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We apply the large-Nc expansion to the time-reversal-invariance-violating (TV) nucleon-nucleon potential.
The operator structures contributing to next-to-next-to-leading order in the large-Nc counting are constructed.
For the TV and parity-violating case we find a single operator structure at leading order. The TV but parity-
conserving potential contains two leading-order terms, which, however, are suppressed by 1/Nc compared to
the parity-violating potential. Comparison with phenomenological potentials, including the chiral effective field
theory potential in the TV parity-violating case, leads to large-Nc scaling relations for TV meson-nucleon and
nucleon-nucleon couplings.
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I. INTRODUCTION

Time-reversal-invariance violation, or equivalently (assum-
ing the validity of the CPT theorem [1–3]) CP violation,
is an important component in the search for physics be-
yond the standard model (BSM). While the standard model
contains CP-violating mechanisms in the complex phase of
the Cabibbo-Kobayashi-Maskawa matrix and the QCD θ

term, the predicted effects are much smaller than current
experimental bounds on CP-violating observables. A signal
of time-reversal (T) violation beyond these predictions would
be a clear indication of BSM physics. Among the consid-
ered time-reversal-invariance-violating (TV) observables, the
neutron electric dipole moment (EDM) has received particular
experimental interest, with the current upper limit |dn| < 3.0 ×
10−26 e cm (90% C.L.) [4,5]. However, more information than
the measurement of a single observable is necessary to obtain
detailed information about the underlying TV mechanisms.

Additional observables that have been considered include
the EDMs of light nuclei, neutron-nucleus reactions, and
nuclear decay parameters (see, e.g., Refs. [6–9]). In all of
these processes, TV nucleon-nucleon (NN) forces play an
important role. TV interactions can either be parity-conserving
(PC) or parity-violating (PV), with the latter expected to give
larger contributions to observables such as EDMs. These
forces are the manifestation on the hadronic level of TV
interactions among fundamental degrees of freedom. Because

*Corresponding author: schindler@sc.edu

QCD is nonperturbative at low energies, a direct derivation
of NN forces from the underlying theory is complicated, so
various phenomenological parametrizations of TV NN forces
have been developed. A general parametrization analogous to
Wigner’s approach to the time-reversal-invariance-conserving
(TC) potential [10] was given in Ref. [11]. In phenomenologi-
cal applications it is common to use a single-meson-exchange
picture, with one strong (TC) and one TV meson-nucleon
vertex [12–15]. More recently, TV interactions have been
constructed in the effective field theory (EFT) framework,
see, e.g., Refs. [16–19] and references therein. In all of these
approaches, the TV short-distance physics is captured in the
values of TV coupling constants: either meson-nucleon cou-
plings and/or NN contact terms. However, the values of the cou-
plings have not been derived from the underlying theory and
couplings are constrained only weakly, if at all, by experiment.

In the following we apply the 1/Nc expansion of QCD
[20,21] to the TV NN potential, where Nc is the number
of colors. The large-Nc analysis was first applied to the
TCPC NN potential in Refs. [22,23], and more recently to
three-nucleon forces [24] and to the TCPV potential [25,26].
The large-Nc analysis allows us to capture dominant QCD
effects of embedding the fundamental TV interactions in the
nonperturbative environment of the nucleon. As a result, we
find a hierarchy of terms in the TV potentials: In the TVPV
case there is a single leading-order (LO) operator structure,
with corrections suppressed by a single factor of 1/Nc. For
TVPC interactions we find two LO terms, with subleading
corrections again suppressed by 1/Nc. However, the leading
TVPV and TVPC operators do not contribute at the same order:
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the dominant TVPV operator contributes at O(Nc), while
the TVPC potential receives contributions starting at O(1).
This hierarchy has to be superimposed on any suppression
coming from the underlying BSM physics. At low energies it
can be combined with the chiral suppressions that originate
in the nonperturbative regime of QCD. The large-Nc and
chiral suppressions are independent and complementary and,
given the difficulty in obtaining experimental constraints, taken
together they provide useful additional theoretical constraints
that simplify the analysis of TV observables by reducing
the number of unknowns that need to be considered in
phenomenological applications.

