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We study the near-threshold incoherent φ photoproduction on the deuteron based on a model of γN → φN ,
consisting of Pomeron, (π,η) exchanges, and a J P = 3/2− resonance, which describes the low-energy γp → φp

LEPS data well, including the peak in the forward differential cross section. The calculation is done up to
double rescatterings, with the spin dependence of the elementary γN → φN amplitude retained throughout the
calculation. The Fermi motion and final-state interactions (FSIs) are all properly treated as prescribed by realistic
nucleon-nucleon interaction. The couplings of the resonance to γ n and φn channels are estimated with the help
of a constituent quark model. The main features of the LEPS and CLAS data are described reasonably well except
for some quantitative discrepancies at very low energies and low-momentum-transfer regions. It is found that
contributions of Fermi motion, pn FSI, and resonance are all indispensable in bridging the differences between
the single-scattering results and the data. The off-shell rescattering is found to be important because it cancels
out a large portion of the on-shell contribution. The discrepancies at low-momentum-transfer regions might be
related to the binning size of the data. No peak is found to be associated with the weak resonance because it gets
smeared out by the Fermi motion and FSI with the deuterium target. The problem at very-low-energy regions
hints at the possible contributions from other mechanisms and should be investigated in depth with the use of
recent high-statistics γp → φp data from CLAS.
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I. INTRODUCTION

It has long been established that the diffractive processes
dominate the φ-meson photoproduction reaction at high
energies and can be well described by t-channel Pomeron (P )
exchange [1,2]. In the low-energy region, the nondiffractive
processes of pseudoscalar (π,η)-meson exchanges are also
known to contribute [1]. Other processes, such as nucleon
exchange [3,4], nucleon resonances [5,6], second Pomeron
exchange, t-channel scalar meson and glueball exchanges
[6,7], and ss̄-cluster knockout [4,8,9], have also been sug-
gested and studied. However, no definite conclusion has been
inferred because of the limited experimental data. Recently,
a nonmonotonic behavior in the differential cross sections
(DCSs) of φ photoproduction on proton at forward angles
around Eγ ∼ 2.0 GeV has been observed by the LEPS
Collaboration [10] and confirmed by the new high-statistics
data from CLAS [11,12]. It cannot be explained by the
processes mentioned above.

We found in Refs. [13,14] that, with an addition of
a resonance of spin parity JP = 3/2−, with mass M =
2.10 ± 0.03 GeV and width � = 0.465 ± 0.141 GeV to the
background mechanisms, which consist of Pomeron and (π,η)-
meson exchanges in the t channel, not only the peak in the
forward differential cross section but also the t dependence
of DCS, φ-meson decay angular distribution, and the spin-
density matrix elements (SDMEs) can be well described. It
would hence be of interest to see how such a postulated
resonance would exhibit itself in other reactions, like φ-meson
photoproduction from deuterium at low energies.

Data on incoherent photoproduction of φ mesons from
deuteron at low energies have recently become available
from the LEPS [15,16] and CLAS [17] Collaborations. While
CLAS [17] measured only the DCSs and the decay angular
distributions of φ meson, LEPS provided more extensive data.
With a linearly polarized photon beam, they were able to
measure the decay asymmetries and SDMEs, in addition to
the DCSs [15,16]. This prompts us to set forth to confront our
model of Refs. [13,14] with these recent extensive data to see
whether it is possible to mine this postulated resonance from
them. This is clearly a daunting task because the strength of
this postulated resonance was found to be relatively weak and
can be marred by Fermi motion, final-state interactions (FSIs)
of the nucleons, meson rescattering effects, and production via
neutron.

The LEPS [15,16] and CLAS [17] data are recently
analyzed in Ref. [18], where the Fermi motion is taken into
account for the single-scattering calculation and the effects of
the rescatterings of φN and NN in the final state are also
investigated. It is found there that both the Fermi motion
and the FSI of the nucleons give non-negligible contributions,
while the double scattering of the φ meson with nucleons can
be neglected. Because we are interested in finding possible
traces of the postulated resonance, which is rather weak, from
other reactions like φ-meson photoproduction from deuteron,
a very careful treatment of the reaction is hence essential.

Consequently, in addition to the inclusion of the postulated
resonance, we implement the following improvements over
the calculation of Ref. [18]. First is that the spin structure
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of the elementary γN → φN amplitude, including those of
the Pomeron and t-channel (π,η) exchanges, is retained. The
spin-dependent part of the Pomeron-exchange amplitude was
extensively studied in Ref. [6] and found to be responsible
for the spin-flip transitions at forward production angles and
appears in the angular distributions of φ decay with both
unpolarized and polarized photon beams. In the present case
of incoherent φ production from deuteron, SDMEs would
be either a constant or zero. The inclusion of the spin-
dependent part of the elementary amplitude will provide a
useful probe for the resonance and deeper insight into the
reaction mechanism. Second, the t-channel (π,η) exchanges
are included. This is important because we found in Ref. [18]
that the nonmonotonic structure observed in the cross section
of γp → φp is enhanced by the interference of resonance
and π -exchange contributions. Last, the rescattering effects
between nucleons are estimated with the realistic Nijmegen NN
interactions [19,20], which ensure that the two-body unitarity
is satisfied. Besides, the D state in the deuteron and the
off-shell rescattering are also taken into account. All of these
were overlooked in Ref. [18].

Reactions with a deuteron target are often used to extract
the corresponding elementary reaction amplitude from a
neutron. However, in this study, we use isospin invariance
to infer the φ production amplitude from neutron as much
as possible. Because it is known that a Pomeron behaves
like an isoscalar particle, the Pomeron-exchange amplitude
is taken to be the same as that with a proton. For the t-channel
(π,η) exchanges, isospin symmetry allows us to write the
corresponding amplitude with a neutron. The only unknown
quantity in our model is the excitation strength of the resonance
from a neutron. For our present purpose, we take it to be
similar to a resonance with the same spin-parity and roughly
the same mass, as well as assume that it has the same ratio of
the proton helicity amplitudes predicted by a constituent quark
model of Ref. [21]. The details are expounded in Appendix A.
With this choice, our results are free from any fitting to the
γ d → φpn DCS and SDME data obtained by the LEPS and
CLAS Collaborations [15–17] and some of these results were
reported in Ref. [22].

This paper is organized as follows. In Sec. II we present
the details of our calculations. The elementary γN → φN
amplitude is first briefly described. Then the φ production
amplitudes via single and double-scattering mechanisms with
deuteron targets are given. In Sec. III results are shown
and discussed. A summary and conclusions are presented in
Sec. IV. Some details of our calculations are given in the
appendixes for clarity.

II. THE MODEL FOR γ d → φpn REACTION

In this section, we present the essentials of our calculations.
The kinematics and the notations are first introduced. Then the
elementary amplitude for photoproduction of a φ meson from
nucleon, γN → φN , the basis of our calculation, is briefly
discussed with details given in Appendix A. Last, we explain
the details of our calculations regarding how the Fermi motion
and final-state rescattering with both on- and off-shell ones are
treated.

p1 p2

pp pn

pd

q

k

γ

d

np

φ p n

FIG. 1. The γ d → φpn reaction with γ (k), φ(q), d(pd ), p(pp),
and n(pn) denote the photon, φ meson, deuteron, proton, and neutron
lines, respectively, with their momenta given inside the brackets.
Also, p1 (p2) denotes the initial proton (neutron) momenta inside
the deuteron. It should be emphasized that the ellipse joining the
deuteron, proton, and neutron lines is not an interaction vertex.

A. Kinematics

Let us first introduce the momenta of the particles involved
in the reaction. Here k, pd , q, pp, and pn are the four-momenta
of the photon, deuteron, φ meson, proton, and neutron,
respectively, while p1 (p2) is that of the proton (neutron) inside
the deuteron, as shown in Fig. 1. Notice also that k = (Eγ ,k),
q = (Eφ,q), and pa = (Ea,pa), where a = p,n,d. The masses
of the deuteron, φ meson, proton, and neutron are denoted
by Md , Mφ , Mp, and Mn, respectively. We work in the
laboratory (LAB) frame where the deuteron is at rest. In
this study, we use the plane-wave normalization that reads
〈p′|p〉 = (2π )32Epδ(3)(p′ − p) and ū(p,s)u(p,s) = 2M for a
Dirac spinor with mass M . In addition, we introduce

〈f |T̂ |i〉 = (2π )4δ(4)(k + pd − q − pp − pn)Mf i, (1)

where the S matrix is given by Ŝ = Î − iT̂ . The invariant am-
plitude −iMf i is obtained diagrammatically with Feynman
rules.

For later convenience, we define the Mandelstam variables
s, tφ , and uφ as

s = (k + pd )2 = (q + pp + pn)2,

tφ = (q − k)2 = (pd − pp − pn)2, (2)

uφ = (q − pd )2 = (k − pp − pn)2,

and

s + tφ + uφ = M2
d + M2

φ + M2
pn, (3)

where Mpn is the invariant mass of the pn system in the
final state. For a fixed value of tφ , Mpn has the minimum
and maximum values of

Mmin
pn = Mp + Mn,

Mmax
pn =

√
s + M2

φ − 2
√

sE′
φ, (4)
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with

E′
φ ≡

√
M2

φ + q ′2,

q ′ ≡ M2
φ − tφ

4Ec.m.
γ

− M2
φEc.m.

γ

M2
φ − tφ

. (5)

The value of uφ is in turn limited to be within

uφ,min = M2
d + M2

φ + (Mp + Mn)2 − s − tφ,

uφ,max = M2
d + 2M2

φ − 2
√

sE′
φ − tφ, (6)

and the value of tφ is also restricted within

tφ,min = M2
φ − 2Ec.m.

γ (Eφ,max − qmax),

tφ,max = M2
φ − 2Ec.m.

