the asymptotic limit, gK equals 1 for
the quasiproton configuration and 0 for the quasineutron
configuration [22]. In TRM-applicable nuclei with significant
deformation, valence proton and neutron configurations are
strongly mixed [23], which implies that each valence proton
or neutron has the same probability of being excited. Thus, gK

can be estimated to be gK = Np/(Np + Nn), where Np and
Nn are the valence proton and neutron numbers, respectively,
from which the magnetic moments of the 2+ states defined by
Eq. (2) within the TRM are given by

μ(2+
1 ) = 2

Z

A
sin2 � +

[
2Z

3A
+ 4Np

3(Np + Nn)

]
cos2 �,

μ(2+
2 ) = 2

Z

A
cos2 � +

[
2Z

3A
+ 4Np

3(Np + Nn)

]
sin2 �. (9)

In the AHV, the first-order approximation to the magnetic
dipole moment operator [19] in a sharp-edged liquid drop
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TABLE I. Experimentally available μ(2+
1 ) and μ(2+

2 ) values [18]
compared with our TRM estimates. The ratios of μ(2+

2 )/μ(2+
1 ) are

listed to demonstrate the μ(2+
1 ) = μ(2+

2 ) correlation. Nuclei with
no TRM estimates here are insolvable in the TRM framework, as
discussed in Sec. III A.

Nucleus Expt. TRM

μ(2+
1 ) μ(2+

2 )
μ(2+

2 )

μ(2+
1 )

μ(2+
1 ) μ(2+

2 )

80Kr +0.76(10) +1.3(7) 1.7(9)
86Sr +0.57(3) +0.8(3) 1.4(5)
92Zr − 0.360(20) +1.5(10) −4(3)
132Xe +0.651(24) +0.2(4) 0.3(6)
150Sm +0.77(5) +0.72(17) 0.9(2) 0.81 0.62
152Sm +0.82(4) +0.76(19) 0.9(2) 0.82 0.58
160Dy +0.723(19) +0.80(5) 1.11(8) 0.83 0.63
162Dy +0.686(28) 0.92(6) 1.3(1) 0.82 0.62
164Dy +0.684(23) 0.76(6) 1.1(1) 0.81 0.60
166Er +0.641(10) 0.69(8) 1.1(1) 0.82 0.64
168Er +0.642(12) +0.72(14) 1.1(2) 0.81 0.62
184W +0.578(14) +0.25(8) 0.4(1) 0.80 0.65
186W +0.615(24) +0.39(8) 0.6(1) 0.80 0.64
188Os +0.596(22) +0.78(7) 1.3(1) 0.81 0.67
190Os +0.692(30) +0.66(8) 1.0(1) 0.80 0.66
192Os +0.792(20) +0.58(4) 0.73(5) 0.78 0.65
192Pt +0.590(18) +0.61(8) 1.0(1)
194Pt +0.60(3) +0.56(12) 0.9(2)
196Pt +0.604(48) +0.54(9) 0.9(2)
198Pt +0.63(2) +0.61(11) 1.0(2)

model may be simplified as

μ̂ = η[(b† + b̃) × (b† + b̃)]1, (10)

where η is a constant for a specific nucleus determined by
the nuclear charge distribution and the superscript 1 is the
angular momentum of this operator, i.e., the two b† + b̃
operators are coupled to a rank-one dipole operator. The
calculation of the magnetic moments of 2+ states defined by
Eq. (5) can be simplified as follows. First, the irreducible
matrix elements 〈1||[b†b†]1||1〉, 〈2||[b†b†]1||2〉, 〈1||[b̃b̃]1||1〉,
and 〈2||[b̃b̃]1||2〉 vanish due to phonon-number conservation.
Second, the coupled boson commutation relation requires
[b†b̃]1 = [b̃b†]1 [24]. Third, [b̃b†]1 = L̂/

√
10, where L̂ is

the boson angular momentum operator. Finally, because the
phonon configurations |1〉 and |2〉 both have the boson angular
momentum L = 2 as a good quantum number, μ(2+

1 ) and
μ(2+

2 ) in the AHV model are given by

μ(2+
1 ) = 2√

10
η
(
a2

1 + a2
2

) = 2√
10

η

= μ(2+
2 ). (11)

Thus, the magnetic moments are correlated in the AHV as
μ(2+

1 ) = μ(2+
2 ).