The paper is organized as follows: Section II introduces
the framework for analyzing NN potentials in the large-Nc

expansion. In Sec. III we construct the TVPV and TVPC
potentials at leading order (LO), next-to-leading order (NLO),
and next-to-next-to-leading order (NNLO) in the large-Nc

counting. These potentials are compared with phenomenolog-
ical forms in Sec. IV, which allows us to extract the large-Nc

scaling of the various TV couplings. We conclude in Sec. V.

II. THE N N POTENTIAL IN THE 1/Nc EXPANSION

Following Ref. [23], we define the NN potential as the
matrix element

V (p−,p+) = 〈(p′
1,C),(p′

2,D)|H |(p1,A),(p2,B)〉. (1)

Here, A, . . . ,D collectively represent the spin and isospin
components of the nucleons and pi (p′

i) denotes the incoming
(outgoing) momentum of the ith nucleon, while

p± = p′ ± p, (2)

where

p = 1
2 (p1 − p2), p′ = 1

2 (p′
1 − p′

2). (3)

The on-shell condition is given by p+ · p− = 0. The momenta
are taken to be independent of Nc, i.e., p ∼ �QCD. Our
analysis does not depend on a low-momentum expansion of the
potential, unlike in chiral or pionless EFTs. The Hamiltonian
H is the nuclear Hamiltonian in the Hartree expansion, which
in the large-Nc limit can be written as [23,27]

H = Nc

∑
s,t,u

vstu

(
S

Nc

)s(
I

Nc

)t(
G

Nc

)u

, (4)

where the coefficients vstu are functions of the momenta p±.
The operators S,I , and G are given by

Si = q† σ
i

2
q, I a = q† τ

a

2
q, Gia = q† σ

iτ a

4
q, (5)

and when evaluated between single-nucleon states scale as
[23]

〈N ′|Si |N〉 ∼ 1, 〈N ′|I a|N〉 ∼ 1, 〈N ′|Gia|N〉 ∼ Nc. (6)

In the large-Nc formalism, it is consistent to interpret the
potential as originating from one-meson exchanges [23,28,29].
In this picture, a factor of p+ arises from relativistic corrections
and is therefore suppressed by the nucleon mass mN . Since mN

scales as Nc and we consider momenta ∼N0
c , each power of

TABLE I. Transformation properties of momenta and spin op-
erators under time reversal (T), parity (P), and particle interchange
(P12).

p+ p− �σ1 · �σ2 �σ1 + �σ2 �σ1 − �σ2 �σ1 × �σ2 [σ1σ2]ij2

T − + + − − + +
P − − + + + + +
P12 − − + + − − +

p+ introduces a suppression by 1/Nc. The coefficients vstu are
constructed such that the resulting Hamiltonian has specific
symmetry properties. In the following, H is rotationally
invariant, even under particle interchange, time-reversal odd,
and we consider both parity-odd and parity-even cases. The
transformation properties under time reversal, parity, and
particle interchange of the various building blocks are given
in Tables I and II. There, [AB]ij2 denotes the symmetric
and traceless rank-two tensor, constructed from the vector
quantities Ai,Bj as

[AB]ij2 ≡ AiBj + AjBi − 2
3δijA · B. (7)

For a review of how to construct the TCPC NN potential see
[24]. In the next section we apply those methods to obtain the
TV NN potentials.