γ (Eφ,max + qmax), (7)

where Ec.m.
γ is the photon energy in the γ d center-of-mass

(c.m.) frame and

qmax ≡
√[

s − (
Mφ + Mmin

pn

)2][
s − (

Mφ − Mmin
pn

)2]
4s

,

Eφ,max ≡
√

M2
φ + q2

max, (8)

which corresponds to the case where the three-momentum of
the φ meson in the c.m. system achieves its maximum value
which clearly happens only when Mpn is in its minimum.

The differential cross section of γ d → φpn in the LAB
system is

dσd

dtφ
= 1

128E2
γ M2

d

1

(2π )4

∫ uφ,max

uφ,min

duφ

p
c,pn
p

Mpn

×
∫

d	c,pn
p

∑̄
λ

∑
λ′

|Mf i |2, (9)

where λ (λ′) denotes the initial (final) spins, and pc,pn
p =

(pc,pn
p ,	

c,pn
p ) denotes the three-momentum of the final proton

in the c.m. system of the final pn system.

B. The elementary γ N → φN amplitudes

The basic input in our model is the elementary amplitude
of φ-meson photoproduction from a free nucleon, MγN→φN

in which N = p,n. In our study, the amplitude Mγp→φp

constructed in our previous work [14] will be employed. It
consists of nonresonant and resonant amplitudes. The nonres-
onant amplitude consists of Pomeron and (π,η) exchanges
in the t channel. The resonant amplitude arises from a
postulated JP = 3/2− resonance contribution. Notice that the
contribution from the u-channel amplitude is very small and
in this work we include only the s-channel contribution. The
details of the model are given in Appendix A. The values for
the mass, width, and coupling constants for the JP = 3/2−
resonance, as determined in Ref. [14], are presented in Table. I.

For the production amplitude from neutron Mγ n→φn, the
P and (π,η) t-channel exchange amplitudes can be readily
written with the assumption of isospin symmetry. However,
the resonance couplings to γ n and φn channels have yet to be
determined because there are no data on γ n → φn available.

TABLE I. The N∗ mass, width, and coupling constants for J P =
3/2− resonances.

Proton (N = p) Neutron (N = n)

MN∗ (GeV) 2.08
�N∗ (GeV) 0.570

g
(1)
γNN∗ 0.0323 −0.0441

g
(2)
γNN∗ 0.0420 −0.0193

g
(1)
φNN∗ −20.94

g
(2)
φNN∗ −2.61

g
(3)
φNN∗ −3.36

For our present purpose, we determine their values according
to the following recipe. Namely, we first assume that the
electromagnetic excitation of the resonance, hence its ratio
of helicity amplitudes A

p
1/2/A

p
3/2 for γp, would be similar

to that of a JP = 3/2− nucleon state with roughly the same
mass as predicted by a theoretical model. We take it as the
JP = 3/2− nucleon state with a bare mass of 2095 MeV and
a positive value for the ratio of helicity amplitudes A

p
1/2/A

p
3/2

for γp decay, as predicted in the constituent quark model
(CQM) of Ref. [21]. For the resonance coupling with the φn
channel, we assume that they are identical to that with the
φp channel because φ is an isoscalar particle. The details of
the determination of the coupling constants g

(i)
γ nn∗ and g

(j )
φnn∗ of

γ nn∗ and φnn∗ vertices are presented in Appendix A.
Note that the Pomeron-exchange amplitude as given in

Eq. (A2) depends on the polarizations of both the incident
photon and outgoing φ meson, which were neglected in
Ref. [18]. The π - and η-exchange amplitudes were also not
included in Ref. [18].

C. γ d → φpn amplitudes

Within the multiple-scattering scheme, the diagrams for
the γ d → φpn reaction up to triple rescatterings are shown in
Fig. 2. Figure 2(a) is the single-scattering diagram, Fig. 2(b)
is the double-scattering diagram with rescatterings between
the final nucleons, and Fig. 2(c) is the double-scattering
diagram with rescatterings between meson M produced by
the incoming photon and final nucleon. Figures 2(d) and 2(e)
represent the triple-scattering diagrams. In this work, we con-
sider only up to the single-scattering and pn double-scattering
diagrams of Figs. 2(a) and 2(b), because Fig. 2(c) with M =
π,η,ρ,ω,φ, . . . was studied in Ref. [18] and found to be small.

In general, the amplitude for γ d → φpn can be expressed
as

Mf i =
∑

m1,m2

∫
d3p1

(2π )3

d3p2

(2π )3

1

2E1

1

2E2

×Mγpn(k,p1,p2,mγ ,m1,m2; q,pp,pn,mφ,mp,mn)

×〈p1,p2; m1,m2|pd ,
d ; md〉, (10)

where the momenta of the particles are defined in Fig. 1 and
the internal structure of the deuteron is characterized by its
wave function 
d . The spin projections of the particles are
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p1

pd pd

pp pn
pp pn

2p

1p

1p’

(a) (b)

+ +

(c) (e)(d)

k

q

k

q

γ dd

φ N

++

N

MM M

FIG. 2. The diagrams of the γ d → φpn reaction up to triple scatterings. Here meson M = π,η,ρ,ω,φ, . . .. Panel (a) is the single-scattering
diagram, (b) the double-scattering diagram with FSI between the final nucleons, (c) the double-scattering diagram with FSI between meson
and final nucleon, and (d),(e) the triple-scattering diagrams. In this work we consider only the contributions from diagrams (a)–(c), namely, up
to double scatterings.

denoted by m and the naming follows that of the momenta.
Because the Pomeron amplitude contains spin-spin- and spin-
orbital-dependent terms, which are responsible for the spin-flip
transition at forward angles and affect the angular distribution
of φ → K+K−, we include the D state of the deuteron in our
calculation.

It is important to note that Eq. (10) explicitly implies that
the deuteron is treated nonrelativistically in our study. It has
the consequence that the intermediate nucleons with three-
momenta p1 and p2 in Fig. 1 are both on the mass shell and the
energy in the intermediate states is not conserved, namely,
E1(p1) + E2(p2) 
= Ed , where Ei(pi) = (M2 + p2

i )1/2. This
point is brought up often in the subsequent discussion.

In this study, the deuteron wave function 
d , including that
of the D state, as prescribed from the Bonn potential [23], is
employed.

1. Single-scattering amplitudes

The diagram for a single-scattering amplitude from a
deuteron target with no FSI is shown in Fig. 2(a). We have, for
the amplitude in which the φ meson is produced from one of
the nucleons in the deuteron, say, a proton,

M(s,p)
γpn (k,p1,p2,mγ ,m1,m2; q,pp,pn,mφ,mp,mn)

= (2π )32E2δ
(3)(pn − p2)δmnm2

×Mγφ(k,p1,mγ ,m1; q,pp,mφ,mp), (11)

where the superscripts s and p refer to the fact that the
amplitude arises from single scattering in which the φ meson
is produced on a proton target.

The amplitude Mγφ in Eq. (11) denotes the γp → φp
elementary amplitude with the spins and momenta of the
particles specified within the parentheses. It should be noted
that this is not the one obtained from the Feynman rules in
which the four-momenta are conserved. This is because we
treat deuterons nonrelativistically so that the struck proton
is on the mass shell. Accordingly, only the three-momentum
in the subprocess γp → φp would be conserved but not the

energy, namely, the energies of the initial state Eγ (k) + Ep(p1)
and the final state Eφ(q) + Ep(pp) do not have to be equal.

In this work, we adopt the following recipe to obtain
Mγφ in Eq. (11). We start from the corresponding invariant
amplitudes Mγφ with t = (q − k)2 and s = (q + pp)2 as
given in Eqs. (A2) and (A7) for the Pomeron- and (π,η)-
exchange amplitudesMP andMπ+η of Appendix A as well as
the resonance amplitude outlined there and then express them
in terms of the respective momenta and spin variables of all
four particles of γ,φ and the incoming and outgoing nucleons
in the c.m. frame. We first transform the four-momenta of the
particles in the initial (final) state to the c.m. frames of the
initial (final) state. Here we have Ec.m.

γ (pc.m.
i ) + Ec.m.

p (−pc.m.
i )

and Ec.m.
φ (pc.m.

f ) + Ec.m.
p (−pc.m.

f ) as the initial and final total
energies in the c.m. frame, respectively. We then take an ap-
proximation where, using the notation pc.m.

i = (|pc.m.
i |,	c.m.

i ),
the initial momentum magnitude |pc.m.

i | is chosen such that
the resulting initial total energy would be equal to that of
the final. Notice that the direction of the momentum 	c.m.

i is
kept constant. It is reasonable to do this because the actual
energy of the system is the energy of φN in the final state.
The spins of the particles are also, in general, different after
the Lorentz transformation. They are transformed by using the
proper transformation for each spin. The photon and φ-meson
polarization wave functions are transformed by using the
ordinary Lorentz transformation for four momenta, while the
spinor of the nucleon is transformed by using the Lorentz
transformation for spin- 1

2 spinor.
To obtain the contribution of the φ production produced

from proton in the deuteron via single scattering to Mf i , the
amplitude M(s,p)

γpn of Eq. (11) should be convoluted with the
deuteron wave function as in Eq. (10).

The amplitude in which the φ meson is produced on the
neutron can be written similarly as Eq. (11) with some suitable
changes.