In Table I, we list all the experimentally available μ(2+
1 ) and

μ(2+
2 ) values as well as the corresponding TRM estimates. The

magnetic-moment ratios of μ(2+
2 )/μ(2+

1 ) are also presented to
demonstrate the accuracy of the μ(2+

1 ) = μ(2+
2 ) correlation

predicted by the AHV. One sees that most nuclei tend to have
experimental μ(2+

2 )/μ(2+
1 ) ratios close to 1 within experi-

mental error, in general agreement with the AHV description,
except for 92Zr and 184,186W. The 2+

1 and 4+
1 states of 92Zr

have been assigned as non-collective (ν1d5/2)4 configurations
beyond the N = 50 major shell [25]. The abnormality of μ(2+

2 )
for 184,186W has long been noted, with a hint at shape mixing,
but still remains an open question [26,27]. Therefore, these
nuclei should be neither AHV- nor TRM-applicable nuclei.
It should also be noted that the TRM gives μ values in
rough agreement with experiment, even though we are using
somewhat oversimplified gR and gK estimates in Eq. (9).
The experimental μ(2+

1 ) = μ(2+
2 ) correlation is not a natural

result of the TRM except if gR = gK . Thus, one has to
require a general gR ∼ gK relation to achieve a more realistic
description in the TRM framework.

C. E2 collectivity

We now focus on the correlation between E2 transition
rates and the quadrupole moments of the 2+

1 and 2+
2 states.

According to Eq. (3), such a correlation in the TRM can be
analytically expressed as

B(E2,2+
1 → 0+

1 ) + B(E2,2+
2 → 0+

1 )

= 7

10
B(E2,2+

2 → 2+
1 ) + 49

64π
Q2(2+

1 )

� 0.7B(E2,2+
2 → 2+

1 ) + 0.244Q2(2+
1 ). (12)

This equation is an alternative representation of the triangle
relations proposed in Ref. [10].

For the AHV, considering 〈1||b̃||2〉2 = 2〈0||b̃||1〉2 we can
derive a formula similar to Eq. (7), namely,

B(E2,2+
1 → 0+

1 ) + B(E2,2+
2 → 0+

1 )

= 5

10
B(E2,2+

2 → 2+
1 ) + 35

64π
Q2(2+

1 )

� 0.5B(E2,2+
2 → 2+

1 ) + 0.174Q2(2+
1 ). (13)

It is worth noting that Eqs. (12) and (13) both belong to the
Kumar-Cline sum rules [28,29]. The generalization of these
sum rules may be expressed as

B(E2,2+
1 → 0+

1 ) + B(E2,2+
2 → 0+

1 )

= c1B(E2,2+
2 → 2+

1 ) + c2Q
2(2+

1 ), (14)

where c1 and c2 are free variables. We perform a multiple linear
fitting of Eq. (14) to all available experimental data from the
ENSDF with c1 and c2 as fitting parameters. All told, 78 nuclei
are considered in this fit, with the final correlation coefficient,
R = 0.980, being very close to 1. This demonstrates that
B(E2) values between ground states and the low-lying 2+ state
are highly correlated with Q(2+

1 ) in the ENSDF, as expected
in the TRM and AHV. The best-fit results are c1 = 0.479 and
c2 = 0.188. It seems that Eq. (13), i.e., the AHV expression,
gives closer agreement with experiment.

Based on Eqs. (12) and (13), we estimate the magnitudes of
Q(2+

1 ) using experimentally available B(E2) values in the
TRM and AHV frameworks and then compare them with
experiment. As for the linear fit of Eq. (14), only 78 nuclei
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FIG. 3. Plot of the estimated |Q(2+
1 )| values based solely on the

use of experimental B(E2) values according to Eqs. (12) and (13),
against the experimental data, for the 78 nuclei with available data
in the ENSDF. The diagonal line is a measure of the quality of the
estimates.

in the ENSDF enable such comparison. In Fig. 3, we plot the
|Q(2+

1 )| values that emerge for these 78 nuclei in comparison
with the experimental values. The data points of both models
scatter fairly closely around the diagonal line, supporting the
validity of both the TRM and AHV approaches as global
descriptions of low-lying E2 collectivity. We also note that the
TRM tends to give smaller |Q(2+

1 )| values than experiment,
whereas the AHV tends to give larger values.