III. TIME-REVERSAL-INVARIANCE-VIOLATING
POTENTIALS

A. TVPV potential

We first consider the TVPV potential. By using the 1/Nc-
counting rules for the momenta, spin, and isospin operators,
as well as their transformation properties under time reversal,
parity, and particle interchange, we construct the TVPV
potential up to NNLO in the large-Nc counting. There is one
operator structure at LO, O(Nc),

V
/T P/
Nc

= Nc U 1
/T P/(p2

−) p− · (�σ1 τ z
1 − �σ2 τ z

2

)
. (8)

At NLO, O(N0
c ), five additional operators contribute,

V
/T P/

N0
c

= U 2
/T P/(p2

−) p− · (�σ1 − �σ2)

+U 3
/T P/(p2

−) p− · (�σ1 − �σ2) �τ1 · �τ2

+U 4
/T P/(p2

−) p− · (�σ1 − �σ2) [τ1 τ2]zz2

+U 5
/T P/(p2

−) p+ · (�σ1 × �σ2) [τ1 τ2]zz2

+U 6
/T P/(p2

−) p+ · (�σ1 × �σ2) �τ1 · �τ2. (9)

TABLE II. Transformation properties of isospin operators under
time reversal (T), parity (P), and particle interchange (P12).

�τ1 · �τ2 (�τ1 + �τ2)z (�τ1 − �τ2)z (�τ1 × �τ2)z [τ1τ2]zz2

T + + + − +
P + + + + +
P12 + + − − +
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The NNLO, O(N−1
c ), operators are given by

V
/T P/

N−1
c

= N−1
c

{
U 7

/T P/(p2
−) p− · (�σ1 τ z

2 − �σ2 τ z
1

)
+U 8

/T P/(p2
−) p2

+ p− · (�σ1 τ z
1 − �σ2 τ z

2

)
+U 9

/T P/(p2
−) p+ · (�σ1 + �σ2) (�τ1 × �τ2)z

+U 10
/T P/(p2

−) p+ · (�σ1 × �σ2) (�τ1 + �τ2)z

+U 11
/T P/(p2

−) [(p+ × p−)p−]ij2 [σ1σ2]ij2 (�τ1 − �τ2)z

+U 12
/T P/(p2

−)[(p+ × p−)p+]ij2 [σ1σ2]ij2 (�τ1 × �τ2)z
}
.

(10)

The Ui
/T P/(p2

−) are arbitrary functions of p− ∼ N0
c and do not

change the large-Nc scaling of the corresponding operator
structures. While corrections to the LO term in the potential
are suppressed by single powers of 1/Nc, for a given isospin
sector the first correction is suppressed by 1/N2

c : the LO term
in the potential is an isovector, while the 1/Nc-suppressed
terms are purely isoscalar and isotensor pieces. The NNLO
contributions are again only of isovector form.

B. TVPC potential

The TVPC potential can be constructed analogously. In this
case, the LO contribution appears at O(N0

c ), and is therefore
suppressed compared to the LO terms of the TVPV potential.
There are two LO operators,

V
/T P

N0
c

= U 1
/T P (p2

−) pi
− pj

+ [σ1σ2]ij2 �τ1 · �τ2

+U 2
/T P (p2

−) pi
− pj

+ [σ1σ2]ij2 [τ1τ2]zz2 . (11)

The NLO, O(N−1
c ), operators are given by

V
/T P

N−1
c

= N−1
c

{
U 3

/T P (p2
−) (p− × p+) · (�σ1 × �σ2) (�τ1 − �τ2)z

+U 4
/T P (p2

−) (p− × p+) · (�σ1 − �σ2) (�τ1 × �τ2)z

+U 5
/T P (p2

−) pi
− pj

+ [σ1σ2]ij2 (�τ1 + �τ2)z
}
. (12)

For completeness, we also show the result for the NNLO,
O(N−2

c ) operators, even though this order is not considered
for the TVPV case,

V
/T P

N−2
c

= N−2
c

{
U 6

/T P (p2
−) pi

− pj
+ [σ1σ2]ij2

+U 7
/T P (p2

−) p2
+ pi

− pj
+ [σ1σ2]ij2 �τ1 · �τ2

+U 8
/T P (p2

−) p2
+ pi

− pj
+ [σ1σ2]ij2 [τ1 τ2]zz2

}
. (13)

The Ui
/T P (p2

−) are again arbitrary functions that do not scale
with Nc. As in the TVPV case, for a given isospin sector the
first corrections are suppressed by 1/N2

c , e.g., here the LO
isoscalar and isotensor terms only get corrections at NNLO.