2. Double-scattering amplitudes

The double-scattering diagram in which the outgoing
proton and neutron rescatter is shown in Fig. 2(b) and the

015202-4



NEAR-THRESHOLD INCOHERENT φ . . . PHYSICAL REVIEW C 94, 015202 (2016)

corresponding amplitude can be expressed as, neglecting the
spins,

M(d)
γpn(k,p1,p2; q,pp,pn)

= ū(pp)ū(pn)M̂NNu(p2)
(p/′

1 + m)

p′2
1 − m2 + iε

× ε∗
μ(q)M̂μν

γφu(p1)εν(k), (12)

in which the superscript d denotes that the amplitude arises
from double-scattering process. Here M̂NN and M̂

μν
γφ are

related to the invariant amplitude M by the relations

MNN = ū(p3)ū(p4)M̂NNu(p1)u(p2) (13)

for the reaction N (p1) + N (p2) → N (p3) + N (p4) and

Mγφ = ε∗
μ(q)ū(p′)M̂μν

γφu(p)εν(k), (14)

for the reaction γ (k) + N (p) → φ(q) + N (p′).
As mentioned earlier, the nucleons in the deuteron with

three-momentum pi in Fig. 2(b) are treated as on the mass
shell and hence would propagate only forward. So, only the
positive-energy component in the Feynman propagator

SF (p′
1) = (p/′

1 + m)

p′2
1 − m2 + iε

(15)

for the nucleon intermediate states with four-momentum p′
1 in

Eq. (12) would be kept. It is then a straightforward exercise to
arrive at the expression

M(d,+)
γpn (k,p1,p2; q,pp,pn)

= 1

2E′
1

MNN (NN → NN )Mγφ(γN → φN )

E − (Eφ + E′
1 + E2) + iε

, (16)

where superscript + denotes that only positive-energy interme-
diate states are retained and, p′

1 = k + p1 − q, E′
1 = (M2 +

p2
1)1/2, and E = Eφ + Ep + En. It has to be noticed that in

Eq. (16), summation over intermediate spins is understood.
Again, both MNN (NN → NN ) and Mγφ(γN → φN) in

the above Eq. (16); only the three-momentum is conserved
but not necessarily the energy. We already encountered this
problem for Mγφ(γN → φN) when discussing the case
of single scattering and the same recipe is followed. For
MNN (NN → NN ), we note that it is what is called the
t-matrix element in the potential scattering and is given by
t = v + vg0t . In addition, the propagator in Eq. (16) contains
two parts,

1

E − (Eφ + E′
1 + E2) + iε

= P 1

E − (Eφ + E′
1 + E2)

− iπδ[E − (Eφ + E′
1 + E2)].

(17)

The first and second terms on the right-hand side would
correspond to the half-off- and on-energy-shell rescatterings
between the final pn states, respectively. The half-off-shell and
the on-shell MNN (NN → NN ) matrix elements are hence
needed. We evaluate them with the Nijmegen potential [19,20].

Equation (16) has to be convoluted with the deuteron wave
function as the case of single scattering.

Another type of double-rescattering diagram involves in-
termediate mesons like π , η, ρ, ω, and φ first produced by the
photon as depicted in Fig. 2(c), can also be treated in a manner
similar to that in Fig. 2(b), as outlined above. However, it can
be estimated to be small as follows. We realize that the total
cross sections σ (i) arising from an intermediate state i are
roughly proportional to the product of the cross sections of its
intermediate reactions:

σ (NN ) ∝ σγN→φNσNN→NN,

σ (φN) ∝ σγN→φNσφN→φN , (18)

σ (πN ) ∝ σγN→πNσπN→φN .

Now the values for the total cross sections of the interme-
diate reactions relevant to the kinematic region with photon
LAB energy Eγ ∼ 2 GeV are [24,25]

σγN→φN ≈ 0.3 μb,

σγN→πN ≈ 5 μb,

σNN→NN ≈ 106 μb, (19)

σφN→φN ≈ 11 × 103 μb,

σπN→φN ≈ 30 μb,

which give

σ (NN ) ∝ 3 × 105,

σ (φN ) ∝ 3.3 × 103, (20)

σ (πN ) ∝ 1.5 × 102,

or

σ (NN ) : σ (φN) : σ (πN ) = 1 : 1.1 × 10−2 : 5 × 10−4.
(21)

For the cross sections whose values are not available, like
σ (ρN ) and σ (ωN ), it is likely that their values are of the same
order of magnitude as that of σ (πN ), as π , ρ, and ω are all
meson with zero strangeness. For σ (ηN ), its value is probably
close to that of σ (φN ), because η, like φ, contains ss̄. Because
σ (NN ) is roughly the same order of magnitude as the DCSs
arising from a single-scattering process, σ (φN ) and σ (ηN )
are then around a few percent of it. It can then be concluded
that if the φN and ηN intermediate states are incorporated,
at most, their contributions are just a few percent of the total
cross section. This result is also supported by Ref. [18], where
it is shown that the effect arising from the φN FSI is small.

III. RESULTS

With the model presented in the preceding section, it is
straightforward to calculate the DCSs, SDMEs, and other
observables of the γ d → φpn reaction. We remind the readers
that once our model for the elementary amplitude of γp → φp
is fixed and the γNN∗ couplings determined, as explained
briefly in Sec. II B and in detail in Appendix A, our results for
γ d → φpn are simply predictions and free from any fitting.

We present the results and focus on the role played by the
resonances, the effects of Fermi motion, and the FSI before
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FIG. 3. The DCS of γ d → φpn as a function of tφ at four
energy bins: 1.57 < Eγ < 1.67 GeV, 1.67 < Eγ < 1.77 GeV, 1.77 <

Eγ < 1.87 GeV, and 1.87 < Eγ < 1.97 GeV. The solid lines are the
results of NR + R with pn FSI. The dash-dotted, dash-dot-dotted,
and dash-dash-dotted lines are the results of NR + R, NR, and R

without pn FSI, respectively. Here NR and R denote nonresonant
and resonant amplitudes, respectively. The squares with error bars are
the experimental data of Refs. [16,26].

comparing them with the existing data, first for the DCS and
then for the SDME. In our discussion of the SDMEs, the
connections between the spin dependence and the elementary
amplitudes, as well as the values of SDMEs, are pointed out.

A. Differential cross sections

The DCSs as functions of tφ at eight energy bins from LEPS
[16,26] are given in Figs. 3–6. The DCSs as functions of tφ at
1.65 < Eγ < 1.75 GeV measured by CLAS [17] are shown
in Fig. 7. The ratio of the DCSs with only FSI to the DCSs
without the FSI at several incoming photon LAB energies is
given in Fig. 8. The DCSs at tφ = tmax and their ratio to twice
of the production from free proton, where tmax corresponds to
the value of the maximum t for free proton case [16,26], are
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Eγ < 2.07 GeV, 2.07 < Eγ < 2.17 GeV, 2.17 < Eγ < 2.27 GeV,
and 2.27 < Eγ < 2.37 GeV.
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FIG. 5. The DCS of γ d → φpn as a function of tφ at four energy
bins: 1.57 < Eγ < 1.67 GeV, 1.67 < Eγ < 1.77 GeV, 1.77 < Eγ <

1.87 GeV, and 1.87 < Eγ < 1.97 GeV. The triangles are the results
for the simple summation of free proton and neutron DCSs. The
solid, dashed, and dash-dotted lines are the results of NR + R with
pn FSI, with only on-shell pn FSI, and without pn FSI, respectively.
The dotted and long-dashed lines are the results of NR + R with
pn FSI and with only on-shell pn FSI, respectively, without the
single-scattering contribution. Here NR and R denote nonresonant
and resonant amplitudes, respectively. The squares with error bars are
the experimental data of Refs. [16,26].

given in Fig. 9. The ratio of the DCS from the proton inside
the deuteron to that of the free proton case as a function of
photon LAB energy [16,26] is given in Fig. 10(a).

The solid and dash-dotted lines are the results obtained
by including nonresonant and resonant amplitudes with and
without pn FSI, respectively. Here including pn FSI means
that we include both the on- and the off-shell rescattering
effects. The dashed lines are the results obtained by includ-
ing only the on-shell part of the pn FSI. The dash-dot-
dotted and dash-dash-dotted lines are the results without pn
FSI calculated by including only nonresonant and resonant
amplitudes, respectively. The dotted lines are the results of
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FIG. 6. Caption is the same as in Fig. 5, but for four energy
bins: 1.97 < Eγ < 2.07 GeV, 2.07 < Eγ < 2.17 GeV, 2.17 < Eγ <

2.27 GeV, and 2.27 < Eγ < 2.37 GeV.
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FIG. 7. Comparison of our prediction with CLAS data of
Ref. [17] for 1.65 < Eγ < 1.75 GeV. Notation for the curves is the
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nonresonant plus resonant amplitudes with pn FSI without
the single-scattering contribution. The long-dashed lines are
plotted similarly to the dotted ones, but with only the on-shell
part included. Our results are plotted by using the middle
values of each bin and the maximum value of t for the free
proton case tmax(proton) corresponds to these values as well.
The squares with error bars are the LEPS data [15,16,26].

1. The role of the resonance

In Figs. 3 and 4, it is seen that the resonance contribution
to the DCS as a function of t , given by dash-dash-dotted
lines (orange), is basically flat and small. However, the single-
scattering results for DCSs with resonance (dash-dotted lines)
are significantly larger than those without resonance (dash-
dot-dotted lines). This indicates that the resonant amplitude in
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FIG. 9. (a) The DCS of γ d → φpn and (b) the ratio of the DCS of
γ d → φpn to twice the DCS of γp → φp, both at tφ = tmax(proton)
as a function of Eγ . The notation is as in Fig. 3 and the dash-dotted
lines are the results with resonance but without pn FSI.

general interferes constructively with the nonresonant ampli-
tude. This is in agreement with our findings in Refs. [13,14].
This feature is also seen in Fig. 7. Here we notice in Figs. 3,
4, and 7 that the single-scattering results for DCSs with
resonance (dash-dotted lines) are significantly larger than those
without resonance (dash-dot-dotted lines). The effects of the
resonance are the most conspicuous at |tφ − tmax(proton)| ∼
0.6 GeV2, where the resonance contribution is about equal to
the nonresonant part and is essential to bring our predictions
into agreement with the data there, which are available only
for energy bins of 2.17 < Eγ < 2.27 GeV and 2.27 < Eγ <
2.37 GeV shown in the bottom panels of Fig. 4.
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inside the deuteron to that of free proton, and (b) the SDME ρ1
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both as functions of Eγ . The notation is as in Fig. 9.
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2. The effects of Fermi motion

To understand the role of Fermi motion in the reaction, it
is instructive to compare the results of the DCS obtained by
simple summation of free proton and neutron DCSs (triangles)
and those obtained by using deuteron target without the pn
FSI (dash-dotted lines) in Figs. 5 and 6. Such a comparison
avoids the complication incurred by the presence of the pn
FSI. It is easily noted that the results are very different at small
momentum transfer |tφ − tmax(proton)| and gradually become
more similar at larger momentum transfer. This feature is
easy to understand. It is obvious that when the momentum
transfer to the deuteron is larger than the momentum of
the Fermi motion, the effects from the latter would become
less important. Clearly, at very large momentum transfer, the
outgoing struck nucleon would have an absolute velocity large
enough such that its initial absolute velocity arising from Fermi
motion would become negligible.

