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Theoretical study of the α + d → 6Li + γ astrophysical capture process in a three-body model
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The astrophysical capture process α + d → 6Li is studied in a three-body model. The initial state is factorized
into the deuteron bound state and the (α + d)-scattering state. The final nucleus 6Li(1+) is described as a three-
body bound state α + n + p in the hyperspherical Lagrange-mesh method. The contribution of the E1-transition
operator from the initial isosinglet states to the isotriplet components of the final state is estimated to be negligible.
An estimation of the forbidden E1 transition to the isosinglet components of the final state is comparable with the
corresponding results of the two-body model. However, the contribution of the E2-transition operator is found
to be much smaller than the corresponding estimations of the two-body model. The three-body model perfectly
matches the new experimental data of the LUNA Collaboration with the spectroscopic factor of 2.586 estimated
from the bound-state wave functions of 6Li and a deuteron.
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I. INTRODUCTION

In the Big Bang nucleosynthesis (BBN) model of the
Universe estimations of the primordial abundance of the light
2H, 3He, and 4He nuclei are in very good agreement with
astrophysical observations [1]. However, the situation is very
different for the primordial abundance of the 6Li and 7Li
nuclei [2–6]. Recent observations of 6Li in metal-poor stars
[3] suggest a large production of this isotope. The data for
the 6Li/7Li ratio of about 0.05 is almost three orders of
magnitude larger than estimations from the BBN model [7].
Understanding of this phenomenon is one of the open problems
in nuclear astrophysics.

In BBN the light 6Li nucleus is produced mainly through
the radiative capture process,

α + d → 6Li + γ, (1)

at low energies within the range of 50 � Ecm � 400 keV
[7]. This process was experimentally studied in detail at
energies around the 3+ resonance of Ecm = 0.711 MeV and
above [8,9]. Until recently the direct measurement of the
cross section of the process at low energies was not possible
due to serious experimental difficulties [10,11]. In Ref. [11]
breakup of the 6Li nucleus in the field of heavy-ion 208Pb
was studied with the aim to extract data on the cross
section of the inverse process at astrophysical energies in
laboratory conditions. However, dominance of the nuclear
breakup over the Coulomb-induced process did not allow
implementing this idea. The LUNA Collaboration has recently
reported new data at two astrophysical energies of E = 94
and E = 134 keV [12]. The results turn out to be much
lower than the old data from Ref. [10]. Recently in Ref.
[13] a way to improve the accuracy of the direct experiment
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has been proposed based on the photon angular distribution
calculated in the potential model. The results provide the best
kinematic conditions for the measurement of the 2H(α,γ ) 6Li
reaction.

From the theoretical side, different two-body and three-
body potential models [14–21] and ab initio approaches [22]
have been developed. These studies have demonstrated that the
main contribution to the process at energies around and beyond
the 3+ resonance comes from the E2 transition. However, at
low astrophysical energies the situation is different. Here the
dominant contribution comes from the E1-transition operator.
The most realistic two-body model of Ref. [19] is based on the
well-known asymptotic form of the two-body α + d bound-
state wave function at low energies and a complicated potential
derived from the original Woods-Saxon potential via the
integrodifferential transformation at higher energies. Recently
these results have been reproduced with a much simpler α − d
potential of the Gaussian form describing both bound-state
[asymptotic normalization coefficient (ANC), binding energy]
and scattering-state (phase shifts in the S, P , and D waves)
properties [21] of the α + d system.

On the other hand, in the two-body models the E1 transition
is forbidden by the isospin-selection rule since both initial
and final states are isospin singlet. To overcome this problem,
an appropriate correction to the E1-transition operator was
introduced to take into account the difference between mass
of the α particle and twice the deuteron mass. Without this
correction the E1 transition does not contribute to the S factor
of the process. However, this drawback has been common for
all the models developed so far.