IV. COMPARISON WITH PHENOMENOLOGICAL
TV POTENTIALS

In the following we compare our results with existing
parametrizations of the TV potentials and extract the large-Nc

scaling of the corresponding couplings. If available at all,

experimental constraints on the TV couplings are very weak
(see, e.g., Ref. [30]), so we are unable to compare our results
to data. However, the hierarchy of couplings established in our
analysis should prove helpful in identifying the most relevant
couplings on which to focus in future TV studies.

A. General parameterization

1. TVPV potential

A general parametrization of the TVPV and TVPC Hamil-
tonians to first order in p+ was given in Ref. [11]. We follow
the notational conventions of Ref. [31], but adapt them to our
definition of the potential as a function of p− and p+. The
resulting potential can be written as

V/T P/ ={
ḡ1(p2

−) + ḡ2(p2
−)�τ1 · �τ2+ḡ3(p2

−)[τ1τ2]zz2

}
p− · (�σ1−�σ2)

+ [ḡ4(p2
−) + ḡ5(p2

−)]p− · (�σ1τ
z
1 − �σ2τ

z
2

)
+ [ḡ4(p2

−) − ḡ5(p2
−)]p− · (�σ1τ

z
2 − �σ2τ

z
1

)
+ {

ḡ6(p2
−) − ḡ10(p2

−) + [ḡ7(p2
−) − ḡ11(p2

−)]�τ1 · �τ2

+ [ḡ8(p2
−) − ḡ12(p2

−)][τ1 τ2]zz2

+ [ḡ9(p2
−) − ḡ13(p2

−)](�τ1 + �τ2)z
}
p+ · (�σ1 × �σ2)

+ ḡ14(p2
−) [(p+ × p−)p−]ij2 [σ1σ2]ij2 (�τ1 − �τ2)z

+ [ḡ15(p2
−) − ḡ16(p2

−)]p+ · (�σ1 + �σ2) (�τ1 × �τ2)z.
(14)

The functions ḡi(p2
−) are related to Fourier transforms of the

functions gi(r) of Ref. [31]. Because p− is independent of Nc,
the Fourier transform does not alter the large-Nc scaling and
the relations derived below for the ḡi(p2

−) should also hold
for the corresponding gi(r). Comparison with Eqs. (8)–(10)
shows that these structures are reproduced in the large-
Nc analysis up to NNLO, with the exception of the term
proportional to (ḡ6 − ḡ10), which is suppressed even further.
On the other hand, Eq. (10) contains an additional term,
proportional to U 12

/T P/(p2
−), which is not included in Eq. (14)

because it is second order in p+. The following large-Nc

scaling relations for the couplings can be extracted:

ḡ1 ∼ N0
c , ḡ2 ∼ N0

c , ḡ3 ∼ N0
c ,

(ḡ4 + ḡ5) ∼ Nc, (ḡ4 − ḡ5) ∼ N−1
c ,

(ḡ6 − ḡ10) ∼ N−2
c , (ḡ7 − ḡ11) ∼ N0

c , (ḡ8 − ḡ12) ∼ N0
c ,

(ḡ9 − ḡ13) ∼ N−1
c , ḡ14 ∼ N−1

c , (ḡ15 − ḡ16) ∼ N−1
c .