It is also worth mentioning that the results for the DCSs
of the free nucleons are always above those of the deuteron
case without pn FSI. This is caused by the shape of the energy
dependence of the DCS of the γN → φN , which decreases
sharply toward low energy, but increases slowly toward high
energy. For each value of energy, the Fermi motion will sample
this dependence around the energy, and because of the shape of
the dependence, the average for the DCSs is weighed toward
the low energy, where the change is more drastic, hence its
lower values relative to that of the free case. It is also the reason
why the differences between the DCSs of the free nucleons and
that of the deuteron case are more obvious at lower-energy
bins.

Unlike the DCS of the free nucleon case, which goes to zero
drastically at tφ = tmax(proton), the DCS of the γ d → φpn
reaction goes to zero more gradually. This is caused also by the
Fermi motion of the nucleons inside the deuteron. The nucleon
moving at the opposite direction of the photon provides the
reaction the opportunity to produce φ meson at momentum
transfer tφ smaller than tmax(proton) of the free case.

Naively, without considering the internal structure of the
deuteron, as well as the pn FSI, one expects that the DCS of
γ d → φpn reaction is just a sum of the DCSs of γp → φp
and γ n → φn. Indeed, when the two mechanisms affect only
minimally, for example, at higher energy and larger momentum
transfer tφ , as one sees from Figs. 5 and 6, the results from
γ d → φpn are very close to that obtained by summing the
DCSs of γp → φp and γ n → φn.

3. The effects of FSI

In Fig. 3, it is seen that the differences between results
with FSIs (solid lines) and the one without the inclusion of
FSIs (dash-dotted lines) are rather small in the photon energy
range of 1.57–1.97 GeV. However, the difference becomes
conspicuous in the region |tφ − tmax(proton)| � 0.2 GeV2 as
the photon energy grows larger than 1.97 GeV, as seen in Fig. 4.
Besides the fact that FSI effects grow with photon energy, a
close look further reveals that FSI effects also increase as
|tφ − tmax(proton)| decreases, as depicted in Fig. 8, which gives
the ratio of DCS (only FSI)/DCS (no FSI) for the four energy
bins in Figs. 3 and 4.

The two distinct features of the FSI effects, as mentioned
in the above, namely, that they grow with increasing photon
energy and decreasing |tφ − tmax(proton)| are related to the
fact that the pn cross section drops quickly with increasing
energy [27]. The reason that FSI effects get magnified with
smaller values of |tφ − tmax(proton)| is simply because the
invariant mass Mpn of pn is monotonically decreasing with
|tφ − tmax(proton)|. With a smaller Mpn, the available c.m.
energy for the pn system, or equivalently the relative kinetic
energy in the c.m. system of outgoing pn pair also gets
smaller such that their interaction becomes stronger. The
growing FSI effects with increasing photon energy can be
understood in the same light by noting that the difference
between |tmax(deuteron)| and |tmax(proton)| becomes smaller
in the mean time, as pointed out in Ref. [18].

Another important and interesting feature of the FSI effect is
that the inclusion of the final pn rescattering, in general, brings
down the DCS. One first notes that the pn FSI actually consists
of two parts, the on- and off-shell parts of the integrals over the
pn intermediate states, as indicated in Eq. (17). It can be shown
that the DCS obtained by taking into account only the on-shell
part of the pn FSI is actually equal to the DCS arising from the
single-scattering interactions [Fig. 2(a)] minus the DCS arising
from exclusively the on-shell part of the pn FSI [Fig. 2(b)].
This interesting result can be understood theoretically as a
consequence of the unitarity of the pn → pn amplitude and is
independent of the details of the interaction. The proof is given
in Appendix C. At Eγ ∼ 2 GeV and |tφ − tmax(proton)| <

0.05 GeV2, the DCSs with on-shell pn FSI (dashed), shown in
Figs. 5 and 6, are around 40% lower than the results without
the pn FSI. The large on-shell pn FSI effects contradicts the
results of Ref. [18], where it is found to be small. This can be
understood as a consequence of the fact that their γ d → φpn
and pn → pn amplitudes are not unitary, This suggests that
unitarity of the reactions taking place in the final state should
be taken into account in a study that includes FSIs.

The inclusion of the off-shell FSI brings up the DCSs again,
as seen in Figs. 5 and 6; namely, the effects of on-shell and
off-shell FSI cancel out each other to some extent. In the end,
the total pn FSI results (solid lines), in general, lie between the
results with only on-shell FSI included (red dashed lines) and
those without pn FSI (blue dash-dotted lines). For example,
at Eγ ∼ 2 GeV and |tφ − tmax(proton)| < 0.05 GeV2, the final
DCSs are only around 20% lower than the results without pn
FSI, after both the on-shell and the off-shell FSI are considered.
This demonstrates that the off-shell FSIs are important as they
actually reduce the effects introduced by the on-shell ones up
to about 50% at these kinematics.

4. Comparison with the data

We next compare our results for the DCSs with the LEPS
data [16,26]. Here, in Figs. 3 and 4, our results without
both resonance and pn FSI, as given by the dash-dot-dotted
line, show a strong peaking tendency at small values of
|tφ − tmax(proton)|, especially at higher energies, as indicated
by the data. However, they are, in general, smaller than the data,
except at the peak region of |tφ − tmax(proton)| < 0.05 GeV2 at
the highest-energy bin of 2.27 < Eγ < 2.37 GeV considered
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in this study. After the inclusion of the resonance contribution,
but not pn FSI effects, the results (dash-dotted line) are all
shifted by roughly the same amount for all |tφ − tmax(proton)|.
The inclusion of the resonance improves the agreement with
data at lower energies but overshoots the data at small values
of |tφ − tmax(proton)| < 0.05 GeV2 at higher energies. Last,
when the pn FSI is included in addition to the resonance,
the agreement with the data improves as the FSI significantly
reduces the peak.

Nevertheless, some discrepancies remain at small momen-
tum transfer, namely, in the peak region, especially at photon
energies higher than 2.17 GeV, where at the highest-energy bin,
a difference of about 25% is observed. However, our prediction
for the peak in the lowest-energy bin 1.57 < Eγ < 1.67 GeV
is considerably lower than the data. In the end, with all the
effects included, our DCS results underestimate the data at
lower energies while overestimating them at higher energies.
Notice also that our DCS results explain the LEPS data well
at larger momentum transfer but not at small momentum
transfer. However, when comparing with the CLAS data of
Ref. [17], which is taken at a large momentum transfer of
−0.9 < tφ − tmax(proton)< −0.5 GeV2 in the energy bin of
1.65 < Eγ < 1.75 GeV, as shown in Fig. 7, we find that our
predictions are lower than the data.

It is to be noted that at tφ very close to tmax(proton), the LEPS
data do not fall to zero, while our results do. It is suggested by
the main author [26] of Ref. [16] that it is possible that, owing
to the binning size of the data, the sharp decrease of the DCS
around tφ = tmax(proton) might not have been represented well
in the experimental results.

The comparison of our results for the dσd/dtφ and
(dσd/dtφ)/(2dσp/dtφ) at forward direction tφ = tmax(proton)
to the data of Ref. [16] is presented in Fig. 9. In Fig. 10(a), we
also compare our results of the ratio of (dσp∗/dtφ)/(dσp/dtφ)
to the data of Ref. [16], where dσp∗/dtφ is the DCS of
γp → φp in which the φ meson is produced from the proton
inside the deuteron. Here we observe that our results do
not match the data, even though the shapes are generally in
agreement with the data. As these results are taken in the
forward direction, it is possible that the problem is related to
the size of the bins as discussed above. Last, it is important to
point out here that in both the data and our results, no clear
peak corresponding to the resonance shows up in Fig. 9(a).
This is readily understandable as the resonance is weak and
easily gets smeared out by the Fermi motion and FSI with the
deuterium target.

B. Spin-density matrix elements

The SDMEs as functions of tφ from LEPS at three energy
bins [15] are shown in Figs. 11–13, and the SDMEs ρ1

1−1 as
functions of photon LAB energy are presented in Fig. 10(b).
The notation is the same as in Figs. 3–5. Namely, solid, dashed-
dotted, and dash-dot-dotted lines denote results obtained with
resonance and FSI included, only resonance but no FSI
included, and without both resonance and FSI included, re-
spectively. We first elaborate on the role of the spin dependence
of the elementary amplitude, as well as the roles of resonance
and FSI, before discussing the comparison with data.
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FIG. 11. The results for the SDME of γ d → φpn reaction for
1.77 < Eγ < 1.97 GeV with resonance and pn FSI, with resonance
but without pn FSI, and without both resonance and pn FSI are
given by solid, dash-dotted, and dash-dot-dotted lines, respectively.
The data are from Ref. [15].