There is another possible development for the estima-
tion of the E1- and E2-transition matrix elements for the
4He(d,γ ) 6Li capture process. In realistic three-body models
the E1 transition is allowed from the initial Ti = 0 states
to the Tf = 1 components of the final 6Li(1+) bound state
of the α + n + p system. Indeed, the ground state of the 6Li
nucleus contains a small isospin-triplet component. The norm
square of this component of the three-body wave function
in hyperspherical coordinates [23,24] is about 1.13 × 10−5.
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However, it still can make some additional contribution to the
process.

The aim of the present study is to estimate the E1- and E2-
transition contributions to the S factor of the aforementioned
process in a three-body model. The initial three-body wave
function is factorized into the deuteron bound state and the
(α + d)-scattering wave functions. The final 6Li(1+) state is
described as an α + p + n three-body bound system. The
hyperspherical wave function on the Lagrange-mesh basis
available for the 6Li(1+) bound state [23,24] will be used.

In Sec. II we describe the model, in Sec. III we discuss
obtained numerical results, and finally, in the last section we
make conclusions.

II. THEORETICAL MODEL

A. Cross sections of the radiation capture process

The cross sections of the radiative capture process read

σE(λ) =
∑
JiTiπi

∑
Jf Tf πf

∑
�λ

(2Jf + 1)

[I1][I2]

32π2(λ + 1)

�λ([λ]!!)2
k2λ+1
γ C2

S

×
∑
lωIω

1

k2
ωvω

|〈	Jf Tf πf ‖M�
λ

∥∥	
JiTiπi

lωIω

〉∣∣2
, (2)

where � = E or M (electric or magnetic transition), ω denotes
the entrance channel, kω, vω, and Iω are the wave number,
velocity of the α − d relative motion, and the spin of the
entrance channel, respectively, Jf , Tf , πf , and (Ji,Ti,πi)
are the spin, isospin, and parity of the final (initial) state,
I1,I2 are channel spins, and kγ = Eγ /�c is the wave number
of the photon corresponding to the energy Eγ = Eth + E
with the threshold energy of Eth = 1.474 MeV. The wave
functions 	

JiTiπi

lωIω
and 	Jf Tf πf present the initial and final

states, respectively. They are given in a common form for
both two-body and three-body models. The reduced matrix
elements are evaluated between the initial and the final states.
The constant C2

S is the spectroscopic factor [25]. We also use
shorthand notations [I ] = 2I + 1 and [λ]!! = (2λ + 1)!!.

The electric-transition operator in the Jacobi coordinates
can be written as [23]

ME
λμ(�x,�y) = e

[
Ẑ12

(−A3

A

)λ

+ Ẑ3

(
A12

A

)λ
]
ME
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+ e

[
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(−A2

A12

)λ

+ Ẑ2

(
A1

A12

)λ
]
ME

λμ(�x)

+ e

λ−1∑
k>0

αλk

(−A3

A

)k[
Ẑ1

(−A2

A12

)λ−k

+ Ẑ2

(
A1

A12

)λ−k]{
ME

k (�y) ⊗ ME
λ−k(�x)
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λμ

,

(3)

with

ME
λμ(�x) =

(
x√
μ12

)λ

Yλμ(x̂) ≡ rλYλμ(r̂), (4)

ME
λμ(�y) =

(
y√
μ12

)λ

Yλμ(ŷ) ≡ RλYλμ(R̂), (5)

and

αλk =
(

4π [λ]!

[k]![λ − k]!