(15)

In the large-Nc limit, the order-Nc TVPV interactions propor-
tional to ḡ4 + ḡ5 dominate. From the two relations containing
ḡ4 and ḡ5 it follows that these two couplings are equal up
to corrections of relative order 1/N2

c , i.e., up to corrections
expected to be of order 10%:

ḡ4 = ḡ5
(
1 + O

(
1/N2

c

))
. (16)

Terms proportional to p+ are absent at LO and start to con-
tribute at NLO, leading to the order-N0

c scaling of (ḡ7 − ḡ11)
and (ḡ8 − ḡ12), the same order as some of the terms in the
static potential.
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2. TVPC potential

The general parametrization of the TVPC Hamiltonian up
to first order in the relative momentum contains 18 terms [11].
Here we only show those that have a corresponding term in
Eqs. (11)–(13), following some of the notational conventions
of Ref. [32]. The terms proportional to g̃1 through g̃8 vanish
because of the on-shell condition p− · p+ = 0. The potential
can then be written as

V/T P = {
g̃9(p2

−) − g̃13(p2
−) + [g̃10(p2

−) − g̃14(p2
−)]�τ1 · �τ2

+ [g̃11(p2
−) − g̃15(p2

−)][τ1 τ2]zz2

+ [g̃12(p2
−) − g̃16(p2

−)](�τ1 + �τ2)z
}
pi

−pj
+[σ1σ2]ij2

+ g̃17(p2
−) (p− × p+) · (�σ1 × �σ2)(�τ1 − �τ2)z

+ g̃18(p2
−) (p− × p+) · (�σ1 − �σ2)(�τ1 × �τ2)z. (17)

Identifying the operator structures with those of Eqs. (11)–
(13), the following large-Nc scalings for the functions g̃i(p2

−)
(we use the tilde to distinguish them from the TVPV functions
ḡi(p2

−)) are extracted:

(g̃9 − g̃13) ∼ N−2
c , (g̃10 − g̃14) ∼ N0

c , (g̃11 − g̃15) ∼ N0
c ,

(g̃12 − g̃16) ∼ N−1
c , g̃17 ∼ N−1

c , g̃18 ∼ N−1
c . (18)

Contrary to what was observed in the TVPV case, in the
TVPC potential terms proportional to p+ are already present
at LO. This leads to a relative suppression of 1/Nc, so that
the dominant TVPC interactions proportional to g̃10 − g̃14 and
g̃11 − g̃15 are of order N0

c . Again, the next-order terms are only
suppressed by a single factor of 1/Nc. The terms proportional
to U 7

/T P (p2
−) and U 8

/T P (p2
−) in Eq. (13) contain more than one

power of p+ and thus were not considered in Ref. [11].

B. One-meson exchange potential

1. TVPV potential

The TVPV potential is commonly parametrized in terms of
one-meson exchanges with one TCPC and one TVPV meson-
nucleon coupling [14,15,33,34]. Following Ref. [13], we
consider π,η,ρ, and ω exchanges. The Lagrangian describing
the TCPC meson-nucleon interactions is given by

Lst = gπN̄iγ5τ
aπaN + gηN̄iγ5ηN

− gρN̄

(
γ μ − i

ξV

2�
σμνqν

)
τ aρa

μN

− gωN̄

(
γ μ − i

ξS

2�
σμνqν

)
ωμN , (19)

where qν = pν − p′
ν , while the TVPV Lagrangian reads

L/T P/ = N̄
(
ḡ(0)

π τ aπa + ḡ(1)
π π0 + ḡ(2)

π (3τ zπ0 − τ aπa)
)
N

+ N̄
(
ḡ(0)

η η + ḡ(1)
η τ zη

)
N

+ N̄
(
ḡ(0)

ρ τ aρa
μ + ḡ(1)

ρ ρ0
μ+ḡ(2)

ρ

(
3τ zρ0

μ−τ aρa
μ

))

× σμνqνγ5

2�
N + N̄

(
ḡ(0)

ω ωμ + ḡ(1)
ω τ zωμ

)σμνqνγ5

2�
N.