Spectroscopic properties of the low-lying states may also
be used to obtain alternative estimates for the quadrupole
moments just discussed. In the TRM, excitation energies of
the 2+

1 , 2+
2 , and 4+

1 states determine �, while B(E2,2+
1 → 0+

1 )
and B(E2,2+

1 → 0+
1 ) determine γ and Q0 [see Eq. (3)]. These

five pieces of experimental information can be used to estimate
the magnitude of Q(2+

1 ), using Eq. (3). In the AHV framework,
the wave-function amplitudes a1 and a2 can be expressed in
terms of the experimental excitation energies of the 2+

1 and 2+
2

states according to

a2
1 = 2E(2+

2 ) − E(2+
1 )

3[E(2+
2 ) − E(2+

1 )]
, a2

2 = E(2+
2 ) − 2E(2+

1 )

3[E(2+
2 ) − E(2+

1 )]
. (15)

Using Eq. (7), we can then estimate the magnitude of Q(2+
1 )

in the AHV as

|Q(2+
1 )| =

16
√

[2E(2+
2 ) − E(2+

1 )][E(2+
2 ) − 2E(2+

1 )]

3[E(2+
2 ) − E(2+

1 )]

×
√

π [B(E2,2+
1 → 0+

1 ) + B(E2,2+
2 → 0+

1 )]

35
.

(16)

FIG. 4. Estimated |Q(2+
1 )| values based on experimental excita-

tion energies and B(E2)s (see text) against experimental values, for
the 48 and 63 nuclei with available data in the ENSDF appropriate to
the TRM and AHV, respectively. The diagonal line is a measure of the
quality of the agreement. The TRM data points are shown in colors
associated with the R values (the map illustrated on the right). The
red dashed ellipse, which highlights the TRM estimates that deviate
most dramatically from the data. These deviations correspond to fairly
typical vibrators with R = 2.1 ∼ 2.4, including several Ru, Pd, and
Cd isotopes.

There are 48 and 63 nuclei in the ENSDF for which a
comparison between experimental |Q(2+

1 )| values and their
spectroscopically based estimates are possible using the TRM
and the AHV, respectively. We plot these estimates against the
experimental values in Fig. 4. We wish to emphasize here that
the experimental ensembles of nuclei considered in Figs. 3 and
4 are different.

In Fig. 4, the AHV estimate is invariably near the diagonal
line, confirming the validity of Eq. (16). The majority of
the TRM estimates also agree with experiment. However, for
the vibrational Ru, Pd, and Cd isotopes with R = 2.1 ∼ 2.4,
large deviations can be observed, as highlighted by the red
dashed ellipse. In contrast, the TRM estimates based solely
on B(E2) values (see Fig. 3) seemed to work well even
for vibrational nuclei. We conclude, therefore, that the TRM
may be more suitable to regulate electromagnetic properties
involved in E2 collectivity than spectra. We believe that this
may be attributable to two possible origins. On the one hand,
the spectral description of the TRM involves more low-lying
levels than does the AHV. Besides the E(2+

1 ) and E(2+
2 )

values required in the AHV, our TRM estimate needs addi-
tional input on the experimental E(4+

1 ) value. Experimental
incompleteness of the low-lying level scheme, single-particle
motion, shape coexistence, or γ instability could all interfere
with the TRM spectral description. A second possible origin
concerns the fact that, as mentioned above, descriptions of
E2 electromagnetic properties in both the AHV and TRM
approaches satisfy the Kumar-Cline sum rules, which may
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perhaps exist independent of the detailed spectral behavior.
Therefore, even if the low-lying TRM spectral description
is not very accurate, the relation between B(E2) values and
Q(2+

1 ) from the TRM, i.e., Eq. (12), could still be preserved
by the Kumar-Cline sum rules. This situation actually has
been reported in TRM calculations for the Os isotope chain
[10]: even though the TRM always provided higher Kπ = 4+
bands than experiment, E2 matrix elements for ground states
and low-lying 2+ states are still described reasonably well by
the TRM.

