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The thermal quasiparticle random-phase approximation is combined with the Skyrme energy density functional
method (Skyrme-TQRPA) to study the response of a hot nucleus to an external perturbation. For the sample nuclei
56Fe and 82Ge, the Skyrme-TQRPA is applied to analyze thermal effects on the strength function of charge-
neutral Gamow–Teller transitions, which dominate neutrino-nucleus reactions at Eν � 20 MeV. For the relevant
supernova temperatures we calculate the cross sections for inelastic neutrino scattering. We also apply the method
to examine the rate of neutrino-antineutrino pair emission by hot nuclei. The cross sections and rates are compared
with those obtained earlier from the TQRPA calculations based on the phenomenological quasiparticle-phonon
model Hamiltonian. For inelastic neutrino scattering on 56Fe we also compare the Skyrme-TQRPA results to
those obtained earlier from a hybrid approach that combines shell-model and RPA calculations.
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I. INTRODUCTION

The significant role played by processes involving neutrinos
in core-collapse supernovae is well known [1,2]. During the
collapse, neutrinos carry away energy helping to maintain a
low entropy. As a result, nucleons reside primarily in nuclei.
At densities of ρ � 1011 g/cm3, neutrino interactions with
matter become important, leading to neutrino trapping and
thermalization. Moreover, neutrino energy deposition plays an
important role in modeling supernova explosions. Obviously,
reliable supernova simulations require a detailed neutrino
transport and should in principle include all potentially
important neutrino reactions with supernova matter.

Inelastic neutrino scattering on nuclei is a process which
contributes to establishing equilibrium between neutrinos and
matter. Up to moderate neutrino energies (Eν � 20 MeV),
the scattering is dominated by charge-neutral Gamow–Teller
(GT0) transitions and therefore the GT0 strength distribution
is of special importance. At high supernova temperatures, one
can expect the thermal population of nuclear excited states.
The Gamow–Teller transitions from nuclear excited states
remove the reaction threshold and dominate the cross section
at low neutrino energies [3]. Moreover, in the supernova
environment GT0 transitions determine the decay of thermally
excited nuclei by neutrino-antineutrino pair emission. The
astrophysical importance of this process was first realized by
Pontecorvo [4], who noticed that the emission of νν̄ pairs by
excited nuclei may be a powerful mechanism for energy loss
by stars.

*dzhioev@theor.jinr.ru
†vdovin@theor.jinr.ru
‡gabriel.martinez@physik.tu-darmstadt.de
§jochen.wambach@physik.tu-darmstadt.de
‖stoyanov@inrne.bas.bg

Sampaio et al. have studied thermal effects on inelastic
neutrino scattering on nuclei in supernova environment [5].
The study was performed on a representative set of iron-group
nuclei (A ∼ 60), using results from large-scale shell-model
calculations (LSSM) of the allowed GT0 transitions. It was
shown that finite temperature increases the low-energy (Eν �
10 MeV) cross section significantly and this effects is most
pronounced for even-even nuclei (e.g., 56Fe). In Ref. [6], the
calculations were extended to higher neutrino energies within a
hybrid approach that derives forbidden multipole contributions
from RPA calculations.

Although contemporary shell-model calculations are capa-
ble of describing GT0 distributions rather well, an explicit cal-
culation of the cross section at finite temperature (T � 1 MeV)
is computationally unfeasible due to too many thermally
populated states. To overcome this problem, Refs. [5,6] apply
the Brink hypothesis, which states that strength distributions
for excited states are the same as for the nuclear ground state,
but shifted by excitation energy. However, the validity of the
Brink hypothesis for the GT strength function is not obvious
and its violation is confirmed by the shell-model Monte Carlo
studies at finite temperature [7] and most recently by the
shell-model calculations [8]. It should also be mentioned that
present computer capabilities allow large-scale shell-model
calculation only for nuclei with A � 65, whereas neutrino
reactions with heavier mass and neutron-rich nuclei also may
play an important role in core-collapse supernovae.

For the response of hot nuclei to an external perturbation
in Ref. [9], a so-called thermal quasiparticle random-phase
approximation (TQRPA) was proposed in the framework of
a statistical approach. The method is based on the thermo-
field dynamics (TFD) formalism [10–12] and enables the
computation of a temperature-dependent strength function
without assumption of the Brink hypothesis. In Refs. [13–15],
the TQRPA was applied to compute cross sections and rates
for neutral-current neutrino-nucleus reactions at the relevant
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supernova temperatures. It was shown that, although the
TQRPA reveals the same thermal effects as reported in
Refs. [5,6], the observed thermal enhancement of the cross
sections turns out to be several times larger. It was found
that this discrepancy stems from two main reasons: (i) Within
the TQRPA, temperature rise shifts the GT0 centroid to lower
energies and makes possible low-energy GT0 transitions which
are Pauli blocked at T = 0. These effects are not present in
calculations based on the Brink hypothesis. (ii) Unlike the
approach of Refs. [5,6], the principle of detailed balance is not
violated within the TQRPA and it results in a larger strength for
downward GT0 transitions from excited states. It is clear that
both these factors should favor neutrino inelastic scattering.

In Refs. [13–15], the TQRPA calculations were based on
a Hamiltonian containing a Woods–Saxon potential supple-
mented by a pairing interaction and a schematic residual
particle-hole interaction of a separable form. This Hamiltonian
is usually referred to as the Hamiltonian of the quasiparticle-
phonon model (QPM) [16]. The parameters of the Hamil-
tonian are adjusted locally, i.e., to properties of a nucleus
under consideration. In this paper, we extend our studies
and perform self-consistent calculations for neutral-current
neutrino-nucleus reaction combining the TQRPA approach
with the Skyrme energy density functional. The calculations
are performed within the finite-rank separable approach,
which expands the Skyrme residual interaction into a sum
of separable terms in a systematic manner [17,18]. The
factorization considerably reduces the computational effort of
the TQRPA while maintaining high accuracy. This allows one
to perform systematic studies over a wide range of nuclei
including those far from stability.

The paper is organized as follows: In Sec. II, we briefly
outline how to compute the thermal strength function within
the TFD formalism. The method of separability of the Skyrme
residual interaction and the TQRPA approach are summarized
in Sec. II. The results of the numerical calculations are
presented and discussed in Sec. III for the sample nuclei 56Fe
and 82Ge. The results are compared with those obtained earlier
from the TQRPA calculations based on the QPM Hamiltonian.
For 56Fe we also compare the results to those obtained earlier
from the hybrid approach [6], which combines shell-model and
RPA calculations. In Sec. IV, we draw conclusions and give
an outlook for future studies. The derivation of the TQRPA
equations for the finite-rank separable Skyrme interaction is
given in the Appendix.