(20)

In comparison to Ref. [13] we have replaced χV,S/mN →
ξV,S/� in Lst and 1/mN → 1/� in L/T P/, where � ∼ 1 GeV
is independent of Nc. This prevents spurious factors of mN ∼
Nc from appearing in the expression for the potentials; see
Ref. [25] for an analogous discussion for the TCPV case.
The TVPV potential derived from these Lagrangians is given
in Refs. [13,31]. Using our conventions and transforming to
momentum space it takes the form

V meson
/T P/ =

[
− ḡ(0)

η gη

2mN

Y (η)(p2
−) + ḡ(0)

ω gω

2�
Y (ω)(p2

−)

]

× (�σ1 − �σ2) · p−

+
[
− ḡ(0)

π gπ

2mN

Y (π)(p2
−) + ḡ(0)

ρ gρ

2�
Y (ρ)(p2

−)

]

× �τ1 · �τ2 (�σ1 − �σ2) · p−

+
[
− ḡ(2)

π gπ

2mN

Y (π)(p2
−) + ḡ(2)

ρ gρ

2�
Y (ρ)(p2

−)

]

× 3

2
[τ1τ2]zz2 (�σ1 − �σ2) · p−

+
[
− ḡ(1)

π gπ

2mN

Y (π)(p2
−) + ḡ(1)

ω gω

2�
Y (ω)(p2

−)

]

× (�σ1 τ z
1 − �σ2 τ z

2

) · p−

+
[
ḡ(1)

η gη

2mN

Y (η)(p2
−) − ḡ(1)

ρ gρ

2�
Y (ρ)(p2

−)

]

× (�σ2 τ z
1 − �σ1 τ z

2

) · p−, (21)

where Y (a)(p2
−) = 1

p2−+m2
a

.
Comparison of Eq. (21) with Eqs. (8)–(10) shows that the

meson-exchange potential contains the LO term of Eq. (8), as
well as three of the five NLO terms of Eq. (9) and one NNLO
term of Eq. (10). Because the meson-exchange potential in
the form of Eq. (21) is linear in the momenta and does not
include any relativistic corrections, it does not contain any of
the operator structures that are proportional to a single factor
of p+, nor terms that contain tensor structures of p− and p+.

Now, using the known large-Nc scalings of the strong
couplings, it is possible to determine the constraints that
the large-Nc analysis places on the TVPV meson-nucleon
couplings. The Nc scaling of the strong couplings is [23,25,28]

gπ ∼ N3/2
c , gη ∼ N1/2

c .

gω ∼ N1/2
c , gω ξS ∼ N−1/2

c ,

gρ ∼ N−1/2
c , gρ ξV ∼ N1/2

c . (22)

As stated above, the scale � is independent of Nc, � ∼ N0
c .

The same holds for the momentum p− and the meson masses
ma (a = π,η,ω,ρ), so we also have

Y (a)(p2
−) ∼ N0

c . (23)

Requiring the coefficient functions Ui
/T P/(p2

−) to be of order
N0

c and not further suppressed, Eq. (21) allows us to set
constraints on the Nc scalings of the TVPV meson-nucleon
couplings. Because there are contributions of more than one
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TVPV coupling to a single operator structure in Eq. (21), in
principle only upper limits can be extracted for their scaling.
However, at large distances pions dominate compared to the
heavier meson exchanges. Therefore, pion couplings should
saturate the upper limits and we obtain

ḡ(0)
π ∼ N−1/2

c , ḡ(0)
ρ � N1/2

c ,

ḡ(1)
π ∼ N1/2

c , ḡ(1)
ω � N1/2

c ,

ḡ(2)
π ∼ N−1/2

c , ḡ(2)
ρ � N1/2

c ,

ḡ(0)
η � N1/2

c , ḡ(0)
ω � N−1/2

c ,

ḡ(1)
η � N−1/2

c , ḡ(1)
ρ � N−1/2

c . (24)

In the last two pairs of bounds obtained for ḡ(0)
η ,ḡ(0)

ω and
ḡ(1)

η ,ḡ(1)
ρ at least one of each pair of couplings must saturate the

bound. In the pion sector a clear hierarchy between the various
couplings is predicted. The isovector coupling ḡ(1)

π dominates,
while ḡ(0)

π and ḡ(2)
π are both suppressed by a factor of 1/Nc,

which agrees with the (ḡ(0)
π − ḡ(2)

π ) ∼ N
−1/2
c scaling found in

the Skyrme model [35].