1. The spin dependence of the elementary
amplitude of γ N → φN

The proper spin dependence of the elementary γN →
φN amplitude is employed in our calculation, whereas its
dependence on the nucleon spin was simply neglected in
Ref. [18]. Without the use of such spin dependence, it is not
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FIG. 12. The same as in Fig. 11, but for 1.97 < Eγ < 2.17 GeV.
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FIG. 13. The same as in Fig. 11, but for 2.17 < Eγ < 2.37 GeV.

possible to describe the SDME data because all of them would
be zero except for ρ1

1−1 = −Imρ2
1−1 = 0.5.

2. The role of the resonance

For the SDMEs, we observe in Figs. 11–13 that the
inclusion of the resonance does not affect as much as in the case
of DCSs, as seen in the difference between dashed-dotted, and
dash-dot-dotted lines, except the ρ0

00. This means that it does
not change much the polarization properties of the reaction.
This is a consequence of the normalization of the SDMEs being
proportional to the DCS. However, in terms of percentage, the
ρ0

1−1, ρ1
11, ρ1

1−1, and Imρ2
1−1 elements are all rather significantly

changed, especially at larger momentum transfer, in agreement
with what we found in Ref. [14].

The enhancement of the ρ0
00 element results from the

increase on the production of the φ meson of helicity λφ = 0.
However, the enhancement of the ρ1

11 and ρ1
1−1 elements indi-

cates that double-spin-flip transition with λφ = −λγ increases.
This is actually a consequence of the fact that the resonance
process is not helicity conserving, in contrast to the Pomeron-
exchange process, which is basically helicity conserving. The
enhancement of the ρ1

1−1 and Imρ2
1−1 elements basically shows

that the resonance does increase the natural-parity production
which is already strongly reduced by the π - and η-exchange
processes.

It is important to note that, even for the elements where the
resonance does not seem to affect much, it is misleading to
think that it does not contribute. As explained in Ref. [14], the
resonance does contribute; however, the interference between
resonance and nonresonance processes somewhat balances the
resonance contribution in the opposite direction.

3. The effects of FSI

In Figs. 11–13, it is observed that the solid and dash-dotted
lines almost sit on each other, which implies that the FSI
effects on the SDME are minimal, even at the highest-energy
bin, 2.17 < Eγ < 2.37 GeV, where the FSI effect on the DCS
has been substantial. This is a consequence of the fact that
the SDMEs are actually normalized by the amplitude square.
It also reflects the fact that the final pn rescattering does not
change the spin distribution of the produced φ meson.

The only two SDMEs significantly changed by the pn
FSI are ρ1

1−1 and Imρ2
1−1 at small |tφ − tmax(proton)| values.

The reductions from this effect are around 15% in the
highest-energy bin. This basically shows that the pn FSI
actually increases the strength of the unnatural-parity exchange
mediated by the intermediate π and η relative to that of natural-
parity exchange by the Pomeron. This can be understood
readily. First, consider the case without the pn FSI. Here,
notice that the strength of the unnatural-parity exchange in
the incoherent case would be lower than the free proton one
because in the former, the final proton and neutron moving
at similar velocities would cause their π -exchange amplitudes
to interfere destructively. However, the pn FSI decreases the
production of the final proton and neutron moving at similar
velocities, which enhances the strength of unnatural-parity
exchange and manifests in the smaller values of the two
SDMEs mentioned in the above.

Finally, it is also interesting to note that the reduction on
ρ1

1−1 and Imρ2
1−1 owing to rescattering of final pn is not caused

by stronger double-spin-flip transition where λφ = −λγ in
which λγ (λφ) is the helicity of photon (φ meson) although
these two SDMEs contain contributions from this transition. It
can be seen from Figs. 11–13 in which the SDMEs ρ0

1−1 and
ρ1

11, which are measures of the strength of the double-spin-flip
transition, basically almost vanish at small |tφ − tmax(proton)|
values.

4. Comparison with the data

We observe that the presence of the resonance helps
improves the agreement with data for ρ0

00 at all energies.
However, the resonance does not help the description of ρ1

1−1

and Imρ2
1−1 at the lowest-energy bin 1.77 < Eγ < 1.97 GeV.

As for the inclusion of the pn FSI, we observe that it does not
bring any significant betterment to the agreement of our results
with the data. After including all the effects, we notice that
the description of ρ1

1−1 and Imρ2
1−1 at the lowest-energy bin,

1.77 < Eγ < 1.97 GeV, is still off from the data. Similarly, our
results for the energy dependence of ρ1

1−1 at small momentum
transfer of |tφ − tmax(proton)| < 0.1 GeV2 in Fig. 10(b) de-
scribe the data well, but poorly at lower energies. This indicates
that the data favors more contribution from natural-parity
exchange which is usually provided by Pomeron exchange.

C. Discussions

From the comparisons between our predictions with the
data as presented in Secs. III A 4 and III B 4, it is seen that the
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overall agreement is satisfactory; namely, the main features
of the data are all properly reproduced except for a few
quantitative discrepancies.

Regarding the DCS, the most serious discrepancies between
the data and our results lie in the neighborhood of the forward
direction, i.e., small values of |tφ − tmax(proton)|, as seen in
Figs. 3 and 4. One notices that the height of the predicted
peak is at first underpredicted at the lower-energy bins with
the difference getting smaller with increasing energy and
then eventually overshoots the data. Yet at the very forward
direction with tφ = tmax(proton), our predictions are always
smaller than the data, as seen in Fig. 9(a). It might be related to
the binning size of the data [26], as discussed in Sec. III A 4. For
the intermediate momentum-transfer region with 0.2 < |tφ −
tmax(proton)| < 0.5 GeV2, our results describe well the data.
However, as momentum transfer grows and becomes larger
than 0.5 < |tφ − tmax(proton)| GeV2, our results underestimate
the CLAS data of Ref. [17], as indicated in Fig. 7. However, it
should be noted that these data are taken at a rather low-energy
bin of 1.65 < Eγ < 1.75 GeV among the data set we consider
in this study.

The SDMEs measured by LEPS are, in general, reproduced
well by our calculations besides ρ1

1−1 and Imρ2
1−1 in the low-

energy bin of 1.77 < Eγ < 1.97 GeV. This happens to be the
case in our model for the elementary amplitude of γp → φp
[14].

The discrepancies summarized above are characterized
by (i) very low energies for all momentum transfers and
(ii) forward angles except for the energy bins lying between
1.87 and 2.17 GeV.

It is then an interesting question to ask why our model,
which has performed well in the γp → φp case, does not
describe γ d → φpn as well as one would expect despite
that we have treated the problem laboriously up to the
double-scattering contributions. The higher-order multiple
rescatterings as depicted in Figs. 2(d) and 2(e) are likely not to
be blamed because they all involve at least one meson-nucleon
scattering and hence would not contribute significantly, as
discussed in Sec. II C 2. The only possibility left then is the
model we employ for the elementary process γN → φN . This
is also supported by noting that the disagreement found in the
SDMEs is somewhat similar to that in the free proton case
presented in Ref. [14].

Three possible causes have come to our mind. Namely,
(i) description of the resonance, (ii) off-shell behavior of the
elementary amplitude, and (iii) low-energy behavior of the
model.

Discussing the role of the resonance in γ d → φpn reaction,
one first notes that to study the γ d → φpn reaction, a model
for the γ n → φn reaction is required. The background part of
the Pomeron, π , and η exchanges can be readily obtained with
isospin invariance. Regarding the resonance contribution, there
is a problem in that there exist no data for φ production from
the neutron to infer the couplings of γ nN∗ and φnN∗ such that
we have to rely on some model assumptions for estimation.
However, we find from Figs. 3 and 4 that the resonance
contribution is rather independent of momentum transfer, as in
the case of γp → φp [14], while discrepancies appear to be the
largest at small momentum transfer. Accordingly, an improved

description of the resonance may not be sufficient to bridge
the discrepancy. Nevertheless, it has to be remembered that
resonance does play a significant role in reducing the difference
with the data, especially for the DCS and some elements of
the SDME at larger momentum transfer. Another interesting
question concerns whether some peak feature would appear
in γ d → φpn, as in γp → φp. In this connection, it is to be
remembered that, according to our analysis in Ref. [14], the
nonmonotonic behavior found in Ref. [10] is a result of a subtle
balance between the meson-exchange mechanism and a weak
resonance. Such a balance could easily be offset by the Fermi
motion and FSI in the φ production from deuteron.

In Figs. 5 and 6 it can be observed that our DCS results with
resonance and on-shell rescattering only (dashed lines) fit the
data very well at higher energies, though not as well at lower
energies. This may be related to the possibility that the off-
shell rescattering contribution to the DCS is not satisfactorily
estimated. This is indeed an open question as the Pomeron
amplitude itself, which constitutes the largest contribution to
the DCS, is not yet fully understood, not to mention its off-
energy-shell behavior as is needed in our calculation. This
question should be investigated in more detail.

The low-energy behavior of our model, basically that of
the Pomeron amplitude, as well as contributions from other
mechanisms like the existence of a second Pomeron, glueball
exchange, and ss̄ knockout, etc., has been the subject of several
studies, e.g., Refs. [6,28]. Again, they remain to be studied in
depth.

The issues enumerated above could possibly be answered
by the recent high-statistics data on the γp → φp DCSs and
SDMEs taken at CLAS [11,12]. Their DCS data, taken at a
larger range of momentum transfer and energy, also confirm
the nonmonotonic behavior observed at small momentum
transfer previously by LEPS. However, their data indicate
that the nonmonotonic behavior does not appear at larger
momentum transfer. This, in fact, could possibly cast some
doubts on whether the nonmonotonic behavior is really caused
by the presence of a resonance. We have recently realized
that the ss̄ knockout mechanism, as considered in Ref. [8],
could also produce nonmonotonic behavior in the forward
differential cross section of γp → φp and are currently
engaged in an attempt to extend our model for γp → φp
[14] by including the ss̄ knockout process to see whether it
is possible to explain the LEPS data [10,15] and the recent
CLAS data [11,12]. It will conceivably shed useful light on
the issues discussed above.