II. FORMALISM

A. Thermal strength function

To apply a statistical approach to compute cross sections
and rates for neutrino reactions in hot nuclei, we introduce the
thermal strength function for the transition operator T :

ST (E,T ) =
∑
i,f

Sif (T )δ(E − Ef + Ei)
zi

Z
, (1)

where zi = exp(−Ei/T ), Z(T ) = ∑
i zi is the partition func-

tion, Sif (T ) = |〈f |T |i〉|2 is the transition strength, and Ei ,
Ef denote the initial and final nuclear energies. The strength

function ST (E,T ) is determined for both positive and negative
transition energies and it obeys the principle of detailed
balance,

ST (−E,T ) = ST (E,T ) exp

(
−E

T

)
. (2)

This relation links the probabilities to transfer and gain energy
from a hot nucleus.

To compute the thermal strength function within the TFD
formalism, we need to know the eigenstates and eigenvalues
of the so-called thermal Hamiltonian H. The latter is defined
as the difference between the physical nuclear Hamiltonian
H (a†,a) and an auxiliary Hamiltonian H̃ ≡ H (̃a†,̃a) which is
acting in an independent Hilbert space,

H = H − H̃ . (3)

By construction, the thermal Hamiltonian has both positive-
and negative-energy eigenstates, H|n〉 = En|n〉 and H|̃n〉 =
−En |̃n〉. The zero-energy eigenstate |0(T )〉 of the thermal
Hamiltonian, which satisfies the thermal state condition

A|0(T )〉 = σA eH/2T Ã†|0(T )〉, (4)

is called the thermal vacuum. It describes the equilibrium
properties of the hot system. This means that the thermal
average for any operator is given by the expectation value
〈0(T )|A|0(T )〉. In Eq. (4), Ã is a tilde partner of the physical
operator A, and σA is a phase factor. The correspondence
between physical operators and their tilde-partners is given by
the tilde-conjugation rules [10–12].

Given the eigenstates of the thermal Hamiltonian, the
thermal strength function can be written as

ST (E,T ) =
∑

n

{Sn(T )δ(En − E) + S̃n(T )δ(En + E)}, (5)

where Sn(T ) and S̃n(T ) are the transition strengths

Sn(T ) = |〈n|T |0(T )〉|2,
S̃n(T ) = |〈̃n|T |0(T )〉|2. (6)

The transition strengths from the thermal vacuum to tilde-
conjugated eigenstates (i.e., |n〉 and |̃n〉) of the thermal
Hamiltonian are connected by the relation

S̃n(T ) = Sn(T ) exp

(
−En

T

)
, (7)

which yields the principle of detailed balance (2).
Obviously, in most practical cases one cannot diagonalizeH

exactly. In the present study we apply the thermal quasiparticle
random-phase approximation (TQRPA) and diagonalize the
thermal Hamiltonian in terms of thermal phonon operators.
Below we briefly outline the method, while the details can be
found in Ref. [9] and in the Appendix.

B. Thermal quasiparticle random-phase approximation with
finite-rank separable approximation for the Skyrme interaction

Applying the TQRPA to obtain the thermal GT0 strength
function, we suppose that the nuclear proton and neutron
Hartree–Fock (HF) states are already produced when using
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the Skyrme energy density functional. In particular, it means
that we ignore the influence of temperature on the nuclear
mean field. Following Ref. [19], this stability of the mean field
with respect to temperature is expected for T considerably
smaller than the energy difference between major shells
(�ω0 = 41A−1/3). Thus, the model Hamiltonian has the form

H = Hmf + Hpair + Hph, (8)

and it contains a spherical Skyrme-HF mean field for nucleons,
the pairing interaction and the residual particle-hole interaction
defined in terms of second derivatives of the Skyrme energy
density functional with respect to the one-body density [20].
The particle-hole interaction can be written in the language of
Landau–Migdal theory of Fermi systems. Keeping only l = 0
terms in Hph, the spin part of the residual interaction reads

HS
ph = N−1

0 [G0σ1 · σ2 + G′
0σ1 · σ2τ1 · τ2]δ(r1 − r2), (9)

where σ and τ are the nucleon spin and isospin operators,
and N0 = 2kF m∗/π2

�
2 with kF and m∗ denoting the Fermi

momentum and nucleon effective mass, respectively. The
expressions for the Landau parameters G0, G′

0 in terms of the
Skyrme force parameters can be found in Ref. [21]. Because of
the density dependence of the Skyrme interaction, the Landau
parameters are functions of the coordinate r.

Following the method presented in Refs. [17,18], we apply
an N -point integration Gauss formula and reduce HS

ph to a
finite-rank separable form

HS
ph = −1

2

N∑
k=1

∑
LJM

∑
τ=n,p
ρ=±1

(
κ

(k)
0 + ρκ

(k)
1

)
S

(k)†
LJM (τ )S(k)

LJM (ρτ ).

(10)

Here, the summation is performed over the proton (τ = p)
and neutron (τ = n) indices, and changing the sign of isotopic
index τ ↔ −τ means changing p ↔ n. The isoscalar and
isovector interaction strengths, κ

(k)
0 and κ

(k)
1 , are expressed via

the Landau parameters [17,18]. The spin-multipole operators
entering HS

ph are given by1

S
(k)†
LJM (τ ) = Ĵ−1

∑
j1j2

τ
g

(LJk)
j1j2

[a†
j1
aj2 ]JM, (11)

where Ĵ = √
2J + 1 and g

(LJk)
j1j2

denotes the reduced single-
particle matrix element,

g
(LJk)
j1j2

= uj1 (rk)uj2 (rk)iL〈j1

∥∥[YL × σ ]MJ
∥∥j2〉. (12)

The radial wave functions uj (rk) are related to the Hartree–
Fock single-particle wave functions [17,18], while rk are
abscissas used in the N -point integration Gauss formula. In
Eq. (11),

∑τ implies a summation over neutron or proton
single-particle states only.

Following the TFD prescription for the response functions
of a hot nucleus we have to double the original nuclear

1In Eq. (11) and hereinafter, [ ]JM denotes the coupling of two single-
particle angular momenta j1, j2 to the angular momentum J . The bar
over index j implies time inversion.

degrees of freedom by introducing creation and annihilation
operators acting in the auxiliary (tilde) Hilbert space and then
diagonalize the respective thermal Hamiltonian. Within the
TQRPA, the thermal Hamiltonian is diagonalized in two steps.
First, we introduce thermal quasiparticles that diagonalize the
mean field and pairing parts of H

Hmf + Hpair �
∑

τ=n,p

τ∑
jm

εjm(T )(β†
jmβjm − β̃

†
jmβ̃jm). (13)

Then, to account for the residual particle-interaction we
diagonalize the thermal Hamiltonian in terms of thermal
phonon creation and annihilation operators:

H �
∑
JMi

ωJi(T )(Q†
JMiQJMi − Q̃

†
JMiQ̃JMi). (14)

Their vacuum is the thermal vacuum in the TQRPA approxi-
mation. The energy and the structure of thermal phonons are
obtained by the solution of TQRPA equations. An explicit
form of the TQRPA equations for the finite-rank separable
Skyrme forces is given in the Appendix, where we also discuss
thermal effects on the structure and energy of the thermal
phonons. Here we just note that the phonon spectrum at finite
temperature contains low- and negative-energy states which
describe transitions between nuclear excited states. It should
be stressed that, in the zero-temperature limit, the TQRPA
method reduces into the standard QRPA.