)1/2

, (6)

where 1
μ12

= 1
A1

+ 1
A2

and 1
μ(12)3

= 1
A12

+ 1
A3

are the reduced
masses. The Jacobi coordinates x (between the proton and the
neutron), y (between the p + n and the α particle), and relative
r,R coordinates are related as

x = √
μ12r, y = √

μ(12)3 R. (7)

B. Wave functions

In the present three-body model the initial state is factorized
as

	
J ′M ′,T ′0
i (�x,�y) = ud

l′ (r)

r

uL′(R)

R

× {YL′(ŷ) ⊗ {Yl′(x̂) ⊗ χs ′ (1,2)}j ′}J ′M ′

× ζ
T ′,0
1/2,1/2(1,2), (8)

where s ′ and L′ are the spin and orbital angular momenta of
the entrance channel, respectively, and l′ is the orbital angular
momentum of the deuteron. Although in the present study we
restrict ourselves to the S-wave component of the deuteron, and
hence the quantum numbers s ′ = 1 and l′ = 0 are fixed, we aim
to derive the analytical expressions of the matrix elements for a
general case of arbitrary s ′ and l′. In addition, ud

l′(r) is the radial
wave function of the deuteron, and uL′(R) is the scattering
wave function of the α − d pair. The latter asymptotically
behaves as

uL′(R) →
R→∞

FL′(kωR) cos δL′(E) + GL′(kωR) sin δL′(E),

(9)

where FL′ and GL′ are Coulomb functions and δL′(E) is the
phase shift in the L′ wave at energy E. The parity of the
state is defined from the intrinsic parities of the α particle and
deuteron, which are positive, and the orbital momentum L′.

The spin and isospin wave functions of the two nucleons as
a bound state of the deuteron read, respectively,

χs ′m′(1,2) = {χ1/2(1) ⊗ χ1/2(2)}s ′m′ , (10)

and

ζ
T ′,0
1/2,1/2(1,2) = {ζ1/2(1) ⊗ ζ1/2(2)}T ′,0. (11)

The antisymmetry condition requires S ′ + T ′ + l′ to be odd.
Since for the deuteron l′ = 0 and S ′ = 1, the initial three-body
system is in the isosinglet state T ′ = 0. The final three-
body wave function of the 6Li(1+,0) ground state in the
hyperspherical basis reads as

	
JM,T 0
f (�x,�y) = 1

ρ5/2

∑
γ,k

χγ k(ρ)
{YL

lx ly
(x̂,ŷ) ⊗ χS(�ξ )

}
JM

×�
lxly
k (α)ζ T,0

1/2,1/2(1,2), (12)
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where ρ (hyperradius) and α (hyperangle) are defined as

ρ2 = x2 + y2, α = arctan(y/x). (13)

Hyperangle α varies between 0 and π/2. The hyperspherical
harmonics are defined as [23,24]

�
lxly
k (α) = N

lxly
k (cos α)lx (sin α)ly P

ly+1/2,lx+1/2
n (cos 2α),

(14)

where P
ly+1/2,lx+1/2
n (cos 2α) are the Jacobi polynomials and

N
lxly
k is the normalization factor (see Ref. [23] for details).
The astrophysical S factor of the process is expressed in

terms of the cross section as [26]

S(E) = EσE(λ) exp(2πη), (15)

where η is the Coulomb parameter.

C. Isospin transition-matrix elements

We rewrite the charge operators of the proton and neutron
in Eq. (3) with the help of the isospin operators as

Ẑ1 = 1
2 + m̂t1, Ẑ2 = 1

2 + m̂t2. (16)

Then the matrix element of the isospin operator,

T̂y =
[(

1

2
+ m̂t1

)
+

(
1

2
+ m̂t2

)](
−A3

A

)λ

+ Z3

(
A12

A

)λ

,

(17)

of the first term in the Eq. (3) between the initial and the final
three-body isospin wave functions reads as

〈
ζ

T,0
1/2,1/2

∣∣T̂y

∣∣ζ T ′,0
1/2,1/2

〉 =
[(

−A3

A

)λ

+ Z3

(
A12

A

)λ
]
δT,T ′ .

(18)

The matrix element of the second isospin operator,

T̂x =
(

1

2
+ m̂t1

)(
− A2

A12

)λ

+
(

1

2
+ m̂t2

)(
A1

A12

)λ

(19)

can be evaluated using the angular momentum algebra,

〈
ζ

T,0
1/2,1/2

∣∣T̂x

∣∣ζ T ′,0
1/2,1/2

〉 = 1

2

[(
− A2

A12

)λ

+
(

A1

A12

)λ
]
δT,T ′

+ 1

2

[(
− A2

A12

)λ

−
(

A1

A12

)λ
]

× (δT,0δT ′,1 + δT,1δT ′,0). (20)

The isospin operator in the last term of Eq. (3) is evaluated in
the same way as the second term.