IV. SUMMARY AND CONCLUSIONS

In summary, we have calculated the DCSs and SDMEs
of the incoherent photoproduction of φ meson from deuteron
γ d → φpn near threshold and compared them with the data
from the LEPS [15,16] and CLAS [17]. The calculation is
based on a model for γp → φp we constructed in Refs. [13,14]
which described the LEPS data of Ref. [10] well, including
a peak around a photon laboratory energy of 2.0 GeV, first
observed by the LEPS Collaboration and recently confirmed
by the high-statistics CLAS data [11,12]. Our model contains a
resonance with spin-parity JP = 3/2−, mass MN∗ = 2.08 ±
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0.04 GeV, and width �N∗ = 0.570 ± 0.159, in addition to a
background consisting of Pomeron and (π,η) exchanges in
the t channel. For production from deuteron, the couplings
of the resonance to neutron are estimated with a guide from
a relativistic constituent quark model. The calculation for
γ d → φpn was then carried out up to double rescatterings
with realistic nucleon-nucleon interaction.

Our calculation contains major improvements over that of
Ref. [18] in that (i) the Pomeron amplitude used is more
realistic and contains the proper spin dependence, which
leads to nontrivial values for the SDME, (ii) the D state of
deuteron is considered, and (iii) the off-shell contributions
to the FSI of the final pn, in addition to the on-shell part,
are included. Accordingly, our results are, up to double
rescatterings, predictions of the γ d → φpn reaction because
no more fitting is involved.

We find that the inclusion of the Fermi motion of the
nucleons inside the deuteron plays an important role in
the description of one characteristic of γ d → φpn at small
momentum transfer, namely, a gradual decrease of DCSs with
diminishing |tφ − tmax(proton)|. However, the contribution
from deuteron D state to both DCSs and SDMEs is negligible.

The effects of FSI involving meson-nucleon rescatterings
are estimated to be small. However, the effects from the
rescattering of the final pn are found to be rather significant
to provide a considerable reduction in the DCS which is about
20% at higher-energy bins. We find that the contributions of
on-shell and off-shell final pn rescatterings cancel each other
out to some extent. The off-shell rescattering effects should
hence be considered in realistic description of the reaction. It
brings up the question about the off-shell extrapolation of the
Pomeron amplitude, an issue that remains to be studied further.

Regarding the postulated resonance, it is found to play a
significant role in the description of the DCSs at a broad
range of momentum transfer and energy, although less so
for the SDMEs. The weak resonance, which is responsible
for the appearance of a small peak in γp → φp, is not
found to produce any nonmonotonic behavior in γ d → φpn,
apparently smeared out by the Fermi motion and FSI.

The overall agreement of our results with the data is
satisfactory in that the main features of the data are all properly
reproduced except a few quantitative discrepancies at some
kinematic regions characterized by (i) very low energies at
all momentum transfers, and (ii) forward angles except at the
energy bins lying between 1.87 and 2.17 GeV.

On the experimental side, the DCS data from LEPS do not
fall to zero at small t as would be expected. According to
Ref. [26], it might be related to the binning size of the data. It
is possible that some aspects of their results might need to be
further examined. In addition, the LEPS data have relatively
large error bars because they had to rely on MC simulation to
separate the coherent and incoherent events. The comparison
of our predictions with the data will be more meaningful after
these questions are clarified.

On the theoretical side, our model for the elementary
amplitude of γp → φp should be carefully compared with
the recent high-statistics data from CLAS [11,12], especially
regarding the assumption of resonance. Other possible mech-
anisms like nondiffractive processes of nucleon exchange,

nucleon resonances, second Pomeron exchange, t-channel
scalar meson and glueball exchanges, and ss̄-cluster knockout,
which have been suggested to contribute at low energies,
should also be reexamined, in light of the new CLAS data. We
recently realized that the ss̄ knockout mechanism as studied
in Ref. [8] could also produce nonmonotonic behavior in
the forward differential cross section of γp → φp and are
currently engaged in an attempt to extend our model for
γp → φp [14] by including the ss̄ knockout process to see
whether it is possible to account for the LEPS data [10,15]
and the recent high-statistics CLAS data [11,12]. Finally, we
emphasize that a combined analysis of the low-energy data of
γp → φp and γ d → φpn will be much desired to shed light
on the issues discussed above.
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APPENDIX A: THE MODEL FOR γ N → φN REACTION

We first introduce the kinematic variables k, pi , q, and pf

for the four-momenta of the incoming photon, initial proton,
outgoing φ-meson, and final proton, respectively, with s =
(k + pi)2 = (q + pf )2, t = (q − k)2 = (pf − pi)2, and u =
(pf − k)2 = (q − pi)2.

In addition to the nonresonant mechanism of Pomeron ex-
change, t-channel π - and η-exchange, we include a resonance
N∗. We can then write the full amplitude M as

MγN→φN = MP + Mπ+η + MN∗ , (A1)

as shown in Fig. 14, where MN∗ contains both s- and u-
channel contributions.

1. Pomeron exchange

Following Refs. [6,29], we can easily write the Pomeron-
exchange amplitude of Fig. 14(a),

MP = −ū(pf ,λN ′ )M(s,t)�μνu(pi,λN )

× ε∗
μ(q,λφ)εν(k,λγ ), (A2)

where εμ(q,λφ) and εν(k,λγ ) are the polarization vectors of
the φ meson and photon with λφ and λγ , respectively, and
u(pi,λN ) [u(pf ,λN ′ )] is the Dirac spinor of the nucleon with
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FIG. 14. Pomeron, (π,η) exchanges, and s- and u-channel N∗ excitation diagrams for γN → φN reaction are labeled (a)–(d), respectively.

momentum pi [pf ] and helicity λN [λN ′]. The transition
operator �μν in Eq. (A2) is

�μν =
(

gμν − qμqν

q2

)
/k −

(
kμ − kqqμ

q2

)
γ ν

−
(

γ μ − /qqμ

q2

)[
qν − kq

(
pν

i + pν
f

)
k(pi + pf )

]
. (A3)

The scalar function M(s,t) is described by the Reggeon
parametrization,

M(s,t) = CP F1(t)F2(t)
1

s

(
s − sth

s0

)αP (t)

exp

[
− iπ

2
αP (t)

]
,

(A4)

where we have taken the Pomeron trajectory αP (t) = 1.08 +
0.25t and s0 = (MN + Mφ)2. The isoscalar form factor F1(t)
of the nucleon and the form factor F2(t) of the φ-photon–
Pomeron coupling are given as [2,6]

F1(t) = 4M2
N − a2

Nt(
4M2

N − t
)
(1 − t/t0)2

, (A5)

F2(t) = 2μ2
0(

1 − t/M2
φ

)(
2μ2

0 + M2
φ − t

) , (A6)

with μ2
0 = 1.1 GeV2, a2

N = 2.8, and t0 = 0.7 GeV2.
Here the strength factor is taken to be CP = 3.65, which

is obtained by fitting to the total cross-section data at high
energy [6]. Included as well is the threshold factor sth [3,6] so
that we get a better agreement with experimental data near the
threshold region. Owing to the fact that Pomeron properties
and behaviors at lower energies are not well established, we
adjust this parameter to fit the experimental data on the DCSs
around Eγ = 6 GeV because at this energy, it can be expected
that all other contributions from hadronic intermediate states
would become negligible and only Pomeron contributes. Also,
around this energy, experimental data have relatively small
error bars and rise steadily without much fluctuation. These
give us confidence to match the Pomeron contribution to the
experimental data at this energy by fixing sth = 1.3 GeV2.

2. π - and η-meson exchanges

The amplitudes for the π and η exchanges in the t channel
[Fig. 14(b)] can be calculated straightforwardly [8] and are
given by

Mπ+η = −egγφπgπNNF 2
π (t)

Mφ

ū(pf ,λN ′)γ5
εμνρσ qμkρ

t − M2
π

× u(pi,λN )ε∗
ν (q,λφ)εσ (k,λγ )

+− egγφηgηNNF 2
η (t)

Mφ

ū(pf ,λN ′ )γ5
εμνρσ qμkρ

t − M2
η

× u(pi,λN )ε∗
ν (q,λφ)εσ (k,λγ ), (A7)

with the coupling constants gπNN = 13.26, gγφπ = −0.14,
and gγφη = −0.71, as well as the form factors Fπ (t) and Fη(t)
for the virtually exchanged mesons at the MNN and γφM
(M = π,η) vertices, respectively, are taken to be the same as
in Ref. [29]. We choose gηNN = 1.12 [30] and �π = �η =
1.2 GeV, which are slightly different with the values given in
Ref. [29].