Once the energy and the structure of Jπ = 1+ thermal
phonons are determined, one can evaluate the GT0 transition
strengths from the thermal vacuum to one-phonon states

Si(GT0) = |〈Q1+i‖σ t0‖0(T )〉|2,
S̃i(GT0) = |〈Q̃1+i‖σ t0‖0(T )〉|2. (15)

Substituting, Si and S̃i into Eq. (5) we get the thermal GT0

strength function within the TQRPA.

III. RESULTS

In this section we employ the theoretical framework
described above to study thermal effects on the neutral-current
neutrino reactions for the two sample nuclei, 56Fe and 82Ge.
The iron isotope is among the most abundant nuclei at the
early stages of the core collapse, while the neutron-rich
germanium isotope can be considered as the average nucleus
at later stages [22].

In order to estimate the sensitivity of our results with
respect to the choice of Skyrme forces, the calculations are
performed by using three various Skyrme parametrizations,
SLy4, SGII, and SkM∗. SLy4 [23] is one of the most successful
Skyrme forces and has been extensively used in recent years.
The force SGII [21] has been successfully applied to study
spin-isospin excitations in spherical and deformed nuclei.
The SkM∗ force [24] is an example of the first-generation
Skyrme parametrizations. In what follows we compare the
results of TQRPA calculations with the Skyrme functionals
with those performed within the QPM Hamiltonian [14,15].
To distinguish between the two approaches, we refer to them
as QPM-TQRPA and Skyrme-TQRPA.
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FIG. 1. The ground-state GT0 strength distributions for 56Fe
and 82Ge. The Skyrme-QRPA calculations are performed with the
SkM∗, SLy4, and SGII energy density functionals. The GT0 strength
calculated in Ref. [14] with the QPM Hamiltonian are also shown.
Note that, for a clearer presentation, the low-energy peaks in 56Fe
and 82Ge are scaled, i.e., the values displayed are obtained by
multiplying the actual values by the indicated factor. The shell-model
GT0 strength (scaled by a factor of 3.5) from Ref. [5] is shown
for 56Fe. The shell-model strength is split into the two isospin
components: 
I = 0 (full line) and 
I = 1 (dashed line). The
arrow indicates the experimental energy of the first 1+ state in 56Fe
[Eexpt(1

+
1 ) = 3.12 MeV]. This energy corresponds to the threshold

for inelastic neutrino scattering from the ground state of 56Fe.

Let us also make a short remark concerning the choice
of the pairing interaction. Within the BCS approach the
phase transition in nuclei from the superfluid to normal state
occurs at critical temperatures (Tcr ≈ 0.5
, where 
 is a
pairing gap) [25]. Therefore, the inclusion of particle-particle
residual interactions does not affect the strength function for
temperatures T > Tcr. However, to compare our results with
the shell-model calculations, pairing correlations are taken into
account at zero temperature. As in Refs. [14,15] we employ in
the present study a BCS Hamiltonian with a constant pairing
strength. The neutron and proton pairing strength parameters
are fixed to reproduce the odd-even mass difference. At T = 0
the resulting proton and neutron energy gaps are 
p(n) =
1.57 (1.36) MeV for 56Fe and 
p(n) = 1.22 (0) MeV for 82Ge.
Thus, the critical temperature when the pairing phase transition
occurs in the iron isotope is Tcr ≈ 0.8 MeV and Tcr ≈ 0.6 MeV
for the germanium isotope.

A. GT0 strength functions at zero and finite temperature

Before considering neutral-current neutrino reaction with
hot nuclei, let us first analyze the thermal effects on the GT0

strength functions in 56Fe and 82Ge. In Ref. [14] such an
analysis was performed by applying the QPM-TQRPA. Here
we repeat the same calculations by using the Skyrme-TQRPA
and compare the results of two approaches.

In Fig. 1 we display the ground-state GT0 strength
distributions for 56Fe and 82Ge obtained within the QRPA
with the various Skyrme forces. For comparison, the strength

TABLE I. Total GT0 strength, S(GT0), calculated with different
residual forces. In parentheses, the unperturbed (Hph = 0) values are
shown.

SGII SkM∗ SLy4 QPM

56Fe 4.3 (5.1) 4.9 (5.5) 5.4 (5.5) 3.6 (5.0)
82Ge 5.1 (5.9) 6.3 (7.1) 7.2 (7.3) 5.2 (7.0)

distributions obtained in Ref. [14] with the QPM Hamiltonian
are also plotted. Here, we would like to remind the reader
that, in Ref. [14], the strength parameters of the residual inter-
action in 56Fe were fit to reproduce the experimental energy
centroids of the GT− and GT+ resonances [26,27], while for
82Ge the strength parameters were estimated following the
parametrizations given in Refs. [28,29].

As seen in Fig. 1 all the three Skyrme forces produce very
similar GT0 strength distributions. Namely, a major part of
the strength concentrates in a resonance peak around 10 MeV
and there is some smaller strength at low energies. According
to the present Skyrme-QRPA calculations, the resonance
peak in 56Fe is a superposition of the neutron and proton
spin-flip transitions 1f7/2 → 1f5/2, while the low-energy
peak is formed by the 2p3/2 → 2p1/2 neutron transition. In
82Ge, the neutrons fully occupy the 2p3/2, 1/2, 1f7/2,5/2, and
1g9/2 orbits. Therefore, the principal contribution to the GT0

resonance comes from the proton 1f7/2 → 1f5/2 and the
neutron 1g9/2 → 1g7/2 transitions, whereas the low-energy
strength results from the proton 2p3/2 → 2p1/2 transition.

In Table I we give the summed GT0 strengths, S(GT0) =∑
Si(GT0), calculated by using the different Skyrme func-

tionals with and without taking into account the residual
interaction. As can be seen from the table, the particle-hole
correlations reduce the total GT0 strength. This collective
effect is most significant for the SGII Skyrme functional. Note
also that SGII predicts the smallest low-energy GT0 peak as
compared to SkM∗ and SLy4.