IV. POSSIBLE RELATION BETWEEN
THE TRM AND THE AHV

In Sec. III, we saw that the TRM and the AHV both describe
fairly robustly the relations between experimental excitation
energies, magnetic moments, and E2 collectivity, especially
for the 2+ states. Furthermore, both describe the 2+ states in
terms of 2 × 2 matrices. If the 2+

1 and 2+
2 states of a nucleus can

be spectrally described by both the TRM and the AHV, there
exists an orthogonal matrix U with a transformation angle θ
for this nucleus given by

U =
(

cos θ sin θ
− sin θ cos θ

)
, (17)

such that

H 2+
TRM = UH 2+

AHVUT . (18)

This raises the question of whether there might be an
intrinsic relation between the TRM and the AHV for realistic
nuclei, whereby both models describe those nuclei within
roughly the same model space. If so, there would exist a unique
orthogonal transformation that relates the basis with a good K
quantum number in the TRM and the phonon basis of the AHV
for nuclei that are both TRM- and AHV-describable, namely,[|K = 0〉

|K = 2〉
]

= U

[|1〉
|2〉

]
. (19)

To clarify whether the U matrix, i.e., the θ angle, is
globally unique or robust for realistic nuclei, we calculate
the θ distribution. The existence of a single dominant peak of
this distribution would hint at the uniqueness or robustness of
the orthogonal transformation between the TRM and the AHV
bases. The calculation proceeds as follows. First, we extract the
θ angles of the U matrices according to experimental excitation
energies and the detailed structure of H 2+

TRM and H 2+
AHV. In

Sec. III A, 203 nuclei in the ENSDF were determined to be
TRM solvable, and their R distribution is plotted in Fig. 1. We
also find that these nuclei always have E(2+

2 ) > 2E(2+
1 ) and

thus are AHV describable. Therefore, these 203 nuclei define
the largest ensemble of TRM- and AHV-describable nuclei
in the ENSDF, and our θ distribution is calculated for this
ensemble. Here, we note that for each nucleus in this ensemble
there in fact exist two θ values, because the sign of the λ
value in H 2+

AHV, i.e., Eq. (4), cannot be determined solely from
excitation energies, so that a single level scheme from a given
nucleus leads to two possible λ values and thus two θ values.
We also consider the θ magnitude only to simplify our analysis,
because θ and −θ define the same transformation (if we

FIG. 5. R-normalized P (|θ |) distribution (square points) defined
by Eq. (20). The error bar represents the statistical error. The peak fit
(solid line) has its center at |θ | = 34.9(2)◦, as highlighted. This figure
uses the same statistical ensemble as in Fig. 1.

change the phases of |K = 2〉 and |2〉 in their respective bases).
Second, we perform two-dimensional counting statistics for θ
and R = E(4+

1 )/E(2+
1 ) for these 203 nuclei. This is because

the |θ | and R values are both extracted from the same low-lying
spectrum for a given nucleus. Thus, the |θ | value should most
likely be correlated with R. In the ensemble of TRM-solvable
nuclei, the R distribution has its own bias as shown in Fig. 2,
which may therefore also lead to dominant peaks in the |θ |
distribution. By using the two-dimensional counting number,
N (|θ |,R), we can decouple the potential correlation between
|θ | and R by defining for the |θ | distribution

P (|θ |) =
∑
R

N (|θ |,R)

N (R)
, (20)

where N (R) is the counting number of the R distribution
as shown in Fig. 1. A dominant peak of such a calculated
P (|θ |) distribution should avoid a false interpretation of the
|θ | distribution due to any R predominance and thus signal a
true robustness of the orthogonal transformation between the
TRM and the AHV bases.

The calculated P (|θ |) distribution is plotted in Fig. 5. There
indeed exists a fairly narrow dominant peak at |θ | = 34.9(2)◦,
suggesting that most TRM and AHV Hamiltonian matrices
are connected by a similar orthogonal transformation and thus
that their model spaces tend to be roughly the same for most
nuclei.

This might provide a hint as to why these two simple, but
seemingly very different, models are able to provide similar
systematics for such a wide range of realistic nuclei, raising
the question, therefore, of whether the collective rotational
characteristics exhibited by nuclei throughout much of the
periodic table are indeed a reflection of an underlying rotor
behavior or perhaps have a deeper origin.