2. TVPC potential

Constraints exist on the spin and parity of the exchanged
bosons in the TVPC potential, and these exclude, e.g., one-pion
exchange [12]. Here we consider the potential of Ref. [32],
which includes ρ(770) and h1(1170) exchanges. These are
the lightest mesons that contribute to the TVPC potential.
However, our analysis can straightforwardly be extended if
additional or different mesons are considered. The relevant
interactions are [32]

Lst = −gρN̄

(
γ μ − i

ξV

2�
σμνqν

)
τ aρa

μN − ghN̄γ μγ5hμN,

L/T P = −i
g̃ρ

2�
N̄σμνqν(�τ × �ρμ)zN − g̃h

2�
N̄σμνγ5qνhμN,

(25)

with the same replacements of χV /mN → ξV /� and 1/mN →
1/� for the vector meson couplings as in the TVPV case. The
potential in momentum space then reads (cf. Ref. [32])

V meson
/T P = g̃ρgρ

2mN�
Y (ρ)(p2

−)(�τ1 × �τ2)z (p− × p+) · (�σ1 − �σ2)

+ g̃hgh

2mN�
Y (h)(p2

−)pi
− pj

+ [σ1σ2]ij2 . (26)

To extract the large-Nc scaling of the TVPC meson-nucleon
couplings we take the strong hNN coupling to scale as [23,28]

gh ∼ N−1/2
c . (27)

Comparison with Eqs. (11)-(13) shows that the ρ-meson
exchange term corresponds to the NLO term proportional to
U 4

/T P (p2
−), while the h1-meson term corresponds to the NNLO

term proportional to U 6
/T P (p2

−). The TVPC meson-nucleon
couplings therefore scale as

g̃ρ ∼ N1/2
c , g̃h ∼ N−1/2

c . (28)

The potential of Eq. (26) does not contain any of the LO
terms in the large-Nc counting. These are related to the
exchange of additional mesons. For example, inclusion of the
isovector a1 meson results in a term that matches the operator
structure of the U 1

/T P (p2
−) term [32]. Given that the mass of the

a1(1260) is close to that of the h1(1170) meson, the large-Nc

analysis suggests that a1 exchange should not be neglected in
phenomenological applications.

C. Effective field theory

TVPV interactions have also been analyzed in effective
field theory; see, e.g., Refs. [16–19] and references therein.
In a chiral EFT the interactions are parametrized in terms of
pion exchanges and nucleon-nucleon contact terms. The LO
potential is [19,36]

V EFT
/T P/ = − i

C̄1

2
(�σ1 − �σ2) · p−

− i

(
gA

[
ḡ(0)

π − ḡ(2)
π

]
2Fπ

1(
p2− + M2

π

) + C̄2

2

)

× �τ1 · �τ2 (�σ1 − �σ2) · p−

− i
gAḡ(1)

π

2Fπ

1(
p2− + M2

π

)(�σ1τ
z
1 − �σ2τ

z
2

) · p−. (29)

Here C̄1,2 are NN contact terms, Fπ = 92.4 MeV is the
pion decay constant, and ḡ(0,1,2)

π are the TVPV pion-nucleon
couplings defined in Eq. (20). The term proportional to ḡ(1)

π in
V EFT

/T P/ reproduces the LO term in the large-Nc analysis. V EFT
/T P/

also contains two terms that are NLO in the 1/Nc expansion.
This suggests that even though all three terms appear at the
same order in chiral EFT, the one-pion exchange contribution
proportional to ḡ(1)

π is dominant in a combined chiral and
large-Nc analysis. ḡ(0,1,2)

π are all assumed to be natural (i.e., of
order 1) in the chiral EFT analysis, but in fact ḡ(0)

π and ḡ(2)
π are

suppressed compared to ḡ(1)
π by a factor of 1/Nc. Comparison

with Eqs. (8)–(10) also leads to C̄1 ∼ N0
c , C̄2 � N0

c for the NN
contact terms. However, since naturalness is difficult to define
quantitatively and 1/Nc = 1/3 in the physical world, it seems
reasonable to retain all terms in Eq. (29) in phenomenological
applications.