Referring to Fig. 1, the results of QPM-QRPA calculations
are in a good agreement with the Skyrme-QRPA calculations in
the sense that the most part of the GT0 strength is concentrated
around 10 MeV and there is a small peak around 4 MeV.
We note, however, that in both nuclei the phenomenological
Woods–Saxon mean field and residual interaction yield a
two-peak structure of the GT0 resonance, while the self-
consistent calculations with Skyrme forces predict a one-peak
structure. Moreover, as seen from Table I, the QPM-QRPA
gives a significant (about 25%) reduction of the total GT0

strength due to particle-hole correlations. In 56Fe this reduction
leads to a somewhat lower value of S(GT0) as compared
with the Skyrme-QRPA values. Furthermore, in 56Fe the
particle-hole correlations induced by the phenomenological
residual interaction strongly suppress the low-energy peak of
the GT0 distribution.

In the left panel of Fig. 1, the QRPA distribution is compared
with the LSSM calculations for 56Fe [5]. One notices that the
gross structure of the QRPA and LSSM distributions agrees
well with each other. In particular, SGII very accurately repro-
duces the shell-model position of the GT0 resonance. However,
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FIG. 2. The GT0 strength function for 56Fe and 82Ge calculated
at T = 0 (dashed peaks) and T = 1.72 MeV (solid peaks).

since the QRPA fails to recover all nuclear correlations needed
to correctly describe the fragmentation of the strength, the
fine structure of the GT0 distributions in the vicinity of the
resonance is not reproduced in our calculations. Note also that
the QRPA calculations systematically predict the energy of the
lowest excited state in 56Fe to be higher than the experimental
value. In this respect the shell-model calculations are clearly
advantageous.

Let us now compare the results of Refs. [13,14] where
thermal effects on the GT0 strength functions were studied
within the QPM-TQRPA approach with the present self-
consistent scheme based on the Skyrme interaction, i.e., with
the Skyrme-TQRPA. In Fig. 2, the ground-state GT0 strength
functions in 56Fe and 82Ge are compared with those obtained
at a finite temperature of T = 1.72 MeV. This temperature
roughly corresponds to the neutrino thermalization stage of
the core collapse. Note that, to make the thermal effects
more pronounced, the strength functions are displayed on a
logarithmic scale.

Since the TQRPA calculations do not employ the Brink
hypothesis, we observe an evolution of the GT0 strength
function with temperature and this result is valid regardless of
the effective interaction. For the upward (E > 0) transitions
the main effect is a shift of the GT0 strength towards lower
energies. This shift is due to two reasons: First, the resonance
energy is lowered because of the vanishing of pairing corre-
lations and a thermal weakening of the residual interaction.
The latter occurs due to the thermal occupation factors that

FIG. 3. The energy centroid for the upward GT0 strength func-
tions in 56Fe and 82Ge as a function of temperature. The arrows
indicate the critical temperature Tcr when the pairing collapses.

appear in the TQRPA matrix elements [see Eq. (A11) in the
Appendix]. Since there is no neutron pairing correlation in
82Ge, the resonance lowering is more pronounced in the iron
isotope. Second, the thermal smearing of the Fermi surfaces
makes possible low-energy particle-particle and hole-hole
transitions which are Pauli blocked at T = 0. Such thermally
unblocked transitions enhance the low-energy component of
the GT0 strength and make it more fragmented.

To examine qualitatively the thermal effects on the upward
GT0 strength, we introduce the energy-centroid, Ecentr, as the
ratio of the first and the zeroth moments of the positive-energy
strength function. In Fig. 3, the energy-centroids are shown as
functions of temperature. One can see that all Skyme forces
give generally similar results for the temperature dependence
of Ecentr. Namely, up to Tcr the temperature dependence of
the energy-centroid resembles that of the pairing gap, which
at low temperatures has a temperature-independent plateau
and then decreases with T [25]. After Tcr, the decrease of
Ecentr becomes gradual and results from the weakening of the
residual interaction and the thermal unblocking of low-energy
GT0 transitions. Depending on the effective interactions, when
the temperature rises to T = 2.5 MeV, the total downward shift
of Ecentr varies from 1.5 to 1.8 MeV in 56Fe and from 1.0 to
1.8 MeV in 82Ge. Note also that, among the Skyrme forces we
use, the SkM∗ parametrization predicts the highest value for
Ecentr, while the SGII force predicts the lowest value for Ecentr.

As is evident from Fig. 2, finite temperature also affects
the strength function for downward (E < 0) GT0 transitions.
In accordance with detailed balance (2), the temperature rise
exponentially increases the strength of negative-energy transi-
tions. This relates to thermally populated nuclear states which
decay to states at lower energies. In particular, the strength
observed at E ≈ −9 MeV is attributed to the deexcitation
of the GT0 resonance. It is also clear that thermal effects
on the upward GT0 strength should affect the downward
strength as well. Following Ref. [14], we study this effect by
calculating the running sums for the GT0 downward strength
either by using the Brink hypothesis or not. The former
are obtained from the QRPA ground-state strength function
by a multiplication with the Boltzmann factor exp(−E/T ).
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FIG. 4. Comparison of the running sums for the GT0 downward
strength in 56Fe obtained by using and without using the Brink
hypothesis (dashed and solid lines, respectively). Note that the
values are scaled by a factor of 103 (T = 0.86 MeV) and 102

(T = 1.72 MeV).

Since our general findings for 56Fe and 82Ge are similar, we
consider the results for 56Fe. The running sums are shown in
Fig. 4 for T = 0.86 MeV and T = 1.72 MeV. Within both
the QPM-TQRPA and the Skyrme-TQRPA models, ignoring
the Brink hypothesis leads to a considerable enhancement
of the total downward strength. Moreover, regardless of the
effective forces this enhancement is mainly caused by the ther-
mal effects on the low-energy strength function. This is most
pronounced at low temperatures (T = 0.86 MeV). However,
at higher temperatures (T = 1.72 MeV) the lowering of GT0

resonance energy also contributes to the downward strength
enhancement.

Referring to the figure, the total downward strengths ob-
tained with the Skyrme-TQRPA considerably exceed those ob-
tained with the QPM-TQRPA calculations: at T = 0.86 MeV
the difference is about a factor of four, while at T = 1.72 MeV
the difference is about a factor of three. As evident from Figs. 2
and 4, this discrepancy comes from the facts that the Skyrme-
TQRPA models predict larger strengths for low-energy GT0

transitions.

B. Inelastic neutrino scattering

In this section we calculate inelastic neutrino scattering
cross sections for the sample nuclei and compare the results
with those obtained within the QPM-TQRPA model [14] and
those of Ref. [6], where the hybrid model has been employed.
As was mentioned in the introduction, the hybrid model takes
into account the GT0 distributions from the LSSM, while other
multipole contributions are derived from the RPA calculation.
At energies Eν < 20 MeV, forbidden contributions are at least
an order of magnitude smaller than the GT contributions.