In this spirit, it is interesting to note that we have found a
somewhat analogous behavior in the IBM-1 [20] (the IBM
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with one type of boson) when there are only two bosons
present. Governed by a U(6) symmetry, the IBM-1 naturally
incorporates several types of collectivity through its various
dynamical symmetry limits. For a perfect harmonic vibrator,
the U(5) limit applies, whereby one-phonon and two-phonon
states with spin 2� involve one and two d bosons, respectively.
Mixing of these states, i.e., phonon-state mixing, gives the
AHV model described herein. If the mixing is driven by an
SU(3) Hamiltonian, we find that a unique linear transformation
of such phonon states provides two rotational 2+ states, as
defined in Eq. (17). By using an IBM-1 code, we have
numerically calculated the transformation angle between the
states of this basis and the lowest 2+ states of the SU(3) basis
and find a rotation angle of θ = 28.1◦. This is reasonably
close to the peak of the θ distribution for realistic nuclei as
shown in Fig. 5. It should be noted, however, that the TRM
does not derive from the SU(3) limit of the IBM-1, which is an
axially symmetric rotor, and thus a direct connection of the two
angles that emerge cannot be made. Nevertheless, the results
are sufficiently intriguing to suggest the need for further work
to explore this issue.

V. SUMMARY

To summarize, we have studied two simple models of
nuclear structure, the TRM and the AHV, both of which
have the feature that they naturally satisfy the property
Q(2+

1 ) = −Q(2+
2 ) that has been found globally for nuclei

exhibiting quadrupole collectivity. We have shown that both

of these models can describe systematic correlations between
excitation energies, magnetic moments, and E2 collectivity,
especially for the lowest two 2+ states, across a wide range
of the periodic table, which furthermore are in general agree-
ment with experimental data. For the few exceptions where
agreement is not achieved, we provide plausible explanations.
The correlations provided by these models could prove useful
as a way to predict data where experiment is not available
or to “verify” existing data. We also find that the TRM
and AHV Hamiltonian matrices can be connected by an
orthogonal transformation which seems to be roughly the
same for most nuclei. This seems to hint that the TRM
and the AHV, though seemingly quite different models of
nuclear collective behavior—one based on a rotor and the
other not—may in fact share the same model space for realistic
nuclear systems, a conjecture that we believe deserves further
theoretical investigation.

ACKNOWLEDGMENTS

One of the authors (Y.L.) wishes to thank an anonymous
referee of Ref. [6] for reminding him of the AHV explanation
for the Q(2+

1 ) = −Q(2+
2 ) correlation. Extensive discussions

with Dr. J. M. Allmond and Professor N. Yoshida are also
gratefully acknowledged. This work was supported by the
National Natural Science Foundation of China under Grant No.
11305151 and the Research Fund for the Doctoral Program of
the Southwest University of Science and Technology under
Grant No. 14zx7102.

[1] G. Thiamova, D. J. Rowe, and J. L. Wood, Nucl. Phys. A 780,
112 (2006).

[2] V. Zelevinsky and A. Volya, Phys. Rep. 391, 311 (2004).
[3] S. J. Q. Robinson, A. Escuderos, L. Zamick, P. von Neumann-

Cosel, A. Richter, and R. W. Fearick, Phys. Rev. C 73, 037306
(2006).

[4] M. Horoi and V. Zelevinsky, Phys. Rev. C 81, 034306 (2010).
[5] J. M. Allmond, Phys. Rev. C 88, 041307 (2013).
[6] Y. Lei, Phys. Rev. C. 93, 024319 (2016).
[7] G. Rosensteel and D. J. Rome, Phys. Rev. Lett. 38, 10 (1977).
[8] A. S. Davydov and G. F. Filippov, Nucl. Phys. 8, 237 (1958).
[9] J. L. Wood, A.-M. Oros-Peusquens, R. Zaballa, J. M. Allmond,

and W. D. Kulp, Phys. Rev. C 70, 024308 (2004).
[10] J. M. Allmond, R. Zaballa, A.-M. Oros-Peusquens, W. D. Kulp,

and J. L. Wood, Phys. Rev. C 78, 014302 (2008).
[11] J. M. Allmond, J. L. Wood, and W. D. Kulp, Phys. Rev. C 81,

051305 (2010).
[12] W. D. Kulp et al., Phys. Rev. C 73, 014308 (2006).
[13] A. D. Ayangeakaa et al., Phys. Lett. B 754, 254 (2016).
[14] F. K. McGowan, R. L. Robinson, P. H. Stelson, and J. L. C. Ford,

Jr., Nucl. Phys. 66, 97 (1965).
[15] T. Tamura and T. Udagawa, Phys. Rev. 150, 783 (1966).
[16] D. R. Bes and G. G. Dussel, Nucl. Phys. A 135, 1 (1969).