From last equation one can note that the E1 transition is
allowed from the isospin-singlet states to the isospin-triplet
components of the final 6Li(1+) three-body bound state. The
spin-angular parts of the matrix elements for the E1- and

E2-transition operators in the three-body model are given in
the Appendix.

III. NUMERICAL RESULTS

A. Details of the calculations

The radial wave function ud
l′(r) of the deuteron is the

solution of the bound-state Schrödinger equation with the
central Minnesota potential VNN [27,28] with �

2/2mN =
20.7343 MeV fm2. The Schrödinger equation is solved using
a highly accurate Lagrange-Laguerre-mesh method [29].
It yields Ed = −2.202 MeV for the deuteron ground-state
energy with the number of mesh points N = 40 and a scaling
parameter hd = 0.40.

The scattering wave function uL(E,R) of the α − d relative
motion is calculated as a solution of the Schrödinger equation
using the Numerov method with an appropriate potential
subject to the boundary condition Eq. (9). In the present study
we use the well-known deep potential of Dubovichenko and
Dzhazairov-Kakhramanov [30] with a small modification in
the S wave [21]: V (S)

d (R) = −92.44 exp(−0.25R2) MeV. The
potential parameters in the 3P0,

3P1,
3P2 and 3D1,

3D2,
3D3

partial waves are the same as in Ref. [30]. The potential
contains additional states in the S and P waves forbidden
by the Pauli principle. The above modification allows to
better describe the phase shifts in the S wave and, most
importantly, reproduce the empirical value Cαd = 2.31 fm−1/2

of the ANC of the 6Li(1+) ground state derived from α − d
elastic-scattering data [31].

In order to check the sensitivity of the E1- and E2-
transition-matrix elements on the short-range part of the α − d
wave function, we also test the α − d potential V S

d obtained
from the initial Vd potential in the S and P waves by a
supersymmetric (SUSY) transformation [32]. The resulting
potential gives the same phase shifts and the same ground-state
energy as the initial potential. However, the forbidden state is
removed, and the role of the Pauli principle is simulated by a
short-range core.

The final 6Li(1+) ground-state wave function was cal-
culated using the hyperspherical Lagrange-mesh method
[23,24,33] with the same Minnesota NN potential. For the
α − N nuclear interaction the potential of Voronchev et al.
[34] was employed, which contains a deep Pauli forbidden
state in the S wave. The potential was slightly renormalized by
a scaling factor of 1.008 to reproduce the experimental binding
energy Eb = 3.70 MeV. The Coulomb α − p interaction
is parametrized as VC(r) = 2e2 erf(r/RC) with a radius of
RC = 1.2 fm. The Pauli forbidden states in the three-body
configuration space are eliminated with the help of the
orthogonalizing pseudopotential method [35,36].

The hypermomentum expansion includes terms up to
Kmax = 20, which ensures a good convergence of the energy.
The matter rms radius of the ground state (with 1.4 fm for the
radius of the α particle) was found as

√
〈r〉2 = 2.25 fm, a value

slightly lower than the experimental data (2.32 ± 0.03 fm
[37]). The ground state is essentially S = 1 (96%). As noted
above, the three-body wave function also includes a small
isotriplet component lx = ly = S = T = 1 with the norm
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FIG. 1. Contribution of the E1-transition operator from the initial
isosinglet state to the isotriplet component of the final state for the
astrophysical S factor of the capture process α + d → 6Li + γ .

square 1.13 ×10−5 which can give a contribution to the
E1-transition-matrix elements.