Considering only GT0 transitions, the cross section for
neutrino scattering from a hot nucleus reads

σ (Eν,T ) = G2
F

π

(
geff

A

)2 ∑
i,f

(Eν ′)2|〈f ‖σ t0‖i〉|2 zi

Z

= σdown(Eν,T ) + σup(Eν,T ). (16)

Here, GF is the Fermi coupling constant, geff
A is the effective

axial coupling constant which simulates the observed quench-
ing of the GT strength at energies Ex � 15–20 MeV, and
Eν ′ = Eν − (Ef − Ei) is the energy of outgoing neutrino. The
down-scattering component of the cross section, σdown(Eν,T ),
includes only upward transitions (Ef > Ei), while downward
transitions (Ei > Ef ) are included into the up-scattering term
σup(Eν,T ). We recall that the hybrid approach of Ref. [6]
explicitly incorporates the Brink hypothesis, which assumes
that upward GT0 transitions from excited states have the
same strength distribution as those from the nuclear ground
state. Under this assumption the down-scattering cross section
becomes temperature independent. However, this is likely
not the case because the vanishing of pairing correlations
and thermal smearing of the Fermi surface should affect the
distribution centroid and move it down in energy. In the above
discussion, this effect was clearly demonstrated within the
TQRPA. In Ref. [6], the finite-temperature effects are included
only into the up-scattering cross section by inverting the
shell-model GT0 distributions for the lowest excited states.

By expressing the cross section (16) through the thermal
strength function

σ (Eν,T ) = G2
F

π

(
geff

A

)2
∫

(E − Eν)2SGT(E,T )dE (17)

and then applying the TQRPA, we get

σ (Eν,T ) =G2
F

π

(
geff

A

)2

{∑
i

′
(Eν − ωi)

2Si

+
∑

i

(Eν + ωi)
2Si exp

(
−ωi

T

)}
. (18)

Here, the first term corresponds to the down-scattering con-
tribution and it implies summation over 1+ thermal-phonon
states with positive energy ωi < Eν . The second, up-scattering
term, accounts for GT0 transitions to negative-energy states.
In contrast to the hybrid model, in the TQRPA both the down-
and up-scattering terms are temperature dependent.

In Fig. 5 we display the ground-state cross sections as
functions of the incident neutrino energy Eν . For both nuclei,
the Skyrme-QRPA results are compared with the cross sections
calculated by using the QPM Hamiltonian [14]. For 56Fe the
comparison is also made with the shell-model cross section
[5]. To make the comparison with the shell-model calculations
more transparent, we use the same reduction of the axial-weak
coupling constant from its free-nucleon value gA = −1.2599
[30] to the effective value geff

A = 0.74gA.
Referring to the figure, the cross sections exhibit a sharp

increase within the first few MeV above threshold. For neutrino
energies Eν > 10, where the excitation of the GT0 resonance
is possible, the increase becomes more gradual. Even if the
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FIG. 5. Inelastic neutral-current neutrino scattering cross sections
from the ground states of 56Fe and 82Ge. The cross sections are
calculated within the Skyrme-QRPA (SkM∗, SGII, Sly4) as well as
the QPM-QRPA [14]. For 56Fe, the results of shell-model calculations
[5] are shown by the solid line.

general trend of the Skyrme-QRPA cross sections as a function
of the neutrino energy is in agreement with the QPM and the
shell-model results, the absolute values differ by up to an
order of magnitude. The disagreement is most pronounced
at low neutrino energies, Eν � 10 MeV, where the cross
sections are very sensitive to the details of the GT0 strength
distribution. In 56Fe, at low energies (5 � Eν � 10 MeV)
all Skyrme-QRPA cross sections are considerably above the
values obtained in the QPM-QRPA and LSSM calculations.
The reason for this systematic effect is that, in the iron isotope,
the Skyrme-based calculations predict a larger strength of
low-energy GT0 transitions than the other two approaches (see
Fig. 1). For the same reason the low-energy cross sections for
82Ge calculated with the SkM∗ and SLy4 forces are larger than
those obtained with the SGII and phenomenological spin-spin
forces. With increasing neutrino energy the spread in the
cross sections is reduced and for Eν > 15 MeV all Skyrme
calculations give very similar cross sections. Note, however,
that for Eν > 15 MeV neutrinos the Skyrme-QRPA model
predicts cross sections slightly above the values of other two
models. It is clear that this discrepancy reflects the differences
in the total GT0 strength and in the energy centroid.

In Fig. 6, the neutrino-scattering cross sections are shown
for T = 0.86 and 1.72 MeV together with the results from
the QPM-TQRPA model [14]. For 56Fe, the TQRPA results
are compared with those obtained within the hybrid model
[6]. As seen from the plots, all models predict that there is no

FIG. 6. Inelastic neutrino scattering cross sections for 56Fe and
82Ge at T = 0.86 and 1.72 MeV, calculated within the TQRPA. For
56Fe, the cross sections obtained within the hybrid model [6] are
shown by the solid line.

gap in the cross section at T �= 0. This is caused by the fact
that deexcitation of thermally excited states may contribute to
the cross section at all neutrino energies. The contribution
of thermally populated states increases with temperature
and enhances the low-energy cross section. With increasing
neutrino energies, thermal effects on the cross section become
less important.

In Ref. [14], it was shown that the TQRPA predicts
a more significant thermal enhancement of the low-energy
cross section as compared with the hybrid approach. Recall
that, within the TQRPA both the down- and up-scattering
contributions to the cross section [see Eq. (16)] increases with
temperature, while in the hybrid model, due to employing the
Brink hypothesis, only the up-scattering term is temperature
dependent and contributes to the thermal enhancement of
the cross section. As seen from Fig. 6, the TQRPA calcu-
lations with Skyrme forces allow for even a greater thermal
enhancement of the cross section than those obtained with the
QPM Hamiltonian. From the analysis in the previous section,
we conclude that the reason for this is a larger strength of
thermally unblocked low-energy GT0 transitions within the
Skyrme-TQRPA. It is important to note that different Skyrme
functionals give very similar finite-temperature cross sections.

Keeping track of neutrino energies is a crucial ingredient
of supernova simulations. For inelastic neutrino scattering, the
energy change depends on the incident energy and tempera-
ture. In Fig. 7, we show the normalized spectra of outgoing
neutrinos scattered off 56Fe at the same temperatures as in
Fig. 6 and at two initial neutrino energies, Eν = 5, 15 MeV.
In the figure, the energy distributions calculated within the
TQRPA are compared with those of the hybrid model [6].
Note that the TQRPA spectra are folded by the Breit–Wigner
function with a width of 1 MeV.
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FIG. 7. Normalized spectra of outgoing neutrinos for 56Fe at T = 0.86, 1.72 MeV and two initial neutrino energies Eν = 5, 15 MeV. In
all plots the energy of the incoming neutrino is indicated by an arrow. A comparison is made between the TQRPA results and those obtained
in Ref. [6] within the hybrid model. The latter are shown by the solid lines.