[17] R. F. Casten, N. V. Zamfir, and D. S. Brenner, Phys. Rev. Lett.
71, 227 (1993).

[18] Evaluated Nuclear Structure Data File Retrieval,
http://www.nndc.bnl.gov/ensdf/.

[19] J. W. Lightbody, Jr., S. Penner, S. P. Fivozinsky, P. L. Hallowell,
and H. Crannell, Phys. Rev. C 14, 952 (1976).

[20] F. Iachello and A. Arima, The Interacting Boson Model
(Cambridge University, Cambridge, UK, 1987).

[21] A. Bohr and B. R. Mottelson, Nuclear Structure (World
Scientific, Singapore, 1998).

[22] T. L. Khoo, J. C. Waddington, and M. W. Johns, Can. J. Phys.
51, 2307 (1977).

[23] P. Federman and S. Pittel, Phys. Rev. C 20, 820 (1979), and
other references contained therein.

[24] J. Q. Chen, B. B. Chen, and A. Klein, Nucl. Phys. A 554, 61
(1993).

[25] G. Jakob et al., Phys. Lett. B 468, 13 (1999).
[26] A. E. Stuchbery, H. H. Bolotin, C. E. Doran, I. Morrison, L. D.

Wood, and H. Yamada, Z. Phys. A 320, 669 (1985).
[27] A. E. Stuchbery, H. H. Bolotin, C. E. Doran, and A. P. Byrne,

Z. Phys. A 322, 287 (1985).
[28] K. Kumar, Phys. Rev. Lett. 28, 249 (1972).
[29] D. Cline, Annu. Rev. Nucl. Part. Sci. 36, 683 (1986).