The fact that the LO chiral EFT potential in the TVPV case
contains the leading term in the 1/Nc expansion is different
from the TCPV case. There pion exchange constitutes the sole
LO contribution to the potential in the chiral counting, but
the analysis of Ref. [25] shows it is actually suppressed by
sin2 θW/Nc compared to other mechanisms.

V. CONCLUSIONS

We applied the 1/Nc expansion to the TVPV and TVPC
NN potentials. In the TVPV case, the LO terms are of order
Nc, while the LO contributions in the TVPC case are of order
N0

c . In both cases first corrections are suppressed by a single
power of 1/Nc. However, to the order we considered, the
expansion in a given isospin sector is in 1/N2

c , as it is in the
TCPV and TCPC cases [25]. In terms of a meson-exchange
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picture, the LO in Nc TVPV potential corresponds to π and
ω exchanges. Using the known large-Nc scaling of the strong
meson-nucleon couplings, we derived bounds on the scaling
of the TVPV meson-nucleon couplings. In the pion sector,
we find that the isovector coupling ḡ(1)

π scales as N
1/2
c , while

both isoscalar and isotensor couplings ḡ(0)
π and ḡ(2)

π are smaller
by a factor of 1/Nc. The NLO potential also contains terms
that are not reproduced in the meson-exchange picture. These
terms are proportional to p+ and correspond to relativistic
corrections. In the TVPC case, the commonly considered ρ and
h1 exchanges only start to contribute at NLO in the large-Nc

counting. The LO potential is generated by the exchange of
additional mesons, e.g., the a1 meson. While these are heavier
than the ρ and h1 mesons, from the large-Nc point of view all
meson masses scale as N0

c and the a1 contribution should be
considered.

Comparison with the TVPV potential V EFT
/T P/ derived at LO

in chiral EFT shows that it reproduces the leading large-Nc

operator, together with some subleading terms in the large-Nc

expansion. In particular, the pion-exchange term proportional
to ḡ(1)

π contributes to the leading large-Nc operator. This is in
contrast to the TCPV case, where the pion-exchange contribu-
tion, despite being the LO term in the chiral power counting,
only generates subleading terms in the 1/Nc expansion. The
extracted large-Nc scalings of the pion-nucleon couplings
show that the TCPV pion-nucleon coupling h(1)

π is 1/Nc-
suppressed relative to the TVPV pion coupling ḡ(1)

π . This has
the effect that the LO chiral TVPV single-pion exchange poten-
tial is enhanced compared to the LO chiral TCPV single-pion
exchange. It is interesting to note that, according to the recent
analysis of Ref. [9], this strong-interaction enhancement of the
isovector TV pion exchange may increase the sensitivity of ex-
periments involving neutron scattering on nuclear targets to TV
effects.

The chiral suppressions discussed in Refs. [16,17] and
the large-Nc scalings derived here are independent and
complementary. Possible sources of T violation within
the standard model and beyond can be studied in an EFT
framework, where the new physics mechanisms and their
characteristic energy scales enter through dimension six
operators. Taken together with the combined effect of
chiral symmetry breaking, isospin breaking, and large-Nc

suppressions, they give rise to a rich structure of hierarchies
that can be accessed by studying their implications for
observables like the EDMs of the nucleon and light nuclei
[18]. We plan to address these phenomenological issues in
connection with the 1/Nc expansion in a future publication.

Given the difficulty of obtaining experimental constraints
on the TV couplings, future lattice QCD calculations, while
themselves highly complex, could contribute significantly to
a better understanding of CP-violating effects in nuclear sys-
tems. In particular, calculations of the pion-nucleon couplings
ḡ(I )

π (I = 0,1,2) could check the hierarchy predicted by our
large-Nc analysis.
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