B. Estimation of the astrophysical S factor

First we estimate the allowed E1-transition contribution
to the capture process 4He(d,γ ) 6Li in the three-body model
when the isospin changes. Here contributions come from
the initial 3P0,

3P1,
3P2 partial waves and the lx = ly = S =

T = 1 components of the final state. In Fig. 1 we show
the corresponding estimation for the astrophysical S factor.
As can be seen from the picture the contribution is rather
small, which means that the small isotriplet component
of the 6Li(1+) ground state does not make a significant
contribution to the capture process. Figure 2 shows the
estimated contribution of the E1-transition operator to the

FIG. 2. Contribution of the E1-transition operator from the initial
isosinglet state to the isotriplet and isosinglet components of the final
state for the astrophysical S factor of the capture process α + d →
6Li + γ .

FIG. 3. Contribution of the E2-transition operator to the astro-
physical S factor of the capture process α + d → 6Li + γ .

astrophysical S factor including the correction to the mass
numbers An = 1.008 664 915 97, An = 1.007 276 466 77, and
A3 = 4.001 506 179 127 a.u. This yields an additional contri-
bution to the S factor, larger than isospin-transition terms in
Fig. 1 approximately by two orders of magnitude.

In Fig. 3 the contribution of the E2-transition operator
to the astrophysical S factor is demonstrated for different
initial partial waves 3D1,

3D2, and 3D3. As can be seen
from the figure the estimations are essentially less than the
corresponding numbers for the two-body model [21]. The
magnitude of underestimation is larger at low astrophysical
energies.

Additionally, unlike the two-body model, in the three-body
model there is a contribution of the initial 3S1 state to
the E2-transition-matrix elements. However, our numerical
study shows this contribution to be very small. For the
energy range from 0.1 to 1.0 MeV the S-wave contribution
to the astrophysical S factor increases from 1.0 × 10−12 to
2.02 × 10−12 MeV b. This is why we do not show the S-wave
contribution in Fig. 3.

We also have tested the SUSY-transformed α − d potentials
V S

d . It turns out that this transformation increases the S-wave
contribution to the S factor by about 12%–13% in the energy
range from 0.1 to 1.0 MeV. But the total S-wave contribution
is still negligible. The SUSY transformation of the P -wave
potentials yields a very small increase in the S factor by 0.52%–
0.60% in the aforementioned energy range. The situation is
different from the β- and M1-transition processes [24,33,38]
where the main contribution comes from the S-wave (α − d)-
scattering state, hence a sensitivity of the transition probability
to the short-range behavior of the wave function was essential.

Figure 4 demonstrates the convergence of the evaluated S
factor in the three-body model for different choices of the
number of integration points N = 300,500,700 with a fixed
step of h = 0.05 fm. As one can see, the convergent results
are obtained with N = 500 mesh points. In Fig. 5 we compare
the E1- and E2-transition components. At low energies the E1
transition dominates, and at higher energies the E2 component
is stronger.
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FIG. 4. Convergence of the astrophysical S factor for the capture
process α + d → 6Li + γ with respect to the number of integration
points with the fixed step of h = 0.05 fm.

Finally, in Fig. 6 we compare the obtained theoretical
results with the estimations of the two-body model [21] and
experimental data from Refs. [8–10,12]. One can see from the
figure that the results of the two-body and three-body models
differ essentially for the spectroscopic factor of C2

S = 1.
At the resonance energy they differ by a factor of 0.565,
which is consistent with the square of the overlap integral
I = 0.748 of the three-body bound-state wave function with
the deuteron and the two-body α − d bound-state wave
functions.

We have estimated the integral Pαd = ∫ |	( �R)|2d �R with
	( �R) = 〈	3(�r, �R)|ψd (�r)〉 and found its value to be 0.3867.
That yields for the spectroscopic factor an estimation of C2

S =
1/Pαd = 2.586. As was shown in Fig. 6 with this value of the
spectroscopic factor the three-body model perfectly describes
the new experimental data of the LUNA Collaboration better
than the two-body models. Any value of the spectroscopic

FIG. 5. Comparison of the contributions of the E1- and E2-
transition operators to the astrophysical S factor of the capture process
α + d → 6Li + γ .