As seen from Fig. 7, for Eν = 5 MeV, the fraction of
up-scattering neutrinos (Eν ′ > Eν) gets significantly enhanced
with increasing temperature due to the population of excited
states. However, the spectra of up-scattered neutrinos cal-
culated within the TQRPA and the hybrid model can differ
essentially. At T = 1.72 MeV, the hybrid model predicts that
the cross section is dominated by the deexcitation of the GT0

resonance, giving rise to a high-energy peak in the spectrum
around Eν ′ ≈ 14 MeV. In the TQRPA, a temperature rise
increases the strength of low-energy downward transitions.
The low-energy peak in the spectrum at Eν ′ ≈ 7.5 MeV
corresponds to such transitions, and it is more pronounced
in the TQRPA spectra. Note, however, that even within
the TQRPA calculations, the relative fraction of low- and
high-energy up-scattered neutrinos differ: the ratio n(Eν ′ ≈
7.5 MeV)/n(Eν ′ ≈ 15 MeV) is the lowest (≈0.5) in the
QPM-TQRPA and is the highest (≈1.9) in the spectrum
obtained with the SkM∗ functional. For the hybrid-model
calculations this ratio is about 0.18.

For high-energy incoming neutrinos the up-scattering pro-
cess becomes essentially irrelevant and for Eν = 15 MeV
the cross section is dominated by the excitation of the GT0

resonance, as evidenced by low-energy peaks in the spectra
around Eν ′ = 5 MeV. However, the high-energy peaks in
the spectra around Eν ′ = 12.5 MeV show that, within the
TQRPA, a notable fraction of neutrinos is down-scattered
due to thermally unblocked low-energy transitions. No such
transitions appear within the hybrid model because of the
application of the Brink hypothesis. Like for the Eν = 5 MeV
case, the ratio of low-energy down-scattered neutrinos to
high-energy down-scattered neutrinos varies between different
TQRPA calculation. It is highest for the QPM-TQRPA, while
the SkM∗ functional predicts the lowest ratio.

C. Neutrino pair emission

Now we apply the formalism described in Sec. II to compute
the rate for nuclear deexcitation by neutrino-antineutrino pair
emission:

(A,Z)∗ → (A,N ) + νk + νk. (19)

Here, the index k = e, μ, τ corresponds to three neutrino
flavors that can be produced in the decay. Considering only
GT0 transitions, the emission rate is given by [3,31]

� = 3λ0

∑
i,f

E5
νν |〈i‖σ t0‖f 〉|2 zi

Z
, (20)

where Eνν = Ei − Ef is the energy of the emitted νν pair,
λ0 = G2

F g2
A/(60π3

�
7c6) ≈ 1.72 × 10−4 s−1 MeV−5, and the

factor of three accounts for the three possible neutrino flavors.
Like for the neutrino-scattering case, we express the

emission rate through the thermal strength function. Applying
the TQRPA, we obtain

� = 3λ0

∫ ∞

0
E5SGT(−E,T )dE

= 3λ0

∫ ∞

0
E5SGT(E,T ) exp

(
−E

T

)
dE

= 3λ0

∑
i

ω5
i Si exp

(
−ωi

T

)
=

∑
i

�i. (21)

In the emission rate, the Boltzmann factor suppresses the
contribution from the high-energy tail of the strength function,
while the phase factor E5 suppresses the contribution from
lower energies. We also introduce the ratio λi = �i/�, which
gives the normalized spectra for the emitted νν pairs.
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FIG. 8. Normalized spectra of νν pairs emitted by 56Fe (left panels) and 82Ge (right panels) at two different temperatures, T = 0.86 MeV
and T = 1.72 MeV. For each temperature we show the spectra obtained by using and without using the Brink hypothesis (lower and upper
panels on each plot, respectively).

In Fig. 8 we show the normalized spectra of emitted
neutrino-antineutrino pairs by 56Fe and 82Ge at two different
temperatures, T = 0.86 and 1.72 MeV. The spectra are
computed in the QPM-TQRPA and in the Skyrme-TQRPA
with different Skyrme functionals. Note that, for a clearer
presentation, the spectra are folded by the Breit–Wigner
function with a width of 1 MeV. We also show the spectra
obtained by applying the Brink hypothesis. In the latter case
we approximate the GT0 thermal strength function in Eq. (21)
by the QRPA ground-state GT0 strength distribution.

Although the details of the spectra vary between different
calculations, some essential features are the same. Namely, at
T = 0.86 MeV the spectrum is dominated by two peaks. The
peaks around 2.5 MeV originate from thermally unblocked
low-energy transitions, while the main peaks around 9 MeV
correspond to neutrino pairs emitted due to decay of the
thermally excited GT0 resonance. At T = 1.72 MeV, the
low-energy pairs disappear from the spectrum and neutrino
emission is strongly dominated by the deexcitation of the GT0

resonance. It is interesting that neutrino spectra calculated
with and without application of the Brink hypothesis look
similar, but in the latter case they are shifted to lower energies.
As seen from the figure, the shift is more pronounced for
the low-energy part of the spectrum. Note also that, in 82Ge,
the spectrum obtained without applying the Brink hypothesis
is somewhat broader than that obtained by using the Brink
hypothesis.

In Fig. 9 we display the energy centroid 〈Eνν〉 for the
spectrum of emitted neutrino pairs as a function of temperature.

As is evident from the figure, regardless of the effective
forces we use, 〈Eνν〉 rises rapidly with temperature until T ≈
1.0 MeV. At higher temperatures, the energy centroid becomes
nearly temperature independent and its value is determined by
the energy of the GT0 resonance. The value of 〈Eνν〉 obtained
with the different Skyrme functionals varies over the energy
interval between 8 and 10 MeV. For both nuclei, the SkM∗

force gives the largest values, while SGII predicts the smallest
one.

In Fig. 10 we illustrate the temperature dependence of
the emission rates for 56Fe and 82Ge computed by using the
Skyrme-TQRPA thermal strength functions. For comparison,
we also show the results from Ref. [15] obtained within the

FIG. 9. The energy centroid for the spectrum of emitted neutrinos
as a function of temperature.
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FIG. 10. Neutrino-antineutrino pair emission rates for 56Fe and
82Ge as functions of temperature.

QPM-TQRPA calculations. As expected, the emission rate
demonstrates a strong thermal enhancement and from the
above discussion it is clear that the main reason for that is
the thermal population and the subsequent decay of the GT0

resonance. The emission rates calculated with various residual
forces differ by up to a factor five and the difference is most
significant at low temperatures.

IV. CONCLUSION

Cross sections and rates for neutral-current neutrino-
nucleus reactions have been calculated at supernova conditions
for the two representative nuclei 56Fe and 82Ge. The thermal
effects were treated within the thermal quasiparticle random-
phase approximation combined with Skyrme energy density
functional theory.