024301-7

http://dx.doi.org/10.1016/j.nuclphysa.2006.09.020
http://dx.doi.org/10.1016/j.nuclphysa.2006.09.020
http://dx.doi.org/10.1016/j.nuclphysa.2006.09.020
http://dx.doi.org/10.1016/j.nuclphysa.2006.09.020
http://dx.doi.org/10.1016/j.physrep.2003.10.008
http://dx.doi.org/10.1016/j.physrep.2003.10.008
http://dx.doi.org/10.1016/j.physrep.2003.10.008
http://dx.doi.org/10.1016/j.physrep.2003.10.008
http://dx.doi.org/10.1103/PhysRevC.73.037306
http://dx.doi.org/10.1103/PhysRevC.73.037306
http://dx.doi.org/10.1103/PhysRevC.73.037306
http://dx.doi.org/10.1103/PhysRevC.73.037306
http://dx.doi.org/10.1103/PhysRevC.81.034306
http://dx.doi.org/10.1103/PhysRevC.81.034306
http://dx.doi.org/10.1103/PhysRevC.81.034306
http://dx.doi.org/10.1103/PhysRevC.81.034306
http://dx.doi.org/10.1103/PhysRevC.88.041307
http://dx.doi.org/10.1103/PhysRevC.88.041307
http://dx.doi.org/10.1103/PhysRevC.88.041307
http://dx.doi.org/10.1103/PhysRevC.88.041307
http://dx.doi.org/10.1103/PhysRevC.93.024319
http://dx.doi.org/10.1103/PhysRevC.93.024319
http://dx.doi.org/10.1103/PhysRevC.93.024319
http://dx.doi.org/10.1103/PhysRevC.93.024319
http://dx.doi.org/10.1103/PhysRevLett.38.10
http://dx.doi.org/10.1103/PhysRevLett.38.10
http://dx.doi.org/10.1103/PhysRevLett.38.10
http://dx.doi.org/10.1103/PhysRevLett.38.10
http://dx.doi.org/10.1016/0029-5582(58)90153-6
http://dx.doi.org/10.1016/0029-5582(58)90153-6
http://dx.doi.org/10.1016/0029-5582(58)90153-6
http://dx.doi.org/10.1016/0029-5582(58)90153-6
http://dx.doi.org/10.1103/PhysRevC.70.024308
http://dx.doi.org/10.1103/PhysRevC.70.024308
http://dx.doi.org/10.1103/PhysRevC.70.024308
http://dx.doi.org/10.1103/PhysRevC.70.024308
http://dx.doi.org/10.1103/PhysRevC.78.014302
http://dx.doi.org/10.1103/PhysRevC.78.014302
http://dx.doi.org/10.1103/PhysRevC.78.014302
http://dx.doi.org/10.1103/PhysRevC.78.014302
http://dx.doi.org/10.1103/PhysRevC.81.051305
http://dx.doi.org/10.1103/PhysRevC.81.051305
http://dx.doi.org/10.1103/PhysRevC.81.051305
http://dx.doi.org/10.1103/PhysRevC.81.051305
http://dx.doi.org/10.1103/PhysRevC.73.014308
http://dx.doi.org/10.1103/PhysRevC.73.014308
http://dx.doi.org/10.1103/PhysRevC.73.014308
http://dx.doi.org/10.1103/PhysRevC.73.014308
http://dx.doi.org/10.1016/j.physletb.2016.01.036
http://dx.doi.org/10.1016/j.physletb.2016.01.036
http://dx.doi.org/10.1016/j.physletb.2016.01.036
http://dx.doi.org/10.1016/j.physletb.2016.01.036
http://dx.doi.org/10.1016/0029-5582(65)90135-5
http://dx.doi.org/10.1016/0029-5582(65)90135-5
http://dx.doi.org/10.1016/0029-5582(65)90135-5
http://dx.doi.org/10.1016/0029-5582(65)90135-5
http://dx.doi.org/10.1103/PhysRev.150.783
http://dx.doi.org/10.1103/PhysRev.150.783
http://dx.doi.org/10.1103/PhysRev.150.783
http://dx.doi.org/10.1103/PhysRev.150.783
http://dx.doi.org/10.1016/0375-9474(69)90143-2
http://dx.doi.org/10.1016/0375-9474(69)90143-2
http://dx.doi.org/10.1016/0375-9474(69)90143-2
http://dx.doi.org/10.1016/0375-9474(69)90143-2
http://dx.doi.org/10.1103/PhysRevLett.71.227
http://dx.doi.org/10.1103/PhysRevLett.71.227
http://dx.doi.org/10.1103/PhysRevLett.71.227
http://dx.doi.org/10.1103/PhysRevLett.71.227
http://www.nndc.bnl.gov/ensdf/
http://dx.doi.org/10.1103/PhysRevC.14.952
http://dx.doi.org/10.1103/PhysRevC.14.952
http://dx.doi.org/10.1103/PhysRevC.14.952
http://dx.doi.org/10.1103/PhysRevC.14.952
http://dx.doi.org/10.1139/p73-302
http://dx.doi.org/10.1139/p73-302
http://dx.doi.org/10.1139/p73-302
http://dx.doi.org/10.1139/p73-302
http://dx.doi.org/10.1103/PhysRevC.20.820
http://dx.doi.org/10.1103/PhysRevC.20.820
http://dx.doi.org/10.1103/PhysRevC.20.820
http://dx.doi.org/10.1103/PhysRevC.20.820
http://dx.doi.org/10.1016/0375-9474(93)90357-4
http://dx.doi.org/10.1016/0375-9474(93)90357-4
http://dx.doi.org/10.1016/0375-9474(93)90357-4
http://dx.doi.org/10.1016/0375-9474(93)90357-4
http://dx.doi.org/10.1016/S0370-2693(99)01203-4
http://dx.doi.org/10.1016/S0370-2693(99)01203-4
http://dx.doi.org/10.1016/S0370-2693(99)01203-4
http://dx.doi.org/10.1016/S0370-2693(99)01203-4
http://dx.doi.org/10.1007/BF01411869
http://dx.doi.org/10.1007/BF01411869
http://dx.doi.org/10.1007/BF01411869
http://dx.doi.org/10.1007/BF01411869
http://dx.doi.org/10.1007/BF01411893
http://dx.doi.org/10.1007/BF01411893
http://dx.doi.org/10.1007/BF01411893
http://dx.doi.org/10.1007/BF01411893
http://dx.doi.org/10.1103/PhysRevLett.28.249
http://dx.doi.org/10.1103/PhysRevLett.28.249
http://dx.doi.org/10.1103/PhysRevLett.28.249
http://dx.doi.org/10.1103/PhysRevLett.28.249
http://dx.doi.org/10.1146/annurev.ns.36.120186.003343
http://dx.doi.org/10.1146/annurev.ns.36.120186.003343
http://dx.doi.org/10.1146/annurev.ns.36.120186.003343
http://dx.doi.org/10.1146/annurev.ns.36.120186.003343