3. Excitation of a baryon resonance

The s- and u-channel Feynman diagrams with an N∗ in the
intermediate state are shown in Figs. 14(c) and 14(d). For the
coupling of 3/2 resonances to γN , we choose the commonly
used interaction Lagrangians [30–32]

L3/2±
γNN∗ = ieg

(1)
γNN∗ψ̄N�±(

∂μψν
N∗

)
F̃μν

+ eg
(2)
γNN∗ψ̄N�±γ 5

(
∂μψν

N∗
)
Fμν + H.c., (A8)

where Fμν = ∂μAν − ∂νAμ is the electromagnetic field tensor,
and σμν = i

2 (γμγν − γνγμ). Also, F̃μν = 1
2εμναβF αβ denotes

the dual electromagnetic field tensor with ε0123 = +1. The
operators �± are given by �+ = 1 and �− = γ5. For the φNN∗
interaction Lagrangians, we have

L3/2±
φNN∗ = ig

(1)
φNN∗ψ̄N�±(

∂μψν
N∗

)
G̃μν

+ g
(2)
φNN∗ψ̄N�±γ 5

(
∂μψν

N∗
)
Gμν

+ ig
(3)
φNN∗ψ̄N�±γ 5γα

(
∂αψν

N∗ − ∂νψα
N∗

)
(∂μGμν)

+ H.c., (A9)

where Gμν is defined as Gμν = ∂μφν − ∂νφμ, with φμ the
field of φ meson. The dual field tensor G̃μν is defined similarly
as its electromagnetic counterpart with Fαβ → Gαβ . Notice
that we could have chosen to describe the γNN∗ in the same
way as we describe the φNN∗ interactions. However, the term
proportional to g

(3)
γNN∗ in the Lagrangian densities of Eq. (A9)

vanishes in the case of a real photon. With the Lagrangians
given in Eqs. (A8) and (A9), the full invariant amplitude of
s and u channels can be obtained by following the Feynman
rules.
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The form factor for the vertices used in the s- and u-channel
diagrams, FN∗ (p2), is

FN∗ (p2) = �4

�4 + (
p2 − M2

N∗
)2 , (A10)

where � is the cutoff parameter for the virtual N∗, following
Ref. [33]. In this work, we choose � = 1.2 GeV for all
resonances. The Rarita-Schwinger propagator is used for the
spin- 3

2 N∗,

G(3/2)
μν (p) = i(/p + MN∗ )

p2 − M2
N∗ + iMN∗�N∗

[
−gμν + 1

3
γμγν

− 1

3MN∗
(pμγν − pνγμ) + 2

3M2
N∗

pμpν

]
,

(A11)

with �N∗ the total decay width of N∗. Because u < 0, we take
�N∗ = 0 MeV for the propagator in the u channel.

Note carefully that in our previous works [13,14], we cannot
obtain the values of the coupling constants gφpp∗ and gγpp∗ by
fitting to the experimental data, as our calculations are done
in the tree level. Thus, only the values of the products of the
coupling constants G

ij
γpp∗ ≡ g

(i)
γpp∗g

(j )
φpp∗ are shown. Here we

show how we calculate the neutron-coupling constants g
(j )
φnn∗

and g
(i)
γ nn∗ .

First of all, we have to realize that we do not have sufficient
knowledge to actually estimate the neutron-coupling constants
g

(j )
φnn∗ and g

(i)
γ nn∗ from the experimental data. At best, we can

only assume that our resonance, if it actually exists, should
have properties rather similar to a theoretically predicted JP =
3/2− nucleon state in the same mass region that has the same
sign for the ratio of helicity amplitudes A

p
1/2/A

p
3/2 for p∗ →

γp. For this purpose, we employ a JP = 3/2− nucleon state
with a bare mass of 2095 GeV and a positive value for the
ratio of helicity amplitudes A

p
1/2/A

p
3/2 for γp decay predicted

by Ref. [21] in which the predictions for Breit-frame helicity
amplitudes AN

1/2 and AN
3/2 for both γp and γ n decays are

A
p
1/2 = −9, A

p
3/2 = −14,

An
1/2 = 8, An

3/2 = 1, (A12)

in the unit of 10−3GeV−1/2. Notice that these helicity ampli-
tudes are calculated in Breit frame, not in the center-of-mass
frame. It is also very interesting to note that this predicted state
is the only nucleon state with JP = 3/2− and a positive ratio
of helicity amplitudes A

p
1/2/A

p
3/2 in the energy region.

Let us also state the relation between the helicity and
invariant amplitudes in the center-of-mass frame of the
resonance N∗,

AN
m = 1√

2|k|
1√

2MN∗

1√
2MN

MN∗→γN (m,mγ = +1),

(A13)

where k is the three-momentum of the photon in center-of-
mass frame and m = 1/2, . . . ,J is the spin projection of the
resonance in which J is the total spin of the resonance. The

photon is assumed to be moving to the positive z direction with
spin projection mγ = +1.

By using the values for the helicity amplitudes An
1/2 and

An
3/2 for the n∗ → γ n, it is straightforward to calculate the

coupling constants gγnn∗ . First, let us translate the coupling
constants into helicity amplitudes by using a linear transfor-
mation, because they are related only linearly,(

AN
1/2

AN
3/2

)
=

(
�11 �12

�21 �22

)(
g

(1)
γNN∗

g
(2)
γNN∗

)
, (A14)

where

�ij = AN
i−1/2

∣∣
g

(j )
γNN∗=1,g

(
=j )
γNN∗ =0, (A15)

where m and mγ are the spin projections of the resonance
N∗ and the photon, respectively. Here N = (p,n) and N∗ =
(p∗,n∗). It must also be noted that because the helicity
amplitudes are defined for real photon, there is no mγ = 0 with
mN = +1/2 state for the AN

1/2 amplitude. Finally, to obtain

g
(i)
γ nn∗ , we can just inverse the relation

(
g

(1)
γ nn∗

g
(2)
γ nn∗

)
=

(
�11 �12

�21 �22

)−1(
An

1/2

An
3/2

)
. (A16)

Next we calculate the coupling constants g
(j )
φnn∗ . Notice

that by isospin consideration, the values for these coupling
constants are the same for both proton and neutron cases
g

(j )
φpp∗ = g

(j )
φnn∗ . First of all, we notice that we only have the

products of G
ij
γpp∗ ≡ g

(i)
γpp∗g

(j )
φpp∗ in our previous work [14], and

the values of g
(i)
γpp∗ here cannot be similar to those obtained in

Ref. [21], as they are obtained in completely different ways.
However, we have to find a way to obtain g

(i)
γpp∗ if we would

like to get g
(j )
φpp∗ from G

ij
γpp∗ . However, we can require that the

resonance in our work and in Ref. [21] should have the same
decay width to γp to fix g

(i)
γpp∗ . Let us also write the partial

width of the nucleon resonance N∗ decay into γN in terms of
the helicity amplitudes,

�N∗→γN = 2

2J + 1

|k|2MN

π2MN∗

(∣∣AN
1/2

∣∣2 + ∣∣AN
3/2

∣∣2)
. (A17)

Then the p∗ → γp width in Ref. [21] is

�p∗→γp = fA

(∣∣Ap
1/2

∣∣2 + ∣∣Ap
3/2

∣∣2)
, (A18)

in which fA, which can be easily read from Eq. (A17), is just
a factor containing kinematical variables. At the same time, as
we explained before, this width has to be equal to the width
we have from the coupling constants g

(i)
γpp∗ ,

�p∗→γp = f (1)
g

(
g

(1)
γpp∗

)2 + f (2)
g

(
g

(2)
γpp∗

)2

= f (1)
g

(
g

(1)
γpp∗

)2 + f (2)
g

(
k12g

(1)
γpp∗

)2

= (
f (1)

g + f (2)
g k2

12

)(
g

(1)
γpp∗

)2
, (A19)
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where k12 ≡ g
(2)
γpp∗/g

(1)
γpp∗ = G

2j
γpp∗/G

1j
γpp∗ and f (i)

g is just a
factor containing kinematical variables. This leads us to

g
(1)
γpp∗ = ±

√
fA

f
(1)
g + f

(2)
g k2

12

√∣∣Ap
1/2

∣∣2 + ∣∣Ap
3/2

∣∣2
,

g
(2)
γpp∗ = ±k12

√
fA

f
(1)
g + f

(2)
g k2

12

√∣∣Ap
1/2

∣∣2 + ∣∣Ap
3/2

∣∣2
, (A20)

which can be written compactly as

g
(i)
γpp∗ = ±k1i

√
fA

f
(1)
g + f

(2)
g k2

12

√∣∣Ap
1/2

∣∣2 + ∣∣Ap
3/2

∣∣2
, (A21)

where k11 = 1. Notice that the ambiguity in the sign can
be resolved easily by substituting the coupling constants to
Eq. (A14) and requiring the resulting helicity amplitudes to
have the same sign as the ones given in Ref. [21]. Once we
obtain g

(i)
γpp∗ , we can also obtain g

(j )
φpp∗ = g

(j )
φNN∗ ,

g
(j )
φNN∗ = G

ij
γpp∗

g
(i)
γpp∗

=
√

f
(1)
g + f

(2)
g k2

12

fA

× G
ij
γpp∗

k1i

√∣∣Ap
1/2

∣∣2 + ∣∣Ap
3/2

∣∣2
. (A22)

APPENDIX B: SPIN-DENSITY MATRIX FORMALISM
FOR γ d → φpn REACTION

Let us begin by defining the SDME from the decay angular
distribution of the KK̄ pair in an arbitrary frame for a specific
t and photon polarization state [34] |γ 〉,

W (	KK̄ )|tφ = 1

N

∫
duφd	pn

ppn

Mpn

×
∑

λpλnλd

|〈	KK̄λpλn|T̂ |γ λd〉|2, (B1)

with a normalization factor

N = 1

2

∫
d	KK̄

∫
duφd	pn

ppn

Mpn

×
∑

λpλnλγ λd

|〈	KK̄λpλn|T̂ |λγ λd〉|2, (B2)

where all the kinematic variables have been defined before in
Sec. II, except the solid angle 	KK̄ , which is the direction of
either K or K̄ in KK̄ pair rest frame. Here λi denotes the
helicity of particle i. Notice that the integrations over u and
	pn are needed because we do not observe these variables in
the final state. The normalization factor N is proportional with
the unpolarized DCS, with a factor of 1/2 needed to average
over the helicity states of the photon and an integration over
	KK̄ is also included. Clearly, the integration has to be done
in the same way we would integrate for DCSs because it is

proportional to the decay angular distribution. Here we have
dropped all the momenta, and it is understood that the momenta
of the particles have been fixed by the total energy squared s,
tφ , uφ , 	pn, and 	KK̄ together with the use of a coordinate
system.