The calculations with three different Skyrme functionals
show the same thermal effects on the GT0 strength function
as those found in a previous study based on the QPM-TQRPA
model. In particular, increasing the temperature shifts the GT0

centroid to lower energies and makes possible low-energy
GT0 transitions. However, the Skyrme-based calculations
predict larger strengths of thermally unblocked low-energy
transitions than those obtained within the QPM-TQRPA.
Moreover, since the detailed balance principle is fulfilled
in the TQRPA, this difference leads to larger strengths for
negative-energy GT0 transitions.

The present calculations reveal the same thermal effects
on the inelastic neutrino-nucleus scattering cross section as
the QPM-TQRPA model and the hybrid-model calculations.
Namely, the reaction thresholds are removed at finite tem-
perature and the cross sections for low-energy neutrinos are
significantly enhanced. However, due to a larger strength of
thermally unblocked low- and negative-energy transitions, the
low-energy cross-sections calculated with the Skyrme forces
are larger than those obtained within the other approaches. It is
interesting to note that different Skyrme forces predict finite-
temperature cross sections which do not differ significantly.

Considering neutrino-pair emission, it was found that,
at low temperatures, the spectrum of emitted neutrinos is
quite sensitive to details of the GT0 strength distribution.
Moreover, the spectrum calculated without assuming the
Brink hypothesis is shifted to somewhat lower energies. It

has been demonstrated that temperature increase leads to
a considerable enhancement of the emission rate due to
thermal population of the GT0 resonance. For the temperatures
considered, the absolute spread in the emission rates computed
with different TQRPA models is less than an order of
magnitude.

The present study can be considered as a first step toward
a reliable description of supernova neutrino-nucleus processes
in a self-consistent microscopic approach. Based on the TFD
formalism, the method allows us to evaluate the cross sections
and rates in a thermodynamically consistent way, i.e., without
assuming the Brink hypothesis and without violation the
detailed-balance principle. The approach is not restricted
by iron-group nuclei and can be applied for more massive
neutron-rich nuclei where the shell-model diagonalization
approach is not feasible. Further improvements and extensions
of the current version of the model will be made along the lines
discussed below.

In our RPA calculations we explore a Landau–Migdal
form of the residual interaction which does not include the
spin-orbit term. Consequently, our calculations are not, strictly
speaking, fully self-consistent. The spin-orbit term of the
residual interaction has been shown to be very small in the
case of charge-exchange GT excitations [32]. Nevertheless,
to explicitly estimate the effect of the two-body spin-orbit
residual interaction on the charge-neutral GT mode, fully
self-consistent Skyrme-RPA calculations are needed.

In the present study we consider Skyrme parametrizations
that do not include the tensor force. However, the tensor
force may play an important role in both ground-state and
excited-state properties [33] and, therefore, needs to be taken
into account. For charge-exchange GT excitations, the effects
of tensor correlations have been analyzed in Ref. [34] by using
self-consistent Hartree–Fock + RPA calculations with the
Skyrme interaction SIII. It was found that tensor correlations
are quite strong in that case and lead to a lowering of the
main GT peak by about 2 MeV in 90Zr and 208Pb, which is
accompanied by a shift of a sizable fraction of the energy
weighted sum rule to the energy region above 30 MeV. If the
same effects are present for charge-neutral GT excitations, the
inclusion of tensor forces would effect the low-energy cross
sections as well as the energy distribution of scattered and
emitted neutrinos.

Our present calculations are limited by the RPA level and
do not include many-body correlations, which are responsible
for the detailed fragmentation of the thermal strength function.
The fragmentation is important at low neutrino energies when
cross sections and rates are sensitive to the details of GT0

strength distribution. Moreover, due the mixing of RPA states
with more complex (e.g., 2p-2h) configurations, some part of
the GT0 strength may be shifted to higher energies, as was
found for the charge-exchange GT strength [35]. This effect
should be important for the neutrino pair production. Since the
phase factor E5 in Eq. (21) favors the contribution from higher
energies, the upward shift of the GT0 strength can result in
more energetic neutrinos emitted at T � 1 MeV than is shown
in Figs. 8 and 9. In cold nuclei, the inclusion of higher-order
correlations beyond the RPA level was considered within the
QPM [16] by coupling of one-phonon states with two-phonon
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configurations. By exploiting a separable approximation for
the Skyrme interaction one could consider phonon coupling
at finite temperature within a self-consistent theory. This is
planned for future work.
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APPENDIX

Within the TQRPA, thermal phonons are defined as a linear superposition of creation and annihilation operators of thermal
quasiparticle pairs,

Q
†
JMi =1

2

∑
τ=n,p

τ∑
j1j2

{
ψJi

j1j2

[
β
†
j1
β
†
j2

]J

M
+ ψ̃J i

j1j2

[
β̃
†
j1
β̃
†
j2

]J

M
+ iηJ i

j1j2

[
β
†
j1
β̃
†
j2

]J

M
+ iη̃J i

j1j2

[
β
†
j1
β̃
†
j2

]J

M
+ φJi

j1j2

[
βj1βj2

]J

M

+ φ̃J i
j1j2

[
β̃j1 β̃j2

]J

M
+ iξ J i

j1j2

[
βj1 β̃j2

]J

M
+ iξ̃ J i

j1j2

[
βj1 β̃j2

]J

M

}
. (A1)

To clarify the physical meaning of different terms in Eq. (A1), we note that the creation of a negative energy tilde thermal
quasiparticle corresponds to the annihilation of a thermally excited Bogoliubov quasiparticle or, which is the same, to the
creation of a quasihole state (see Ref. [36] for more details). Therefore, at finite temperature, single-particle transitions involve
excitations of three types: (1) two-quasiparticle excitations described by the operator β

†
j1
β
†
j2

and having energy ε
(+)
j1j2

= εj1 + εj2 ,

(2) one-quasiparticle one-quasihole excitations described by the operator β
†
j1
β̃
†
j2

and having energy ε
(−)
j1j2

= εj1 − εj2 , and (3)

two-quasihole excitations described by the operator β̃
†
j1
β̃
†
j2

and having energy −ε
(+)
j1j2

. The last two types are possible only at
T �= 0. Therefore, due to single-particle transitions involving the annihilation of thermally excited Bogoliubov quasiparticles,
the spectrum of thermal phonons contains negative- and low-energy states that do not exist at zero temperature. These “new”
phonon states can be interpreted as thermally unblocked transitions between nuclear excited states.