FIG. 6. Comparison of the theoretical estimations obtained in the
two- and three-body models for the astrophysical S factor of the
capture process α + d → 6Li + γ with available experimental data.

factor from the interval between 1.50 and 4.25 is able to
describe these data within the error bar.

IV. CONCLUSIONS

The astrophysical capture process α + d → 6Li + γ has
been studied in the three-body model. The contribution of
the E1-transition operator has been estimated from the initial
isosinglet states to the isotriplet components of the final
6Li(1+) bound state. It is shown that this contribution is small.
The most important contribution of the E1 transition comes
due to the mass difference of the proton and neutron with the
violation of the isospin selection rule. The situation is close
to the two-body model where the E1 transition, forbidden by
the isospin selection rule, is only possible due to the mass
difference of the α particle and twice the deuteron mass. The
three-body model perfectly matches the new experimental data
of the LUNA Collaboration with the spectroscopic factor of
2.586 derived from the overlap integral of the 6Li and deuteron
bound-state wave functions.

ACKNOWLEDGMENTS

The support of the Australian Research Council, the
Australian National Computer Infrastructure, and the Pawsey
Supercomputer Centre are gratefully acknowledged. The
authors are thankful to D. Baye for very useful comments.
E.M.T. thanks the members of the theoretical physics group
at Curtin University for the kind hospitality during his visit.
A.S.K. acknowledges partial support from the U.S. National
Science Foundation under Award No. PHY-1415656.

015801-5



TURSUNOV, KADYROV, TURAKULOV, AND BRAY PHYSICAL REVIEW C 94, 015801 (2016)

APPENDIX: SPIN-ANGULAR MATRIX ELEMENTS OF THE Eλ-TRANSITION OPERATOR
IN THE THREE-BODY MODEL

The spin-angular matrix elements of the Eλ transition are given as

〈
ψJM

f

∣∣ME
λμ(�x,�y)

∣∣ψJ ′M ′
i

〉 =
〈

1

ρ5/2

∑
γ,k

χγ k(ρ)
{
YL

lx ly
(x̂,ŷ) ⊗ χS(�ξ )

}
JM

�
lx ly
k (α)

∣∣∣∣∣∣ME
λμ(�x,�y)

×
∣∣∣∣u

pn
l′ (r)

r

uL′(R)

R
{YL′(ŷ) ⊗ {Yl′(x̂) ⊗ χs ′ (1,2)}j ′}J ′M ′

〉
, (A1)

where

ME
λμ(�x,�y) = AxM

E
λμ(�x) + AyM

E
λμ(�y) +

λ−1∑
k>0

A(k)
xy

{
ME

λ−k(�x) ⊗ ME
k (�y)

}
λμ

, (A2)

and 〈{
YL

lx ly
(x̂,ŷ) ⊗ χS(1,2)

}
JM

∣∣A(k)
xy

{
ME

λ−k(�x) ⊗ ME
k (�y)

}
λμ

|{YL′(ŷ) ⊗ {Yl′(x̂) ⊗ χs ′ (1,2)}j ′}J ′M ′ 〉

= A(k)
xy

4π

(
x√
μ12

)λ−k(
y√

μ(12)3

)k

δss ′ [σ ][τ ]([k][λ − k][λ][l′][j ′][L′][L][J ′])1/2
∑
στ

(−1)2J+2M+lx+ly+L−τ+L′−l′−2σ

×C
lx0
λ−k0l′0C

ly0
k0L′0

⎧⎪⎨
⎪⎩

ly k L′

lx λ − k l′

L λ τ

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

S L J

l′ τ L′

j ′ λ σ

⎫⎪⎬
⎪⎭
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σ j ′ λ

J ′ J L′
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CJM

J ′M ′λμ. (A3)
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