At this point, let us now introduce the photon spin-density
operator

ρ̂(γ ) = |γ 〉〈γ |, (B3)

which can be represented by a matrix whose elements are

ρλγ λ′
γ
(γ ) = 〈λγ |ρ̂(γ )|λ′

γ 〉. (B4)

Then we can write Eq. (B1) as

W (	KK̄ )|tφ
= 1

N

∫
duφd	pn

ppn

Mpn

∑
λpλnλdλγ λ′

γ

〈	KK̄λpλn|

× T̂ |λγ λd〉ρλγ λ′
γ
(γ )〈λ′

γ λd |T̂ †|	KK̄λpλn〉, (B5)

with a normalization factor, written in a different way,

N =
∫

d	KK̄

∫
duφd	pn

ppn

Mpn

∑
λpλnλdλγ λ′

γ

×〈	KK̄λpλn|T̂ |λγ λd〉
(

1

2
δλγ λ′

γ

)

×〈λ′
γ λd |T̂ †|	KK̄λpλn〉, (B6)

which shows its similarity with the numerator, with an
integration over 	KK̄ and ρλγ λ′

γ
(γ ) → 1/2δλγ λ′

γ
, where δλγ λ′

γ

here is the Kronecker δ.
Here by following the same construction, we can write the

decay angular distribution as a function of the φ-meson SDME,

W (	KK̄ )|tφ
= 1

Nφ

∑
λφλ′

φ

〈	KK̄ |T̂φ|λφ〉ρλφλ′
φ
(φ)〈λ′

φ|T̂ †
φ |	KK̄〉, (B7)

where the normalization constant is

Nφ =
∫

d	KK̄

∑
λφλ′

φ

〈	KK̄ |T̂φ|λφ〉
(

1

3
δλφλ′

φ

)
〈λ′

φ|T̂ †
φ |	KK̄〉

= 1

3

∑
λφ

∫
d	KK̄ |〈	KK̄ |T̂φ|λφ〉|2, (B8)

where the factor of 1/3 comes from the averaging of the
polarization of the φ meson. Now our main task is to isolate
ρλφλ′

φ
(φ) from Eq. (B5). We can begin by noticing that

〈	KK̄λpλn|T̂ |λγ λd〉
= c

∑
λφ

〈	KK̄

∣∣T̂φ

∣∣λφ〉〈λφλpλn|T̂γ d |λγ λd〉, (B9)

where a complex number c is produced as we take only the pole
of the φ-meson propagator, which is a good approximation
because the φ meson has very small width.
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After some arranging of the terms, Eq. (B5) can now be written as

W (	KK̄ )|tφ = 1

N

∑
λφλ′

φ

〈	KK̄ |T̂φ|λφ〉
⎡
⎣|c|2

∑
λpλnλd

∑
λγ λ′

γ

∫
duφd	pn

ppn

Mpn

〈λφλpλn|T̂γ d |λγ λd〉ρλγ λ′
γ
(γ )〈λ′

γ λd |T̂ †
γ d |λ′

φλpλn〉
⎤
⎦

×〈λ′
φ|T̂ †

φ |	KK̄〉. (B10)

Now let us evaluate the normalization constant,

N = 1

2

∫
d	KK̄

∫
duφd	pn

ppn

Mpn

|c|2
∑

λpλnλγ λd

|〈	KK̄λpλn|T̂ |λγ λd〉|2

= 1

2

∫
duφd	pn

ppn

Mpn

|c|2
∑

λφλpλnλγ λd

∫
d	KK̄ |〈	KK̄ |T̂φ|λφ〉|2|〈λφλpλn|T̂γ d |λγ λd〉|2. (B11)

We can now use the fact that the K meson is a spinless particle, which allows us to write

〈	KK̄ |T̂φ|λφ〉 = A

√
3

4π
D1

λφ0(	KK̄ ) (B12)

and ∫
d	KK̄ |〈	KK̄ |T̂φ|λφ〉|2 = |A|2. (B13)

We can factor out
∫

d	KK̄ |〈	KK̄ |T̂φ|λφ〉|2 because it is independent of the value of λφ and obtain

N = 1

3

∑
λ′

φ

∫
d	KK̄ |〈	KK̄ |T̂φ|λ′

φ〉|2
⎡
⎣1

2

∫
duφd	pn

ppn

Mpn

|c|2
∑

λφλpλnλγ λd

|〈λφλpλn|T̂γ d |λγ λd〉|2
⎤
⎦, (B14)

where the summation over φ-meson helicity states λ′
φ and a factor of 1/3 are needed for comparison with Eq. (B8).

We can compare Eqs. (B10) and (B14) to Eqs. (B7) and (B8) to obtain

ρλφλ′
φ
(φ) ≡ 1

Nγd

∑
λpλnλd

∑
λγ λ′

γ

∫
duφd	pn

ppn

Mpn

〈λφλpλn|T̂γ d |λγ λd〉ρλγ λ′
γ
(γ )〈λ′

γ λd |T̂ †
γ d |λ′

φλpλn〉, (B15)

with

Nγd ≡ 1

2

∫
duφd	pn

ppn

Mpn

×
∑

λφλpλnλγ λd

|〈λφλpλn|T̂γ d |λγ λd〉|2. (B16)

APPENDIX C: RELATION BETWEEN
SINGLE-SCATTERING DCSs AND THE DCSs

WITH ON-SHELL pn FSI

Let us begin from the operator of the γ d → φpn reaction,

T̂ = T̂S + T̂FSI, (C1)

where the operator T̂S contains only single-scattering interac-
tions, as represented in Fig. 2(a), and

−iT̂FSI = (−iT̂pn)
i

E − Ĥ + iε
(−iT̂S), (C2)

in which the operator T̂FSI contains pn FSI only, as represented
in Fig. 2(b). Here the total energy E of the final φ, p, and n
is E = Epn + Eφ , where the energy of the proton and neutron
in the final state Epn = Ep + En. The free Hamiltonian of the
particles in the intermediate state where proton, neutron, and

φ meson are not interacting is

Ĥ = Ĥpn + Ĥφ, (C3)

where Ĥpn is just the free Hamiltonian of the pn system
and Ĥφ → Eφ as the φ meson is already in free space. Now,
because

1

Epn − Ĥpn + iε
= P 1

Epn − Ĥpn

− iπδ(�Epn), (C4)

Eq. (C2) can be rewritten as

T̂FSI = T̂FSI, off + T̂FSI, on. (C5)

However, let us focus on the amplitude calculated within the
on-shell approximation, or

T̂on = T̂S + T̂FSI, on, (C6)

where again the subscript on on the full operator T̂on is to
denote that the on-energy-shell approximation has been taken,
and in which

T̂FSI, on ≡ T̂pn[−iπδ(�Epn)]T̂S. (C7)

where the operator T̂pn is defined for elastic pn scattering in
which the initial and final states are both on energy shell and
�Epn is the difference of the on-shell energies between the
two states.
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Here we need to have some basic relations between the
amplitudes involved in pn scattering. The scattering operator

Ŝpn = 1̂ + 2πδ(�Epn)(−iT̂pn) (C8)

obeys the unitarity relation

ŜpnŜ
†
pn = Ŝ†

pnŜpn = 1̂, (C9)

which also implies that

T̂pnT̂
†
pn = T̂ †

pnT̂pn. (C10)

Having all these relations, we can continue to calculate the
operator T̂on,

T̂on = T̂S + T̂pn[−iπδ(�Epn)]T̂S = 1
2 (1̂ + Ŝpn)T̂S. (C11)

Now we are ready to calculate T̂
†

onT̂on,

T̂ †
onT̂on = 1

4 T̂
†

S (1̂ + Ŝ†
pn)(1̂ + Ŝpn)T̂S

= 1
4 T̂

†
S [41̂ − 2iπδ(�Epn)T̂pn + 2iπδ(�Epn)T̂ †

pn]T̂S,

(C12)

where the last line is reached by using Eqs. (C8) and (C9). We
can continue

T̂ †
onT̂on = T̂

†
S

[
1̂ − 1

2 iπδ(�Epn)T̂pn + 1
2 iπδ(�Epn)T̂ †

pn

]
T̂S

= T̂
†

S T̂S + 1
2 T̂

†
S T̂pn[−iπδ(�Epn)]T̂S

+ 1
2 T̂

†
S [iπδ(�Epn)]T̂ †

pnT̂S

= T̂
†

S T̂S + 1
2 (T̂ †

S T̂FSI, on + T̂
†

FSI, onT̂S). (C13)

Finally, by using

T̂ †
onT̂on = (T̂ †

S + T̂
†

FSI, on)(T̂S + T̂FSI, on)

= T̂
†

S T̂S + T̂
†

FSI, onT̂FSI, on + T̂
†

S T̂FSI, on + T̂
†

FSI, onT̂S

(C14)

to substitute the second term in the round brackets of the last
line of Eq. (C13), we have, from Eq. (C13),

T̂ †
onT̂on = T̂

†
S T̂S − T̂

†
FSI, onT̂FSI, on. (C15)

Now we must be very careful in interpreting this apparently
simple formula. It has to be understood that this equation
consists of operators and can be related to amplitudes only
after we apply a suitable set of states onto them. This procedure
also includes an application of a completeness relation between
the operators. The completeness relation in this case must be
constructed from the states present in the S matrix Ŝpn, which
when applied to the operators provides a summation over the
spins and an integration over the solid angles of the proton and
neutron. The resulting quantities will be proportional to the
DCSs of incoherent φ-meson photoproduction in which the
momenta and spins of the outgoing proton and neutron are not
observed,

dσtotal, on

dt
= dσS

dt
− dσFSI, on

dt
, (C16)

which proves the statement stated before. Notice that unitarity
relation for the pn system in the final state given in Eq. (C9)
actually plays an important role in the derivation.
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