In what follows we consider phonons of unnatural parity π = −(−1)J . They are generated by the L = J ± 1 components
of the residual interaction (10). To find the energy and the structure of the thermal phonons we apply the equation-of-motion
method

〈|δQ,[H,Q†]]|〉 = ω(T )〈|[δQ,Q†]|〉 (A2)

under two additional constraints: (a) the phonon operators obey Bose commutation relations, and (b) the phonon vacuum obeys
the thermal-state condition (4). The first constraint leads to the normalization condition for the phonon amplitudes:

1

2

∑
τ=n,p

τ∑
j1j2

(
ψJi

j1j2
ψJi ′

j1j2
+ ψ̃J i

j1j2
ψ̃J i ′

j1j2
+ ηJi

j1j2
ηJi ′

j1j2
+ η̃J i

j1j2
η̃J i ′

j1j2
− φJi

j1j2
φJi ′

j1j2
− φ̃J i

j1j2
φ̃J i ′

j1j2
− ξJ i

j1j2
ξλi ′
j1j2

− ξ̃ J i
j1j2

ξ̃ J i ′
j1j2

) = δii ′ , (A3)

while the last assumption yields the following relations between amplitudes:(
ψ̃

φ̃

)J i

j1j2

= yj1yj2 − e−ωJi/2T xj1xj2

e−ωJi/2T yj1yj2 − xj1xj2

(
φ

ψ

)J i

jpjn

,

(
η̃

ξ̃

)J i

j1j2

= yj1xj2 − e−ωJi/2T xj1yj2

e−ωJi/2T yj1xj2 − xj1yj2

(
ξ

η

)J i

j1j2

. (A4)

Here, xj and yj (x2
j + y2

j = 1) are the coefficients of the so-called thermal transformation which establishes a connection between
Bogoliubov and thermal quasiparticles. Note that yj are given by the nucleon Fermi–Dirac function and they define a number of
thermally excited Bogoliubov quasiparticles in the thermal vacuum (see Ref. [36] for more details).

To derive the TQRPA equations it is convenient to introduce the following linear combinations of amplitudes:(
g

w

)J i

j1j2

= ψJi
j1j2

± φJi
j1j2

,

(
g̃

w̃

)J i

j1j2

= ψ̃J i
j1j2

± φ̃J i
j1j2

,

(
t

s

)J i

j1j2

= ηJi
j1j2

± ξJ i
j1j2

,

(
t̃

s̃

)J i

j1j2

= η̃J i
j1j2

± ξ̃ J i
j1j2

. (A5)

Then, from Eq. (A4), it follows that(
g

w

)J i

j1j2

= (
xj1xj2 − e−ωJi/2T yj1yj2

)(G

W

)J i

j1j2

,

(
g̃

w̃

)J i

j1j2

= ∓(
yj1yj2 − e−ωJi/2T xj1xj2

)(G

W

)J i

j1j2

,

(
t

s

)J i

j1j2

= (
xj1yj2 − e−ωJi/2T yj1xj2

)(T

S

)J i

j1j2

,

(
t̃

s̃

)J i

j1j2

= ∓(
yj1xj2 − e−ωJi/2T xj1yj2

)(T

S

)J i

j1j2

, (A6)
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where G, W, T , and S are normalized according to

1

2

∑
τ=p,n

τ∑
j1j2

(
GJi

j1j2
WJi ′

j1j2

(
1 − y2

j1
− y2

j2

) − T Ji
j1j2

SJi ′
j1j2

(
y2

j1
− y2

j2

)) = δii ′/(1 − e−ωJi/T ). (A7)

From the equation of motion (A2) we get the system of TQRPA equations for the unknown variables G, W, T , and S and
phonon energies,

GJi
j1j2

= ωJi

ε
(+)
j1j2

WJi
j1j2

, T J i
j1j2

= ωJi

ε
(−)
j1j2

SJi
j1j2

,

[
ε

(+)
j1j2

]2
WJi

j1j2
− ε

(+)
j1j2

Ĵ 2

N∑
k=1

∑
L=J∓1

g
(LJk)
j1j2

u
(−)
j1j2

{(
κ

(k)
0 + κ

(k)
1

)
Di

LJk(τ ) + (
κ

(k)
0 − κ

(k)
1

)
Di

LJk(−τ )
} = ω2

J iW
Ji
j1j2

,

[
ε

(−)
j1j2

]2
SJi

j1j2
− ε

(−)
j1j2

Ĵ 2

N∑
k=1

∑
L=J∓1

g
(LJk)
j1j2

v
(+)
j1j2

{(
κ

(k)
0 + κ

(k)
1

)
Di

LJk(τ ) + (
κ

(k)
0 − κ

(k)
1

)
Di

LJk(−τ )
} = ω2

J iS
J i
j1j2

, (A8)

where

Di
LJk(τ ) =

τ∑
j1j2

g
(LJk)
j1j2

{
u

(−)
j1j2

(
1 − y2

j1
− y2

j2

)
WJi

j1j2
− v

(+)
j1j2

(
y2

j1
− y2

j2

)
SJi

j1j2

}
.

In the above equations we introduced the following combinations of the Bogoliubov (u,v) coefficients: u
(−)
j1j2

= uj1vj2 − vj1uj2 ,

v
(+)
j1j2

= uj1uj2 + vj1vj2 .
Because of the separable form of the residual interaction, the TQRPA equations can be reduced to the set of equations for

Di
LJk (

MJ−1,J−1 − 1 MJ−1,J+1

MJ+1,J−1 MJ+1,J+1 − 1

)(
DJ−1,J

DJ+1,J

)
= 0. (A9)

Here ML,L′ is the 2N × 2N matrix

Mkk′
LL′ =

((
κ

(k′)
0 + κ

(k′)
1

)
X kk′

LL′(p)
(
κ

(k′)
0 − κ

(k′)
1

)
X kk′

LL′(p)(
κ

(k′)
0 − κ

(k′)
1

)
X kk′

LL′(n)
(
κ

(k′)
0 + κ

(k′)
1

)
X kk′

LL′(p)

)
, 1 � k, k′ � N, (A10)

with the following matrix elements X kk′
LL′(τ ):

X kk′
LL′(τ ) = 1

Ĵ 2

∑
j1j2

τ
g

(LJk)
j1j2

g
(L′Jk′)
j1j2

{
ε

(+)
j1j2

[
u

(−)
j1j2

]2[
ε

(+)
j1j2

]2 − ω2

(
1 − y2

j1
− y2

j2

) − ε
(−)
j1j2

[
v

(+)
j1j2

]2[
ε

(−)
j1j2

]2 − ω2

(
y2

j1
− y2

j2

)}
.

(A11)

The 2N -vector DLJ has the components

DLJk =
(

DLJk(p)
DLJk(n)

)
, 1 � k � N.

Thus, the TQRPA eigenvalues ωJi are the roots of the secular equation

det

(
MJ−1,J−1 − 1 MJ−1,J+1

MJ+1,J−1 MJ+1,J+1 − 1

)
= 0, (A12)

while the phonon amplitudes corresponding to the TQRPA eigenvalue ωJi are determined by Eqs. (A5), (A6), and (A8), taking
into account the normalization condition (A7).
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